
UNIVERSITY OF CASTILLA-LA MANCHA

ESCUELA SUPERIOR DE INFORMÁTICA

COMPUTER ENGINEERING

Speci�c Technology of

Information and Communication Technologies

FINAL DEGREE PROJECT

Allegra: Gami�cation-based Tool to
Practice Melodic Dictation

Adrián Ollero Jiménez

July, 2019

UNIVERSITY OF CASTILLA-LA MANCHA

ESCUELA SUPERIOR DE INFORMÁTICA

Technologies and Information Systems Department

Speci�c Technology of

Information and Communication Technologies

FINAL DEGREE PROJECT

Allegra: Gami�cation-based Tool to

Practice Melodic Dictation

Author: Adrián Ollero Jiménez
Supervisor: Diego Molero Marín

Supervisor: David Vallejo Fernández

July, 2019

TFG Adrián Ollero - Allegra
e-mail: adrian.ollero@alu.uclm.es

© Adrián Ollero Jiménez, 2019

Este documento se distribuye con licencia Creative Commons Atribución Compartir Igual 4.0. El
texto completo de la licencia puede obtenerse en h�ps://creativecommons.org/licenses/by-sa/4.0/.

La copia y distribución de esta obra está permitida en todo el mundo, sin regalías y por cualquier
medio, siempre que esta nota sea preservada. Se concede permiso para copiar y distribuir traducciones
de este libro desde el español original a otro idioma, siempre que la traducción sea aprobada por el
autor del libro y tanto el aviso de copyright como esta nota de permiso, sean preservados en todas
las copias.

adrian.ollero@alu.uclm.es
https://creativecommons.org/licenses/by-sa/4.0/

Tribunal:

Presidente:

Vocal:

Secretario:

Fecha de defensa:

Calificación:

Presidente Vocal Secretario

Fdo.: Fdo.: Fdo.:

A mis padres y
y mi hermano.

Abstract

Music students have to master numerous disciplines in order to become a professional
musician. One of them is the perception of the world of sound, which has to become
more and more perfect. Conservatories and music schools have adopted the practice of
melodic dictation as the principal means of achieving this perfection. This practice consists
of transcribing a musical piece normally played by a piano. Despite its popularity, it is a
very di�cult practice to master as it requires many hours of autonomous work outside the
classroom for which there are not many mechanisms.

On the other hand, new technologies are increasingly present in our lives. In recent years,
mobile devices are gaining more weight thanks to their power and versatility. In fact, music
has greatly bene�ted from this technology thanks to the audio systems they incorporate
and the many music services available. These technologies have not only revolutionized
how music is enjoyed, but also how it is learned. There are thousands of systems for
teaching instruments or music theory. To reinforce the e�ectiveness of educational systems,
gami�cation techniques may be used, so that learning takes place in environments that
engage the student by containing game elements.

Starting from the need for mechanisms for practicing melodic dictation outside the class-
room, and taking advantage of the power and versatility of mobile devices and gami�cation
techniques, it is proposed to develop a tool that, through the use of these techniques, helps
music students practice dictation anywhere and in an environment that makes them feel
motivated, in order to achieve a mastery of this di�cult discipline.

ix

Resumen

Durante la vida de un estudiante de música, este se tiene que manejar a numerosas disciplinas
para poder llegar a ser un músico profesional. Una de ellas es la percepción del mundo
sonoro, la cual tiene que ser cada vez más perfecta. Los conservatorios y escuelas de música
han adoptado la práctica del dictado musical como principal medio para conseguir dicha
perfección. Esta práctica consiste en transcribir una pieza musical ejecutada normalmente
por un piano. A pesar de su popularidad, es una práctica muy difícil de dominar ya que
requiere muchas horas de trabajo autónomo fuera del aula para lo que no hay muchos
medios.

Por otro lado, las nuevas tecnologías están cada vez más presentes en nuestras vidas. En
los últimos años, los dispositivos móviles son los que están ganando mayor peso gracias a
su potencia y versatilidad. De hecho, la música ha sacado mucho partido de esta tecnología
gracias a los sistemas de audio que incorporan y a los numerosos servicios de música
disponibles. Estas tecnologías no solo han revolucionado el cómo se disfruta de la música, sino
también cómo se aprende. Hay miles de sistemas destinados a la enseñanza de instrumento
o teoría musical. Para reforzar la efectividad de los sistemas educativos, se pueden emplear
técnicas de gami�cación, de forma que se aprende en entornos que cautivan al alumno al
contener elementos propios de los juegos.

Partiendo de la necesidad de mecanismos de práctica del dictado musical fuera del aula,
y sacando provecho de la potencia y versatilidad de los dispositivos móviles y de las técnicas
de gami�cación, se propone desarrollar una herramienta que, mediante el empleo de estas
técnicas, ayude a los estudiantes de música a practicar dictado en cualquier lugar y en un
entorno que fomente su motivación, para así lograr un dominio de esta difícil disciplina.

xi

AGRADECIMIENTOS

Este Trabajo de Fin de Grado nació como una idea pra ayudar a los alumnos de música
pero ha terminado siendo un proyecto que me ha cautivado y ha revivido en mí la pasión
por la música, y aunque yo he sido su ejecutor, hay muchas personas que, directa o indirec-
tamente, han contribuido a hacer esto posible.

Me gustaría comenzar dando las gracias a mi compañero y amigo Diego por la con�anza
puesta en mí para que llevase a cabo este proyecto. También a mi director y amigo David,
por su paciencia y sus sabios consejos.

Por otro lado me gustaría dedicar unas palabras a mis compañeros y amigos de Furious
Koalas Interactive por con�ar en mí y por la oportunidad que me han brindado para formar
parte de su equipo. A Santiago por todo lo que me enseña y por la paciencia que tiene
conmigo y a Carlos por ser un mentor para mí e inspirarme y apoyarme en todo.

A todos aquellos que han estado conmigo estos cuatro años, pero en especial a mis
amigos Álvaro y Enrique, por todas las noches en vela y los momentos juntos. Sin vosotros
no habría sido lo mismo.

Por último a mis padres y mi hermano. Sin vuestra con�anza, ayuda, apoyo y sacri�cio
no sería quien soy y no habría podido llegar a donde estoy.

En de�nitiva, gracias a todo aquel que ha creído en mí.

Adrián Ollero Jiménez

xiii

CONTENTS

List of Figures xix

List of Tables xxi

Listings xxiii

1. Introduction 1

2. Objectives 7

2.1. General objective . 7
2.2. Speci�c Objectives . 7

3. State of the art 11

3.1. Musical education . 11
3.1.1. Basic concepts . 11
3.1.2. Melodic dictation as a competence 14
3.1.3. Piano as learning tool . 14
3.1.4. Learning methodologies . 15

3.2. Technological tools in music learning . 16
3.2.1. Overview . 16
3.2.2. Digital systems to practice melodic dictation 16
3.2.3. Mobile devices apps . 17

3.3. Gami�cation . 19
3.3.1. Introduction . 19
3.3.2. Application domains . 19
3.3.3. Gami�cation techniques used in musical apps 20

3.4. Development process for mobile devices 22
3.4.1. General background . 22
3.4.2. Monetization models . 24
3.4.3. Development tools . 25

xv

xvi CONTENTS

4. Methodology 29

4.1. Work methodology . 29

4.2. Resources . 30

4.2.1. Hardware resources . 30

4.2.2. Software resources . 31

5. Architecture 33

5.1. Overview . 33

5.2. Gami�cation and GUI layer . 35

5.2.1. Exercise module . 35

5.2.2. Levels . 39

5.2.3. Statistics . 40

5.2.4. Challenges . 41

5.2.5. Song level and exercise note . 41

5.3. Communication layer . 42

5.3.1. Receptors . 42

5.3.2. Communication module . 47

5.4. Persistence layer . 48

5.4.1. Game instance . 48

5.4.2. XML reader . 50

5.4.3. Firebase realtime database . 50

5.5. Design patterns . 52

5.5.1. Singleton pattern . 52

5.5.2. Command pattern . 52

5.5.3. Observer pattern . 53

6. Results 55

6.1. Allegra - Melodic dictation app . 55

6.1.1. Lessons practice . 56

6.1.2. Popular songs . 57

6.1.3. Statistics and custom dictations . 58

6.1.4. Challenges . 59

6.1.5. Exercise . 59

6.2. Landing page . 61

6.3. Work distribution . 62

6.4. Project statistics . 65

6.5. Development cost . 65

CONTENTS xvii

7. Conclusions 67

7.1. Achieved objectives . 67

7.2. Future work . 68

7.3. Personal opinion . 70

A. Exercises Solutions 73

A.1. Lessons . 73

A.2. Popular song . 74

B. JSON tree in Firebase realtime database 75

Bibliography 77

LIST OF FIGURES

3.1. Notes representation and duration . 12
3.2. Sta� and signatures . 13
3.3. Piano keys layout of two octaves . 14
3.4. teoría learning web page. 17
3.5. SonicFit melodic dictation exercise . 18
3.6. Simply Piano App . 20
3.7. Dream Piano App . 21
3.8. Jungle Music app screenshots . 22
3.9. Number of apps available in leading app stores - 1st quarter 2019 (from

www.statista.com) . 23
3.10. Operating Systems used on mobile devices - May 2019 (from www.statista.com) 23
3.11. Android Studio IDE for app development 26
3.12. Unity Editor customized windows layout 27

4.1. Iterative and incremental methodology scheme 30

5.1. Allegra’s architecture - General scheme . 34
5.2. Exercise detailed �ow scheme . 36
5.3. A unique level selection screen for everything 39
5.4. Simpli�ed Statistics �ow scheme . 40
5.5. Challenges simpli�ed scheme . 41
5.6. Domain entities and how they are related 42
5.7. Receivers communication with exercise . 44
5.8. Simpli�ed conceptual scheme of Microphone Detection Module 47
5.9. Example of some modules interacting with the Game Instance 49
5.10. SongLevel speci�cation and XML relation with other classes 51

6.1. Logo designed for Allegra . 55
6.2. Allegra’s menu layout . 56
6.3. Lesson selection screen . 56

xix

www.statista.com
www.statista.com

xx LIST OF FIGURES

6.4. Popular songs purchase screen . 57

6.5. Purchase con�rmation dialog . 57

6.6. Allegra’s statistics system . 58

6.7. Challenges button in main menu changes color according to unlocked chal-
lenges. 59

6.8. Statistics detailed dialog when a key is pressed 59

6.9. Exercise screen used to perform the lessons and songs 60

6.10. Implemented inputs methods . 60

6.11. Final screen when an exercise is being achieved 61

6.12. Musical Dictation (Blue) vs Ear Trainer (Red) - Google Trends 61

6.13. Preview of Allegra’s Landing Page . 62

6.14. GitHub repository statistics charts . 65

LIST OF TABLES

5.1. Relationship between the obtained stars and the number of mistakes . . . 39

6.1. Relationship between correct note rate and key color 58

6.2. Total cost calculation (taxes excluded) . 66

xxi

LISTINGS

5.1. Pitch management in Notes Player . 38

5.2. Code from Receivable . 43

5.3. Core code Vpiano . 45

5.4. Core of Mic . 46

5.5. Core of Communication Module . 48

5.6. Game Instance . 49

5.7. Example of level speci�cation . 50

5.8. Singleton implementation . 53

xxiii

CHAPTER 1

INTRODUCTION

Music is part of humanity. It has been since the beginning of time to the present day,
where it can be found in almost every imaginable �eld. Everyone knows music. Music can be
found on the way to work, at home to relax, at mass events and in countless other situations.
However, one of the areas in which it has had the most impact throughout history has been
on education.

Going back to ancient civilizations, the Greeks considered artistic education, where
music was situated, as one of the fundamental pillars, together with physical education, of
the basic knowledges that every human being should know. With the passage of time, in the
Middle Ages, other branches of great importance arose, such as Astronomy and Mathematics,
but at the same level music was maintained, although each time with a more theoretical
approach. This trend continued during the later periods until the Enlightenment. It was at
this time that the �rst rationalist movements appeared, so that the new educational systems
began to be based on rationalism and the scienti�c method [17]. This is how the bases of
the current educational systems emerged, in which music goes practically unnoticed, and
there are few students who maintain and show interest in increasing and reinforcing their
knowledge about musical theory and practice.

Nowadays, anyone who wants to go deeper into music must go to specialized centers
such as conservatories or music academies. There, both theoretical and practical training
are taught and they can become professional musicians. This process is not simple as it
involves multiple disciplines to master, and some with a high level of complexity. One of
them is sound perception, which, for both students and professional musicians, has to be
increasingly perfect. One of the pedagogical means adopted by most music training centres
is Melodic Dictation. This practice consists in correctly writing a musical fragment played
by an instrument, usually a piano.

The teachers of musical language are usually responsible for introducing the student
to the practice of melodic dictation. Normally, the methodology used consists in a melodic
piece played by the teacher in class in order to work on it. However, the student has to
spend many hours outside the classroom practicing and solving exercises to achieve the
necessary level of skill, this being one of the biggest challenges on this practice. A few years

2

ago, practicing at home was not only a di�cult task, but sometimes practically impossible
due to lack of resources. The only way to do this was to have a recording device to take to
class and record fragments of musical pieces played by the teacher as proposed exercises
in order to have material with which to work outside school hours, although in a limited
way. It is for this reason that the road to travel to achieve a mastery of sound perception is
long and complex, and requires a lot of autonomous work solving exercises, increasingly
repetitive.

On the other hand, new technologies are increasingly present in everyday life. This is
due to their potential, ease of use and accessibility. With a device, no matter how small,
connected to the Internet, it is possible to have access to any type of information. This makes
it possible to expand the frontiers of any educational model, including musical learning.
Information Technologies have allowed students and teachers to share spaces in which to
host agendas, practices and exercises. By making use of these technologies, knowledge
can be acquired in any conceivable �eld. In fact, anyone with a little interest can acquire
advanced knowledge about scales, chords, intervals and even melodic dictation. In this way,
a student who needs resources and material to practice dictation only has to use a device
with Internet to access thousands of exercises with which to practice. However, in spite of
this, there is still a problem whereby students continue to �nd it di�cult and complex to
master this discipline: the number of hours of self-study that many abandon their musical
studies, mainly for lack of motivation [2].

The market for mobile devices has gained a lot of importance in recent years [20].
Already they can be found mobile devices with a similar or even higher power than some
desktop devices. Not to mention their versatility. Thanks to the amount of peripherals they
incorporate, such as cameras, touch screens, etc., a mobile device can be converted into, for
example, a photographic studio or a personal cinema. However, this would not be possible if
there were no applications that knew how to take advantage of the power o�ered by these
devices.

An application is nothing more than a computer program designed as a tool to allow
the user to perform a speci�c task. There are applications of all kinds: to listen to music, to
consult social networks, to send instant messages, to watch series and movies, to play games
of thousands of di�erent themes... There are even applications aimed entirely at education.

There are more and more applications aimed at educational topics. In fact, thanks to the
ease of carrying one of these devices around all day, it is the ideal platform for this type of
system [13]. Why? Because almost anyone has these devices at hand at any time, and uses
them as a distraction in public transport, at home, in the o�ce... and these are ideal times
for those users who are concerned about a topic in which they want to train and can spend
some time taking advantage of any moment to do so.

CHAPTER 1. INTRODUCTION 3

Thanks to technologies such as touch screens that allow you to touch elements simulating
real objects, or built-in studio-quality audio systems, mobile devices are perfect for learning
and practicing music [13]. There are many applications for this purpose in the app stores.
There are some whose objective is focused on the teaching of an instrument, such as the
piano or guitar, others to learn theory and even some focused on the practice of melodic
dictation. Although these apps play with the bene�t of taking advantage of the power o�ered
by mobile technology, they run the risk of failing in their mission. All these applications
must avoid falling into the problems of many traditional methodologies, turning out to be
of little interest to the students and failing in the transmission of knowledge. To avoid this,
some techniques can be applied to ensure an enjoyable learning process, resulting in a fun
and challenging experience in which learning is not boring anymore.

These techniques are called gami�cation techniques. According to the expert Yu-Kai
Chou, gami�cation is understood as “the craft of deriving fun and engaging elements found
typically in games and thoughtfully applying them to real-world or productive activities” [4].
The aim of gami�cation is to use elements that are used in the context of games to engage
and motivate the user. These techniques are increasingly used in business to increase
employee productivity or to improve the customer experience. In recent years, gami�cation
has also been introduced in mobile applications. In this context, its goal is to get the user
to use an application as long as possible. A typical example could be rewarding the user
for successfully performing tasks within the app, measuring progress, or even showing
a ranking of the best users so that it can be compared and the motivation to continue
progressing to reach the best positions arises.

However, for these techniques to be e�ective it is not enough just to introduce them into
the design, but they must be sustained on a solid foundation of a mechanics to exploit. This
means, that it is of great importance that gami�cation techniques have to be a support, and
never the basic pillar of a system. They have to help the user to have positive sensations
and enjoy the time spent using the application.

In fact, thanks to these techniques, so-called serious games emerge. These games, also
known as "formative games" or "educational games", are video games designed for a di�erent
purpose than simply for fun. Today they are very useful tools in many �elds [10]. There are
games aimed at a wide variety of audiences. They are even important tools in the training
of professionals, in education, health, military operations, etc. These games, by means of
gami�cation techniques and a user-friendly appearance and mechanics, allow the user to
acquire knowledge by means of entertainment.

Back to the problem previously described with respect to the practice of melodic dictation,
it has been discussed how di�cult it is for students to practice it and how much autonomous
work is involved in mastering this discipline. However, now, thanks to new technologies,
mobile devices and the good use of gami�cation techniques adapted to this context, new

4

fronts are opening up to make the hard process of perfecting sound perception much more
entertaining and challenging and even enjoyable for the user. Thanks to this motivation, it
was born the idea of designing and developing Allegra, a system with these characteristics,
which combines the traditional methodologies of learning and improving musical dictation,
such as listening to a melody and transcribing it, with gami�cation techniques and the
power and versatility of mobile devices, with the aim of making this practice a pleasant
process.

The system object of this development must �t and serve as a support to the current
techniques of musical teaching, always acting as a complement. In this way, Allegra fol-
lows the traditional methodology of melodic dictation, proposing exercises that reproduce
melodies, organized progressively, and providing mechanisms for the user to introduce the
answer. These exercises have the task of returning feedback to the users, allowing them to
know at any time how well they are doing. On the other hand, with the aim of limiting the
e�ort of the user in the tasks of correction and evaluation of the exercises, the system has
the capacity to correct the proposed dictations automatically in real time, avoiding one of
the toughest tasks for the students.

Moreover, the use of gami�cation techniques intends to achieve a game approach and
an environment where repetitive practices are a fun task. Among the techniques used are
the rewards obtained depending on the exercises performed. With these rewards it o�ers
the possibility of purchasing exercises based on popular songs, thus promoting the user’s
motivation when working with melodies that remind him or her a di�erent environment
from the academic. There is also a system of challenges, with generous rewards but which
can only be taken every certain period of time, motivating the user to use the application
again and again.

Additionally, it includes the functionality of a statistics system that allows, at a glance,
to know the strengths and weaknesses of every user, o�ering them customized exercises to
deal with such weaknesses.

Finally, and in order to make the application as accessible as possible, the development
has been oriented to mobile devices, so that, apart from taking advantage of all the bene�ts
previously discussed, it may be available in the app stores and can be used at any time and
place.

CHAPTER 1. INTRODUCTION 5

In this document, the entire development process is detailed, as well as the results
obtained and the previous studies that have been carried out. The structure that has been
followed is brie�y summarized next:

Chapter 2: Objective
In this chapter, a detailed description of the general objective that this project aims
to achieve is given �rst, and then the speci�c objectives that will make it possible to
complete the �rst one are broken down and explained in detail.

Chapter 3: State Of Art
Every project has a background on which it is based or inspired to achieve its objective.
In this case, this chapter is reserved to discuss some musical concepts of consider-
able relevance as well as previous systems that have served as a study prior to the
development of this system.

Chapter 4: Methodology
This chapter deals with the methodology used during the completion of the project as
well as a compilation of the resources used to carry it out.

Chapter 5: Architecture
The architecture chapter focuses on a technical description of the system, detailing
the problems that have arisen during development, which are the solutions adopted
and what advantages they o�er.

Chapter 6: Results
This chapter will review the result obtained at the end of the development, how it has
been reached and an estimation of the cost project.

Chapter 7: Conclusion
This last chapter concludes with an assessment of the initial objectives and whether
they have been completed. It also brie�y discusses possible future work. It ends with
a personal conclusion from the author of this document and system developer.

CHAPTER 2

OBJECTIVES

In this chapter it is intended to carry out a detailed description of the objective that this
project aims to achieve, summarizing, �rstly, the general objective, and then describing in
detail its speci�c objectives.

2.1. GENERAL OBJECTIVE

The general objective of this project is the design and development of a tool that facilitates
the learning of melodic dictation through gami�cation techniques, which will be deployed on
mobile devices. In this way, it is intended to use a market highly exploited nowadays, as are
mobile devices, so that learning and the hours it requires are more bearable and enjoyable
by framing the application within a playful context thanks to gami�cation techniques, but
preserving the bases of a good methodology of musical teaching.

2.2. SPECIFIC OBJECTIVES

Based on the general objective de�ned above, a number of speci�c objectives can be
identi�ed which, once all of them have been achieved, will make it possible to complete this
main objective. The speci�c objectives of this project are as follows:

1. Automatic dictation evaluation.

When students use a tool that will help them practice and improve an area such as
melodic dictation, they expect to receive feedback on the actions they take at each
moment, to know if they are correct or incorrect, and information that reports on their
progress throughout the time of use. For this reason, a mechanism must be included
so that each of the exercises returns feedback during and at the end of the exercise,
and all this information must be registered in order to create a report that the user
can check at any time on their progress and thus be able to put more emphasis on
those concepts with more negative statistics.

8 2.2. SPECIFIC OBJECTIVES

2. Progressive learning.
The learning process, regardless of the �eld, is slow and can be excessively complex if
it is not adequately adapted to the learner. Special attention should therefore be paid
to ensuring that this process is progressive in such a way that a level of complexity
cannot be reached until it has been ensured that the previous knowledges are fully
understood. In addition, since users can have very di�erent levels when starting to
use the application, it must be able to start from the most basics for those who are less
familiar with melodic dictation, but at the same time allowing those who are already
hardened in the subject to progress quickly and reach their real level in a short period
of time.

3. Student motivation by means of gami�cation techniques.
Thanks to the use of gami�cation techniques it is intended to provide the application
whit mechanisms that motivate and engage the user to use it as long as possible
promoting a faster growth in melodic dictation. In this way, a system of rewards will
be introduced that will allow the user to increase their level of experience or acquire
popular songs that are fun to work with. It will also include a system of weekly and
daily challenges, which when completed will reward the user generously, encouraging
him to use the application everyday.

4. Adaptability to enable the use of the system anywhere, anytime.
One of the main features of mobile devices is that they can be taken and used by the
user anywhere and at any time. Then, it must be borne in mind that the connection to
the network may vary or even be null in certain places, a�ecting the user experience if
it is of critical importance for the performance of the system. Therefore, the application
has to be designed so that it works transparently to the network connection, although
it will use it to store certain information and avoid the use of local storage prone to
loss.

5. Good user experience.
It is important to ensure that the user’s experience while using the application is
both pleasant and not frustrating, so that they do not feel the need to drop or stop
using the application. In order to do this, a friendly, visually attractive interface must
be designed and its use must be simple, comfortable and intuitive so that the user
feels that the application adapts to him. In addition, since each user may be familiar
with the use of a di�erent musical instrument, the application must be able to work
transparently to the medium used to interact with it.

6. Scalability to integrate new dictations and levels.
In a level-by-level application, attention should be paid to making the inclusion of
new ones easy, quick and simple. Also, since each of these levels can be played in

CHAPTER 2. OBJECTIVES 9

many di�erent ways, new game modes must also be implemented very quickly and
without a�ecting the elements of the application already implemented. To achieve
that, both the design and the implementation of the system must be focused on making
it scalable both to add new levels and songs and to be able to implement new game
modes.

CHAPTER 3

STATE OF THE ART

This chapter will deal with the foundations on which this project is based. First, some
basic musical concepts will be introduced, which will later be decisive in the development.
Among them, there will be a more theoretical content to later de�ne and understand what
melodic dictation is and how it is practiced, as well as its importance among professional
musicians. Next, there will be an overview of how technology has been used in recent years
as a complement in music classrooms and schools, as well as tools designed speci�cally for
melodic dictation for both desktop and mobile devices. In addition, there will be a brief
review of what it is, how it is used and what advantages gami�cation techniques have,
especially in educational environments, with some real and present examples. To conclude
this chapter, it will be reviewed the most important tools currently for development in
mobile devices, the importance of this market, how to make a pro�t with it and why Unity
has been the tool chosen to carry out this development.

3.1. MUSICAL EDUCATION

Music accompanies us in our daily lives. We can �nd it at work, in a party, studying or
while taking a moment of relax. It can be enjoyed at any time. During our life, we listen to
many di�erent songs and musical pieces. However, music is something very complex. It
requires years of study to fully understand and interpret it.

3.1.1. Basic concepts

The musical note

A beat is a pulse of time. Everything around us has a rhythm to it, from a ticking clock
to car engines, including birds and �shes. These rhythms are formed by regular or irregular
beat patterns.

12 3.1. MUSICAL EDUCATION

Figure 3.1: Notes representation and duration

A note is basically the representation used in music notation to tell the performer how
long and how often to play a certain musical pitch within the beat [14].

The pitch speci�es the frequency of a note and is represented locating the note on a
line or space on the sta�, as explained in 3.1.1. The time value is the duration of a certain
sound and determines the rhythm and melody of the resulting piece of music. Every note
is represented by three components: the note head, the stem and the �ag. According to
the duration of the note, it has a di�erent combination of the mentioned components. For
example, a whole note is represented by and hollow head, a quarter note by a �lled head
and a stem, etc. (see Figure 3.1).

The Sta� and it signatures

The sta� is where music notes are written [14]. A sta� is made up by 5 parallel horizontal
lines and 4 spaces, so notes are written in either a line or a space of the sta�. Each of these
lines or spaces hold a di�erent pitched note and to determine which particular note are
meant by each line or space a clef is written at the beginning of the sta�.

Even though there are some others, the two clefs used in most books and taught on
music schools are the treble clef (see Figure 3.2(a)) and the bass clef (see Figure 3.2(b)). The
treble clef is used for higher notes and the bass clef for lower notes.

Rhythm can also be represented on a sta�. In printed music the time signature is
represented as a pair of numbers, one over the other, and they are written right after the
clef. This time signature informs of two things: the top number tells the number of beats in
each measure, while the bottom number speci�es which note value equals one beat.

CHAPTER 3. STATE OF THE ART 13

(a) Treble clef (b) Bass clef

(c) Most popular time signatures

Figure 3.2: Sta� and signatures

Tones and semitones

Each note on a music scale represents, from a physical point of view, a wave frequency,
which is closely related to the pitch of that note but not the same. Frequency is an objective,
continuous, scienti�c attribute that can be measured, however, pitch of a note is the subjective
perception of a sound wave that can not be directly measured [7].

The frequency spectrum perceived by the human ear goes from 20Hz to 20.000Hz. The
discretization of this continuous range results on 1024 notes (210). The separation between
two adjacent notes is called semitone and he separation between two notes separated by
another note is called tone (two semitones) [7].

The frequency associated to each note can be obtained, from a reference frequency nr

(usually the reference frequency is 440Hz, note A), applying the equation 3.1. This equation
calculates the frequency of the target note s , taking the reference frequency nr , the relation
between the same note in two di�erent octaves, which is 2, the number of notes on a octave
12, and the distance s in semitones between the reference note and the target [5].

n = nr ∗ 2s/12 (3.1)

As can be seen the notes are actually a name or label given to a speci�c wave frequency
value. For example, instead of calling a note 440Hz, which is the frequency it represents, it
is called A (or La), or instead of 392Hz it is G (or Sol), and so on.

The twelve-note chromatic scale is the most common way of organizing the twelve notes
composing an octave. From these twelve, only 7 has its own name, there are �ve which
name is derived C, C#, D, D#, E, F, F#, G, G#, A, A#, B in the English notation system and Do,
Do#, Re, Re#, Mi, Fa, Fa#, Sol, Sol#, La, La#, Si in the Latin notation system.

14 3.1. MUSICAL EDUCATION

Derived notes are those in which a semitone varies with respect to the base note. The
base note is known as the natural note and represents the note itself. A sharp note (#) is
a note one semitone higher than its natural note. A �at note (b) is a note one semitone
lower than the natural note. This implies that a derived note has two names, depending on
whether it is named as relative to its major note or its minor note. For example a C# and a
Db are the same note but with a di�erent name as the natural reference note changes. As
a general rule, a homogeneous representation is used to represent derived notes, i.e. only
sharps or �ats are used.

3.1.2. Melodic dictation as a competence

During the period of time covered by their musical studies an through his future profes-
sional life, the music students must improve their "tuned ear", becoming more and more
perfect . One of the pedagogical means introduces into teaching in Conservatories and Music
Schools is "Melodic Dictation". This practice consists on listening and writing correctly on a
sta� a music fragment played on an instrument, usually a piano. It is usually introduced in
the early years until reaching the domain of melodic dictation of up to three or four harmonic
voices [24].

3.1.3. Piano as learning tool

The piano is the most popular instrument used by music teachers because it is very
easy to understand notes, scales, intervals, etc thanks to the keys layout. IT also has many
advantages over others that make this an ideal tool for learning, such as the ability to play
several notes at once, or that each key is perfectly tuned.

Figure 3.3: Piano keys layout of two octaves

A piano1 is a musical instrument played by keys. Each of those keys is connected to a
hammer, which hits a string when the key is pressed, producing a sound with a speci�c

1
h�ps://es.yamaha.com/es/products/contents/musical_instrument_guide/piano/index.html

https://es.yamaha.com/es/products/contents/musical_instrument_guide/piano/index.html

CHAPTER 3. STATE OF THE ART 15

frequency, a note2. There are 88 keys in a standard3 key board, 36 black keys and 52 white
keys, which are a total of 7 octaves. The white keys correspond to the natural notes (C, D,
E...) and the black ones corresponds to the �at and sharp notes (C#, D#...) as is shown in
�gure 3.3.

Most music schools use a piano, played by the teacher, to practice melodic dictation.

3.1.4. Learning methodologies

Musical language teachers have always considered the practice of melodic dictation a
good formative method, including it in all music courses. However, teachers usually face
two problem when carrying out this practice with students: lack of methodologies at the
time of teaching melodic dictation and the impossibility for the student to practice it out of
the classroom [24]. In fact, there were no mechanisms that allowed the student to practice
melodic dictation without attending class, having a reinforcement teacher or spending long
hours in front of a piano until every note was assimilated. Then, teachers should plan
progressive lessons to assure an improvement in the student skills to solve the �rst problem
found. For the second problem, years ago, teachers encourage students to bring a tape
recorder, so that a piece was played and recorded at the end of the class so students could
work on it at home.

Despite these e�orts, melodic dictation is an activity that curiously, it is accompanied
by negative connotations for students, and as a consequence of this, the displeasure of his
realization in the lessons.

A study carried out on students of many conservatories from Madrid obtained a rather
unfavourable result regarding the opinion of this practice. It consisted on survey formed by
open and close questions about melodic dictation, �lled by the students. The result show
that the students perceive the importance that is given to the melodic dictation practice in
the lessons, but they also recognize experimenting insecurity, anxiety and other unpleasant
sensations when they perform this activity [2], and argues that an ICT support can help
make this practice more bearable and enriching for students.

2
h�ps://es.yamaha.com/es/products/contents/musical_instrument_guide/piano/mechanism/

mechanism003.html

3
h�ps://es.yamaha.com/es/products/contents/musical_instrument_guide/piano/trivia/trivia007.html

https://es.yamaha.com/es/products/contents/musical_instrument_guide/piano/mechanism/mechanism003.html
https://es.yamaha.com/es/products/contents/musical_instrument_guide/piano/mechanism/mechanism003.html
https://es.yamaha.com/es/products/contents/musical_instrument_guide/piano/trivia/trivia007.html

16 3.2. TECHNOLOGICAL TOOLS IN MUSIC LEARNING

3.2. TECHNOLOGICAL TOOLS IN MUSIC LEARNING

3.2.1. Overview

Information and Communication Technologies are becoming increasingly important in
all areas of everyday life. In education, various technological methodologies are implemented
every day as a valuable support and complement to the teaching activity [11]. Of course,
musical learning is also included.

Students at present enjoy the musical learning process more when it is supported by
Information Technologies tools. According to these students, the most commonly used
tools in the classrooms are CD and DVD players and projectors for presentations of didactic
content and documentaries, and computers for web searches for reinforcement content, as
well as music instruction tools [13].

An example of computed-based system for musical learning in is LenMus4 a free software
that allows and facilitates the practice of theory, musical language and auditory development
by customizable and leveled exercises. It also provides a development tool called Lomse5

designed to provide software developers with a library to add capabilities to any program
for rendering, editing and playing back music scores.

3.2.2. Digital systems to practice melodic dictation

A system to practice Melodic Dictation is an application that allows the development of
the ear using organized exercises of recognition of scales, intervals, etc [2] by means of ICT
tools.

teoría6 is a good example. It is a music theory web page for music learning, that provides
melodic dictation exercises. Before stating a dictation, the system allows you to provide some
rules about melody complexity, clef and tempo, among other setting (see �gure 3.4(a)), and
then, a set dictation exercises begin (�gure 3.4(b)). As the exercises can be fully customized
is the perfect tool for beginners.

Other example is Toned Ear: Ear Training7 a web page full of many di�erent exercises
about theory, scales, intervals, etc, but with a speci�c module for practicing Melodic Dicta-
tion8. The customization parameters are very basic and the di�culty of the exercises are
quite high.

4
www.lenmus.org

5
h�ps://github.com/lenmus/lomse

6
h�p://www.teoria.com/index.php

7
h�ps://tonedear.com/

8
h�ps://tonedear.com/ear-training/melodic-dictation-practice

www.lenmus.org
https://github.com/lenmus/lomse
http://www.teoria.com/index.php
https://tonedear.com/
https://tonedear.com/ear-training/melodic-dictation-practice

CHAPTER 3. STATE OF THE ART 17

(a) Previous settings (b) Exercise

Figure 3.4: teoría learning web page.

One more example is SonicFit9. SonicFit is a free web platform developed thanks to the
work of students. It has lessons in music theory and ear training organized in a compre-
hensive curriculum. After learning about each topic, students take quizzes to check for
understanding, and then work exercises to develop �uency. The melodic dictation exercises,
shown in �gure 3.5(a) progressively increase the complexity and work in a very intuitive way,
being a good option for beginners. On the other hand, these exercises have the disadvantage
that the system does not provide a correction in real time, but o�ers some templates of
answers and at the end of an exercise reveals the solution for the user to self-correct.

Finally, the streaming platforms will be treated as a tool widely used by music teachers
to upload exercises and dictations so that students can use them to practice at home. Thanks
to platforms such as YouTube10 or StreamCloud11, in which uploading content is free, it is
easy for music language teachers, responsible for teaching dictation, can host their exercises,
previously recorded and treated during the class, and so students can access them freely,
free and at any time.

3.2.3. Mobile devices apps

The App Stores are full of all kinds of applications, and of course, melodic dictation is
one of the subjects for which hundreds of tools have been developed.

An example is Oído Perfecto12, a free Spanish application focused on di�erent topics
of musical learning such as tempo, intervals, chords, etc. The ”absolute note detection”

9
h�p://sonicfit.com/

10
h�ps://www.youtube.com/

11
h�ps://soundcloud.com/search/sets?q=melodic%20dictation

12
h�ps://play.google.com/store/apps/details?id=com.evilduck.musiciankit

http://sonicfit.com/
https://www.youtube.com/
https://soundcloud.com/search/sets?q=melodic%20dictation
https://play.google.com/store/apps/details?id=com.evilduck.musiciankit

18 3.2. TECHNOLOGICAL TOOLS IN MUSIC LEARNING

(a) Exercise page (b) Answering template

Figure 3.5: SonicFit melodic dictation exercise

exercises, the basics for melodic dictation, are based on playing a sound and then the user
has to choose the key of the note on the virtual keyboard, depending on what he has heard.
There are many other types of exercises adapted to each of the topics that can me studied
within the app. As it deals with very simple subjects at the beginning and can reach other
very complex ones, it is the perfect application for beginners and experts.

Toned Ear: Ear Training13, tool mentioned in 3.2.2, evolved over time and now it is also
available as an app, It o�ers the exact same features and the exact same look. It is the same
powerful tool but as an app for a mobile device. Its cost is 4.89€.

MeloDic (ear trainer)14 is an app specially designed to practice melodic dictation. The
exercises consist on a familiar melody that is played while most note are drown in the screen
sta�. However some of them are missing, so is the user who, by means of a virtual keyboard,
must play the note that he has just heard. This app costs 1.00€, but there is a Lite version
limited in features, aimed to test it.

Although the app stores have numerous applications for learning and practicing melodic
dictation, all are based on the principle of reproducing note or melody for the user to identify
it, in a simple and basic way, since all have a similar appearance and functionality.

13
h�ps://play.google.com/store/apps/details?id=com.tonedear.tonedear

14
h�ps://play.google.com/store/apps/details?id=darktools.melodyLibrary

https://play.google.com/store/apps/details?id=com.tonedear.tonedear
https://play.google.com/store/apps/details?id=darktools.melodyLibrary

CHAPTER 3. STATE OF THE ART 19

3.3. GAMIFICATION

3.3.1. Introduction

Gami�cation can be de�ned, as proposed by Yu-Kay Chou [4], as “the craft of deriving
fun and engaging elements found typically in games and thoughtfully applying them to
real-world or productive activities”. It is proposed to focus the design of processes or
activities on the motivation of the people who are going to carry them out instead of the
pure functionality of the system. This is known as human-focused design.

Other de�nition for gami�cation is “the use of game design elements in non-game
contexts” [8]. This de�nition relates two very di�erent concepts, therefore, consider them
separately. The term game design elements refers to the those design aspects than are
commonly found in games and help to engage people. On the other hand, the term non-game
context refers to anything outside a game, from simple everyday tasks to complex business
processes.

3.3.2. Application domains

The concept of making things game-like is something that has been accomplished
throughout the history. Humans tried to get motivated in daily tasks, such as hunting or
gathering, by any kind of small competitions, where small groups of people compete against
each other.

Nowadays, this techniques have evolved until the point of being used in lots of �elds.
For example, is quite common that big restaurant chains rate clients according to their
amount of orders, giving more bene�ts (like special o�ers or trying a new product before it
is on sale) to those who are more frequent, such as McDonald’s15 or Fosters Hollywood16.
In fact, gami�cation principles are not only applied to customer engagement but also
to improve employees productivity, such as Freshdesk17, a helpdesk software program
for customer support centers, that rewards employees with some kind of trophies when
achieving a challenge, maintaining the employee motivated and the client satis�ed as the
service received is better.

Of course this are just two examples applying gami�cation to business processes, but
gami�cation can be applied to daily tasks, education, etc.

In order to ensure the success of gami�cation it is quite important to apply correctly the
gami�cation principles and not only the use of the most basic techniques. Most people that

15
h�ps://www.mcdonalds.es/

16
h�ps://fostershollywood.es/fosterianos

17
h�ps://freshdesk.com/es/

https://www.mcdonalds.es/
https://fostershollywood.es/fosterianos
https://freshdesk.com/es/

20 3.3. GAMIFICATION

Figure 3.6: Simply Piano App

work in gami�cation think that adding scores, budgets, rewards, etc. to a process or product
make it funnier and more engaging. This is an error. The important thing to be successful
applying gami�cation techniques is to analyze the process or product to understand how we
want to make the user feel, motivating him in the most tedious tasks, ensuring that these
are carried out while the user enjoys the process.

3.3.3. Gamification techniques used in musical apps

Taking a quick look at the app stores, a variety of musical applications can be found.
These range from learning applications, for example of a musical instrument, to playful
ones. However, in the most successful ones, we can see a variety of elements derived from
gami�cation.

Simply Piano

Simply Piano18 is one of the most popular applications to learn music. It is aimed to allow
people to learn to play the piano at home. It is organized in courses, each one focused on a
di�erent musical aspect. As the lessons are completed, the knowledge is reinforced with
popular songs adapted to the current user level (Figure 3.6). This songs help to maintain
the user engaged as he can check that what has been learned can be applied to real songs,
providing a the sense of quick progress, motivating him to keep using the app.

Dream Piano

Dream Piano19 is actually a game, but it implements gami�cation techniques that could
be used on any music learning app. The game consists on tap over circles that fall through
the screen and play a melody. There is a set of songs that are unlocked according to the
progress over previous songs, the more you play, more song get unlocked, and there is a set

18
h�ps://www.joytunes.com/

19
h�ps://play.google.com/store/apps/details?id=com.eyu.piano

https://www.joytunes.com/
https://play.google.com/store/apps/details?id=com.eyu.piano

CHAPTER 3. STATE OF THE ART 21

(a) Main menu (b) Playing Level

Figure 3.7: Dream Piano App

of songs, which are famous current songs, that are unlocked only with in-game currency,
that is earned when levels are achieved.

It o�ers daily challenges based on user’s music preferences, in which currency and stars
can be earned. There is also an online mode, where a user competes against three others in
real time, winning some rewards depending on the position obtained.

In this game everything is focused on earning in-game currency to unlock more and
more songs, being this songs those preferred by the user so he enjoys and has fun while
playing and using the app.

Jungle Music

Among the music learning applications, Jungle Music20 is one of the best known aimed
at children. Its aim is to make known the musical language and especially the reading of
the sta� from very early ages since it has managed to turn this task into an attractive and
entertaining game.

The application is divided into levels organized by islands, according to the clef, and
each of these levels is responsible for working a speci�c set of notes related to that clef. The
exercise or level plays notes one by one and shows them on the sta� so that the user must
identify them. Thanks to its graphic user interface adapted to a child audience, it manages
to turn an apparently boring and repetitive task into something fun for children. In addition
it o�ers the possibility of generating customized exercises, according to the necessities of
the user, and gives to choose between a set of instruments to work the exercises with it.

20
h�ps://play.google.com/store/apps/details?id=air.junglemusicfree&hl=es

https://play.google.com/store/apps/details?id=air.junglemusicfree&hl=es

22 3.4. DEVELOPMENT PROCESS FOR MOBILE DEVICES

(a) Level selection level (b) Playing Level

Figure 3.8: Jungle Music app screenshots

A rewards system is also implemented so any time the user achieves a level it gets stars,
representing how good it was performed, and notes that work as currency to buy new
resources.

It is a clear example of how a good use of gami�cation techniques can turn unattractive
tasks into educational games, in which while motivating and entertaining the user some
musical knowledge is boosted.

3.4. DEVELOPMENT PROCESS FOR MOBILE DEVICES

3.4.1. General background

Mobile applications market has experienced a huge and fast expansion over the last 10
years as mobile platforms keep evolving and the increasing needs of users in a wide variety
of applications [16]. The development process for these applications comes with unique
characteristics well di�erentiated from others. These are: high level of competitiveness,
short time of delivery, mobility, portability, speci�c and constantly changing capabilities,
di�erent and incompatible systems, among others [1].

It is quite important to take into account that the most popular market places are
overcrowded. Developers upload thousands of applications every day to these markets. The
most popular ones are Google Play Store21 and Apple App Store22 as shown in �gure 3.9.
This implies that most mobile apps are developed for Android and iOS, being, as well, the
two most popular operating systems for mobile devices. In May 201923, Android leads the
market, 75, 27%, followed by iOS, 22, 74%, and then some other operating systems (see �gure
3.10).

21
h�ps://play.google.com/store/apps

22
h�ps://www.apple.com/es/ios/app-store/

23
h�p://gs.statcounter.com/os-market-share/mobile/worldwide

https://play.google.com/store/apps
https://www.apple.com/es/ios/app-store/
http://gs.statcounter.com/os-market-share/mobile/worldwide

CHAPTER 3. STATE OF THE ART 23

Figure 3.9: Number of apps available in leading app stores - 1st quarter 2019 (from www.statista.

com)

Figure 3.10: Operating Systems used on mobile devices - May 2019 (from www.statista.com)

www.statista.com
www.statista.com
www.statista.com

24 3.4. DEVELOPMENT PROCESS FOR MOBILE DEVICES

3.4.2. Monetization models

Monetization means converting an object or asset into legal tender or money in any
form of operating business [18]. An App Monetization Model can be de�ned as a framework
showing how a mobile app can earn revenue generating pro�ts over the production costs.
There are many di�erent app monetization models that adapt to di�erent types of businesses
and ways of making money from an app24.

In-app Advertising

In-app advertising refers to apps on which advertisements periodically pop up [20].
These apps are generally free for users to download and use them and pro�ts are earned
based on advertisement impressions. Gaming apps also o�ers the user the possibility of see
and advertisement in exchange for in-game rewards. Flappy Birds25 is an example of a free
gaming app that was downloaded over 50 million times, earning over $50,000 per day only
through in-app advertisement model [22].

Freemium apps

The term ”freemium”, comprising the words ’free’ and ’premium’, describes a moneti-
zation model that earns the bene�ts from in-app purchases [20]. Users make these in-app
purchases to buy extra resources or extra functions, even to upgrade to full content or to
remove advertisements that pop up on the free version of the application. A successful
example currently is Super Cell’s Clash Royale26, a free to use game for mobile devices
that has generated billions of dollars only through in-game purchases to get game virtual
currency [9].

Paid apps

This is the most basic monetization model used for mobiles apps. Paid apps basically
consists on purchasing the app itself. Developers upload the application to an app store, such
as Google Play Store27 or Apple App Store28 where users can download it for a stated price.
This apps generally do not o�er in-app purchases nor pop up advertisements. An example
of app that uses this monetization model is Rockstar’s Grand Thef Auto: San Andreas29, on
sale by $6.99.

24”App” stands for Mobile Application
25

h�ps://flappybird.io/

26
h�ps://clashroyale.com/es/

27
h�ps://play.google.com/store/apps

28
h�ps://www.apple.com/es/ios/app-store/

29
h�ps://play.google.com/store/apps/details?id=com.rockstargames.gtasa&hl=es_419

https://flappybird.io/
https://clashroyale.com/es/
https://play.google.com/store/apps
https://www.apple.com/es/ios/app-store/
https://play.google.com/store/apps/details?id=com.rockstargames.gtasa&hl=es_419

CHAPTER 3. STATE OF THE ART 25

Paidmium

Paidmium model involves both paid downloads and in-app purchases for additional
revenue. In 2013, around the 61% of paidmium apps revenue came from direct downloads,
while the remaining 39% were from in-app purchases [20]. This model is not so popular
nowadays but there are some apps that still using it. A very popular app that leads the stores
trends was Minecraft Pocket Edition. It was sold by $6.99 in Google Play Store30 and $7.99 in
Apple App Store, but also o�ers special in-app sales, getting a total revenue of $1M only in
Christmas 2013.

Subscription

Software-as-a-Service is a subscription based monetization model in which companies
lure users into long-term payment approach [18]. It can be pay as you go subscription,
where the user are charged based on the usage rate, or tiered pricing where the services
o�ered by the application are limited according to the user usage, so they can choose from a
set of di�erent plans with di�erent prices. Tiered pricing is the most popular approach for
subscription apps. It can be found, for example, in Net�ix31 or Spotify32.

3.4.3. Development tools

As mentioned above, the market for mobile applications has been growing enormously
in recent years. This means that new frameworks and development tools are constantly
emerging.

Android Studio

Android Studio33 is the o�cial integrated development environment for the Android
platform based on IntelliJ IDEA. Android Studio o�ers a powerful text editor and many
di�erent development tools useful during development, such as realtime pro�lers, APK
analyzer, etc. all included on a unique Integrated Development Environment (IDE) (�gure
3.11).

The development in Android Studio is based on Activities, working as windows in a
desktop system. Each activity has it own layout, to determine how elements are organized
on the screen. This elements can be containers to host more elements, or widgets which are
images, text, scroll list, etc.

30
h�ps://play.google.com/store/apps/details?id=com.mojang.minecra�pe

31
h�ps://www.netflix.com/es/

32
h�ps://www.spotify.com/es/

33Android Studio Installation Page: h�ps://developer.android.com/studio

https://play.google.com/store/apps/details?id=com.mojang.minecraftpe
https://www.netflix.com/es/
https://www.spotify.com/es/
https://developer.android.com/studio

26 3.4. DEVELOPMENT PROCESS FOR MOBILE DEVICES

Figure 3.11: Android Studio IDE for app development

Android Studio is a very powerful tool that allow to create from basic apps for beginners,
to really complex and professional systems.

Xamarin

Xamarin34 is a tool that allows developers to create apps for iOS, Andorid and Windows
Phone using C#. Basically, this tool translate the code written in C# so it can be executed in
mobile devices.

To develope an app for iOS it must be written using Objetive-C, and for Android in Java,
so Xamarin unify all this diferences in an IDE, called Xamarin Studio. It contains an editor
to write code in C#, and then it can be automatically translated and deployed to any mobile
device.

Although Xamarin is a very powerful tool, it was not free to use originally. However, as
Microsoft bought the company in 2016, it can be downloaded to be used directly in Microsoft
Visual Studio35 while keeping all its original functionalities. It is one of the most used
cross-platform development tools on the market.

34
h�ps://docs.microso�.com/es-es/xamarin/

35
h�ps://visualstudio.microso�.com/es/

https://docs.microsoft.com/es-es/xamarin/
https://visualstudio.microsoft.com/es/

CHAPTER 3. STATE OF THE ART 27

Figure 3.12: Unity Editor customized windows layout

Unity

Unity36 is a cross-platform game engine developed by Unity Technologies. It was �rstly
created as an Mac OS exclusive game engine but it evolves until supporting more than
25 target platforms in 2019. It support development in 2D, 3D, Virtual reality (VR) and
Augmented reality (AR) environments.

The development at Unity is based on two main elements: Game Objects and Components.
A Game Object is the fundamental object in Unity that acts as a container for Components
[21]. It represents characters, props and scenery. The Components are the functional pieces
of every Game Object [21]. Every Game Object must contain a Transform Component in
order to be part of a Scene. Then, many other components can be add to that Game Object
to get di�erent behaviours. Some Components examples are: Rigidbody (for physics), Audio
Source (to play sounds), Canvas (where UI object are rendered), Box Collider, developer’s
custom scripts, etc.

The Unity Editor is the tool used to develop new games with Unity Engine. It is divided
into di�erent windows (see Figure 3.12). The main windows are [21]:

Project Window: this view allows to manage the assets that belong to the project. An
asset is any media or data that can be used in the game.
Scene View: this is the interactive view used to create the world selecting and locating
the characters, props and all other types of Game Objects.
Hierarchy Window: this window contains a list of every Game Object in the Scene
organized in a hierarchical structure. This structure basically is that every child of an

36
h�ps://unity.com/es

https://unity.com/es

28 3.4. DEVELOPMENT PROCESS FOR MOBILE DEVICES

object inherits the transform component from the father.
Inspector: this is the window that displays detailed information about a selected Game
Object. It also allows to add or remove new components and change it properties.
Toolbar: here is where the development controls are located. From here the developing
game can be executed and stopped among other functionalities.
Game View: this view is rendered from the camera of the game. It represents the actual
game.

Unity comes with lots of di�erent components to set di�erent behaviours to Game Objects.
However, although these components can be customized by modifying their properties
in the inspector, they usually are not enough to get the desired behaviour. Here is where
scripting plays a critical role. Scripts are treated in Unity as object components, so that, a
script is attached to a Game Object, conferring the speci�ed behavior to that object. These
can be written in C# or JavaScript. Every script written for Unity development must inherit
from MonoBehaviuor. This class de�nes the basic operation of a game object to exist in the
world.

Even Unity is focused on game development, it can also be used to create non-game
apps, however, this non-game apps include Unity’s core features, which may not be worthy
for some applications. This type of development is usually used for apps that include
architectural walkthroughs, instructional interactive demonstrations, training simulations
and product visualization.

CHAPTER 4

METHODOLOGY

Every engineering project needs a methodology to be able to approach, in a complete and
e�cient way, the objectives that were proposed at the beginning of the project. Therefore,
the following chapter will detail the methodology used this project development.

4.1. WORK METHODOLOGY

Allegra is a musical learning application, so it requires advice from a professional of the
sector. Meetings with this person, as well as with the project tutor, have been held on a
weekly frequency. In these meetings, the requirements that the application had to meet
were de�ned, which, due to the nature of the application, changed week after week.

When a software development is faced with rapidly changing requirements, specially
when it is done by one one person, it is convenient to be prepared to prevent these changes
from having an impact on this process. A widely used approach in professional development
are the agile methodologies. The agile methodologies are oriented to small projects and
provide a high simpli�cation but maintaining the essential practices to ensure product
quality.

Iterative and incremental development is a type of agile methodology that is based on
a series of distributed iterations during the time the development lasts. In �gure 4.1 this
methodology phases are shown. First an initial planning is agreed with the client, in order
to de�ne the scope of each of the iterations and then start with the iterations. Each iteration
has its phases of analysis, design, implementation and testing until the evaluation of the
result obtained. Each of these iterations usually lasts a short period of time and results
in a piece of software that can be seen as a mini-project, and that adds functionality and
complexity to the project, until it constitutes the �nal result of the development. When one
of these iterations is completed, the results obtained must be analyzed in such a way as
to guarantee that the iteration has ful�lled the established objectives and thus be able to
proceed to the planning of the next one.

30 4.2. RESOURCES

Evaluation

TestingInitial Planning Analysis & Design

Implementation

Deployment

Iteration

Figure 4.1: Iterative and incremental methodology scheme

There are numerous advantages to using this methodology and it has consequently been
employed in the project described in this document. An iterative development allows the
whole process to be reviewed periodically, improving and correcting errors, thus giving the
system a correct performance. On the other hand, as it is an incremental methodology and
the work is divided into milestones that add functionality as the development progresses,
these functionalities can be separated into di�erent modules, each one totally independent
from the others, providing the system with a scalable architecture.

4.2. RESOURCES

In order to be able to face a development of this style certain resources are required,
both hardware and software, which will be discussed in the following section in a very brief
and concise way.

4.2.1. Hardware resources

As the development is an application aimed to mobile devices, there are only two
important hardware resources:

MSI Ge63 7RD Raider Computer1: It is one of the most powerful gaming laptops on the
market. It is ideal for this type of development as it has 4GB of dedicated graphics
card Nvidia, which allows optimal �uidity when rendering and working with graphic
tools.
BQ Aquaris X5 Plus: This mid-range smartphone has been used for the testing phase.
It has been chosen not to use one with excessive power to ensure that the application
can be run on most devices on the market.

1
h�ps://es.msi.com/Laptop/GE63-7RD-Raider.html

https://es.msi.com/Laptop/GE63-7RD-Raider.html

CHAPTER 4. METHODOLOGY 31

4.2.2. So�ware resources

Operating System

Windows 10 Pro. This is the OS used for the whole development process since all
the development tools were compatible with it and also the Android package and
deployment.
Mac OS Mojave. This OS will be eventually used to package and deploy the app in iOS
devices as it can only be done using Apple devices.
Android: this is the target operating system of the application in which tests have
been made at the end of each iteration to ensure its operation in a real environment.

Development tools

Unity2. This game engine, thanks to its powerful support for the development of
multimedia applications, has been the ideal technology to carry out this development.
In addition, thanks to all the community that it has, there are many tools and forums
that are of great help during the development process.
Visual Studio 20193. This is the editor used as it is a very complete IDE and rec-
ommended by Unity which makes debugging and pro�ling simple and powerful
processes.
Git Kraken4. This is a tool used for version control management. This git client takes
advantage of all the functionalities o�ered by Git technology thanks to its powerful
graphical interface that facilitates complex operations in just a few clicks.
Xcode. This is an integrated development environment for macOS that contains a set
of tools created by Apple for the development of software for macOS, iOS, watchOS,
and tvOS. It has been used for deployment on iOS devices.
Adobe Illustrator5. It is a vector image design tool widely used in industry. It has been
very useful when designing and creating 2D visual assets.
Piskel6. It is a desktop or online application specially designed to generate a sprite
sheet with animations quickly and easily. Useful to create 2D animated assets.

Libraries and SDKs

RAPT Pitch Detector7. This package from the Unity asset store o�ers the possibility to
recognize the pitch of a sound recorded by the microphone using the RAPT (Robust

2
h�ps://unity.com/es

3
h�ps://visualstudio.microso�.com/es/vs/

4
h�ps://www.gitkraken.com/

5
h�ps://www.adobe.com/es/products/illustrator.html

6
h�ps://www.piskelapp.com/

7
h�ps://assetstore.unity.com/packages/tools/audio/human-voice-pitch-detector-109019

https://unity.com/es
https://visualstudio.microsoft.com/es/vs/
https://www.gitkraken.com/
https://www.adobe.com/es/products/illustrator.html
https://www.piskelapp.com/
https://assetstore.unity.com/packages/tools/audio/human-voice-pitch-detector-109019

32 4.2. RESOURCES

Algorithm for Pitch Tracking) algorithm.
Firebase SDK8. This is a platform powered by Google that provides, among other tools,
a database in JSON format very useful for storing the status of the player. The Unity
SDK is already provided by the platform.
Android SDK. Android is the most popular OS for mobile devices. In order to build and
deploy an app targeting this OS, the system must made use of some speci�c libraries,
all of them can be found in the o�cial Android SDK.
Obri Landing Page Template9. In order to facilitate the development of the visual part
of the website and thus put all e�orts into the positioning part, it has been decided to
acquire a template called Obri, specially designed for mobile apps.

Programming languages

C#: it is a object oriented language developed by Microsoft. It is the scripting language
supported by Unity.
MusicXML: this open music notation format based on XML was designed for the
exchange of scores, particularly between di�erent score editors, and it is used to store
the exercises scores.
JSON : is a simple text format for data exchange and it is used by Firabase Realtime
Database to store the player information.
HTML/CSS: HTML is a markup language that is used for the development of Internet
pages and CSS is a graphic design language for de�ning and creating the presentation
of a structured document written in a markup language such as HTML. Has been used
in the landing web page.

Documentation

LATEX : is a text composition system, oriented to the creation of written documents that
present a high typographic quality and especially for scienti�c texts. The tool used
to produce this document has been Overleaf 10, an online platform that simpli�es the
work as it integrates all the necessary libraries and spelling correction.
Draw.io11: is an online tool for making diagrams and schemes that also allows for cloud
storage and collaborative work. It has been widely used to layout all the diagrams in
this document.
Photoshop12: it is a image editing tool that has been used to edit, format and highlight
the images in this document.

8
h�ps://firebase.google.com/

9
h�ps://themeforest.net/item/obri-app-landing-page-html-template/23382357?s_rank=2

10
www.overleaf.com/

11
www.draw.io

12
www.adobe.com/Photoshop

https://firebase.google.com/
https://themeforest.net/item/obri-app-landing-page-html-template/23382357?s_rank=2
www.overleaf.com/
www.draw.io
www.adobe.com/Photoshop

CHAPTER 5

ARCHITECTURE

This chapter discusses, from a technical point of view, the architecture proposed to
deploy Allegra. In the �rst place, there will be a general discussion of the distribution in
layers and the scalable approach that has been followed, to then go deeper into each of these
layers analyzing the problems that each one of them addresses, the solution that has been
chosen and the advantages that this entails.

5.1. OVERVIEW

In order to obtain a scalable system, easy to understand and in which to modify and
add functionality without a�ecting the rest of the elements already implemented, a layered
architecture has been chosen.

In a system like this, in which the requirements are changing and the functionalities grow
with each iteration, due to the methodology followed in the development, it is necessary
to take a scalable design. A scalable system should be understood as a system ability to
grow, add functionality and adapt to changes without a�ecting the rest of the system. In this
way, as the development progresses, new functionalities and features can be incorporated
or modi�ed without this having an impact on the rest of the implementation.

The system is divided into 3 clearly di�erentiated layers, each with its own objectives and
functionalities (see Figure 5.1). The layer with the greatest responsibility is the Gami�cation
and GUI layer, since it is the one that will be in charge of managing the behaviour of the
exercises and how they are represented, as well as the di�erent menus that the user can
navigate through. The Communication layer is the one that allows the user to communicate
with the application by means of the so-called receptors. Finally, the Persistence layer is
the one that will allow storing and processing user information and levels. Each one of
these layers, is formed in turn of multiple modules, where each one of them encapsulates a
di�erent functionality that adds value to the layer to which it belongs. The communication
between the di�erent layers is done through a system of events, since the layers do not

34 5.1. OVERVIEW

Levels	module

Lessons Songs

Communication	Module

Virtual	Piano

GUIVirtual	Keys
Recognizer

Microphone	Detector

GUIMicrophone	Pitch
Recognizer

Gamification	and	UI	Layer

Challenges
module

Communication	Layer

R
e
ce
p
to
rs

Input	Manager

Persistence	Layer

XML	Reader

Songs	MusicXML

Levels	Data	Base

GameInstance

Player State Game Mode

SongXP Coins

Stars

Firebase

Player	State

Song MusicXML Levels Data Base

Exercise	Setup
module

Notes
Comparator
module

Exercise	module

Notes	Player

Exercise	GUI	-	Stage

Little	Note	Manager

Staff	Manager

Score	Manager

Custom	Distation

Notes	Tracking

Statistics	module

Figure 5.1: Allegra’s architecture - General scheme

CHAPTER 5. ARCHITECTURE 35

know the way to work of the others, which allows to isolate even more of the impact in the
modi�cations of some of them.

In the following sections we proceed to detail the operation and objective of each of the
layers and modules.

5.2. GAMIFICATION AND GUI LAYER

This is the layer with the greatest number of responsibilities of the whole system. It will
take care of all the logic of the application, from the behavior of the levels, to the calculation
of statistics and visual representation of the menus. It also manages gami�cation elements
such as challenges.

5.2.1. Exercise module

In an application whose objective is the practice and improvement of melodic dictation,
it is critical to have some module in charge of managing the di�erent exercises. This
management refers to de�ning the rules of the game, its graphic representation, as well as
comparing the notes produced by the user and returning feedback in response. This will be
the foundation of the whole system.

An Exercise module is de�ned by 5 main elements: the exercise setup module, the
notes comparator, the notes player, a graphical interface of the exercise state and the score
managers. These elements are shown in �gure 5.2. The �rst four must be de�ned in order to
implement new exercises. The last module is the score manager, which is optional, because
if there is no score manager, the exercise will work correctly except that the results will not
be stored persistently, as is explained in the Score Manager section below.

This approach is based on the de�nition of an abstract class, called Exercise that de�nes
the basic elements of this module. Thus, when the developer wants to create a new type
of exercise, he must create a class that inherits from Exercise class. In this new class the
behaviour of the di�erent modules is coded, de�ning here the game rules.

Moreover, an Exercise invokes three di�erent events (see �gure 5.2). These events are of
utmost importance, as it is the means by which an exercise communicates with the rest of
the modules. There events are the following:

NoteChecked Event: it will be called when the exercise checks if a note is correct or
not, and returns some feedback data about the result (whether it is correct or not, the
note provided by the user, the feedback time, etc). This can be used by the GUI and
the communication layer to return visual feedback to the user.

36 5.2. GAMIFICATION AND GUI LAYER

Exercise

Setup

Selected
Song List	Of	Notes

N1 N2 N3 N4

User
Notes Notes	Comparator

Correct	Note
Routine

Incorrect	Note
Routine

		= NoteChecked

Locked

EndGame

GUI

GUI	Events

Score Notes	Tracking

Figure 5.2: Exercise detailed �ow scheme

Locked Event: this event is invoked when the exercise wants to block or unblock the
sending of more notes. This is useful, for example, if the exercise is giving some
feedback, or playing the notes, it makes no sense for the user to be able to enter notes.

EndGame Event: this event can only be invoked once, since its function is to notify
when a exercise has reached its end, performing then the corresponding operations.

Exercise Setup

At the beginning of an exercise, this module gets the information from the selected song
in the GameInstance (see section 5.4.1). The notes of this song must be loaded into the list of
notes of the exercise. This list should not be modi�ed during game play as it contains the
solution of the exercise. It works as a read-only bu�er, used to load the notes in order, to be
asked to the user, working as an input to the Comparator module, detailed below. Once this
loading process has been completed, this module noti�es the exercise to load the �rst set of
notes and the game starts.

Comparator

This is the module where the rules of the game are de�ned. The Comparator receives
two di�erent inputs. A set of notes that are asked to the user and a set of notes provided by
the user. This leads to two di�erent situation:

Both notes sets are equals, which means that the user gave the correct answer.
Both notes sets are di�erent, which corresponds to the fact that the user got it wrong
when introducing the notes.

CHAPTER 5. ARCHITECTURE 37

Once this comparison is resolved, the Comparator module executes di�erent pieces of
code according to the comparison result. These are the code fragments in which the rules
and procedures of the exercise must be de�ned, such as, for example, restart everything
when it turns out to be incorrect or maybe just to give a hint, or instead, if it is correct,
the next note or the whole set can be asked again, etc. This can be done to the will of the
developer.

Finally, after comparing the notes and perform the corresponding actions, theComparator
always �res the event called NoteCheckEvent.

Exercise GUI

The exercise, so far, has simply been dealt with its part of logic and algorithmic, how-
ever, to ensure a user-friendly use of the application, a complete and attractive graphical
representation must be taken into account.

In other words, every exercise must know who is the entity in charge of managing its
graphic part. As this can have a certain complexity, it has been separated into a di�erent
script apart from the logic. In this way, the exercise simply noti�es the state of the game, so
the graphical interface can perform the necessary operations to match the possible changes.

The communication mechanism used is based on speci�c events so that the exercise can
notify its graphical interface. These events depends on the implementation of the exercise.
There must be an event for each type of noti�cation. For example, in the case of study
currently implemented in Allegra, there is a noti�cation when a note is played by the system,
when the melody is played as well, and when a note is checked. There may be repeated
events between those of the graphical interface and those of the exercise, but this approach
has been chosen because it is possible to di�erentiate between communication with the
graphical interface and communication with other modules and entities of the system.

Notes Player

In a music application it is vital to be able to play notes independently and with full
control.

A possible solution would be choosing to have a sound �le for each of the musical notes
to be used, and play it when necessary. This, however, is not scalable and can considerably
increase the size of the �nal packaging of the application.

Another possible solution would be to have a script in charge of, from an audio �le of a
speci�c note, calculating how much to modify the tone of that note in order to reproduce
the one you are interested in. This is what Notes Player module does. This approach also
solves the inconveniences mentioned before.

38 5.2. GAMIFICATION AND GUI LAYER

Listing 5.1: Pitch calculation in Notes Player� �
1 public class NotesPlayer : MonoBehaviour
2 {
3 [...]
4 public void Play(int NoteMidi)
5 {
6 float offset = (float)(NoteMidi - ←↩

↪→ ReferenceNoteMidiValue);
7 GetComponent <AudioSource >().pitch = Mathf.Pow (2.0f, ←↩

↪→ offset / 12.0f);
8 GetComponent <AudioSource >().Play();
9 }

10 [..]
11 }� �
The Notes Player parts from the note A4, the standard reference note (see 3.1.1). When

an exercise, or another module, needs to play a note, it calls to a function in the Notes Player
which receives as argument the midi representation of the note. With this value, which is
an integer, the pitch o�set, respecting the A4 note, is calculated as shown in listing 5.1 using
the formula 5.1.

n = nr ∗ 2s/12 (5.1)

Score Manager

In a game, it is important to know at all times the score of the player, especially at
the end of a level, so that the player knows how well he has done in the execution of the
exercise. If this information also has an impact on the overall state of the player, such as
points, experience, unlocked elements, etc., something common in this type of application,
it should be stored in the persistence �le or database, or modify and update the information
already stored.

The Score Manager is the module to which this responsibility has been assigned. Its
mission is, from certain level parameters, in this case the number of correct and incorrect
notes, to calculate the �nal score of the player. This information consists of 3 parameters:

Stars: It can be gotten a maximum of three, and the number of stars obtained is
according the number of mistakes, as re�ected in table 5.1.
Coins: For each star achieved in the level a �xed amount of coins is obtained, so the
more stars achieved the greater the number of coins.
XP points: which are equivalent to the experience gained by the player. The total
experience earned is calculated based on the number of notes played by the user,
regardless of whether they are correct or not, as a mistake also brings experience to
the player.

CHAPTER 5. ARCHITECTURE 39

Table 5.1: Relationship between the obtained stars and the number of mistakes

Stars Number of Mistakes
3 0
2 1 - 2
1 3+

Besides, as the application implements an statistics module, it is interesting to store the
notes played by the user and whether they are correct or not (see section 5.2.3).

Once the exercise is �nished, this information, apart from being shown to the user, is
sent to the module that will be in charge of storing it in a persistent way, in this case this
module will be the Firebase Realtime Database (see section 5.4.3).

5.2.2. Levels

In any mobile application similar to Allegra, over time it is possible to introduce di�erent
game modes or to have di�erent databases from which to read songs. This leads to several
level selection screens. For example, in the case of Allegra, one for lessons and one for
popular songs. In fact, one way to deal with this problem is to actually create a di�erent
screen for each game mode or database that requires one. However, this approach is not
scalable and is not recommended.

In Allegra, a speci�c module has been created to carry out these level selection operations,
with di�erent game modes and databases, in a scalable way. Starting from a single selection
screen, and a template representing a level on that screen, you can load everything. This is
because this module receives at the beginning the reference to the database from which to
read the songs and the corresponding game mode. In this way, the desired songs will be
loaded and the levels, starting from a template, the parameters can be loaded dynamically.

Each level is represented as a big button which contains a Song Level object (see section
5.2.5) and displays all the information related to that object. This information is the name,
the di�culty and the required amount of resources. This resources can actually change from
a game mode to another as, for example, in lessons XP points are required, while in popular
songs, it is coins.

Level	Selection	Screen

Song 1 Song 2
Lessons

Popular
Songs

Levels
Module

SongLevel SongLevel ...

Figure 5.3: A unique level selection screen for everything

40 5.2. GAMIFICATION AND GUI LAYER

5.2.3. Statistics

When we talk about an application, especially if its objective is educational, it is of
special interest to collect certain information during the use of it, in order to produce a
report on the progress and improvement of the player. This means, a statistics system can
be useful to improve the e�ciency of the application.

The Statistics Module is responsible for obtaining the necessary information and pro-
ducing a simpli�ed report, within the application itself, so that the user can check it at any
time. In addition, this information can be used for other purposes, such as creating custom
exercises for each user.

Notes Tracking

A sub-module called Notes Tracking is responsible for collecting information from the
notes during the exercise. Each time the comparator resolves whether the note entered by
the user is correct, this module collects that verdict and stores it, for later, once the exercise
has �nished, it is stored in the database. In this way, when the user accesses the statistics
report view, simply with a quick query to the database, the information can be displayed.

Custom Exercises

Another function of the statistics module is the creation of exercises from the data
collected, thanks to the sub-module called Custom Exercise. This, based on the statistics
report, according to certain parameters given by the user, such as, for example, the number
of notes that make up the exercise, will create a completely new exercise.

As the exercise entry is a list of notes from a SongLevel object (5.2.5), thanks to the
scalability of the system, instead of reading it from a �le, this module will generate this list,
host it in the Game Instance (see 5.4.1) and start an exercise, which will load these notes.

Statistics Report

Notes	Tracking

Custom	Exercise
Exercise...

Figure 5.4: Simpli�ed Statistics �ow scheme

CHAPTER 5. ARCHITECTURE 41

5.2.4. Challenges

Challenges are an important feature in applications that use gami�cation techniques
to engage users. To give Allegra this feature, a speci�c module called Challenges has been
developed.

A challenge, as de�ned by this module, is an exercise that have a speci�c reward and
that can be played from time to time. Each challenge has a time stamp that speci�es when
it was last played, so that comparing it with the current time you can know whether the
challenge is unlocked or not. If it is unlocked, it can be played by the user. This launches an
exercise and overwrites the value of the time stamp in the database, so that the user has
to wait the indicated time to play again. However if it is locked it cannot be played and a
counter will appear showing the remaining time for unlocking.

Currently there are two types of challenges implemented: daily and weekly, so that they
can be played every 24 hours and 7 days, respectively.

The Challenges module has an associated database with songs, among which are taken
for each of the challenges. Thus, when the user begins to play a challenge, this module
generates a Song Level (5.2.5) and launches the corresponding exercise that will take this
object as a starting point.

Challenges

Daily	Challenge

Weekly	Challenge

DB

Time
stamps

Challenges
Songs Exercise

SongLevel

Figure 5.5: Challenges simpli�ed scheme

5.2.5. Song level and exercise note

Allegra is an application divided into well-di�erentiated modules, each with its own
independent functionality. However, all of them deal with the same concepts: songs, levels,
notes, etc. In order to avoid that each one of these modules uses these data in its own way
and making impossible a communication between them, two objects have been de�ned that
will set the foundations of all the architecture: the Song Level and the Exercise Note. In this
way, every module knows and can make use of these objects, making it very easy to work
with them with di�erent modules at the same time.

A Song Level is an object that represents a song inside the system. It contains all the
relevant information about a song: the title, path, rewards, the stars obtained and a list

42 5.3. COMMUNICATION LAYER

SongLevel

Song	Information
Title
Path

Rewards
Stars

ExerciseNote List

N1 N2 Nn...

ExerciseNote

Type

Midi Value

String

R
e
p
re
se
n
ta
ti
o
n
s

67

G4

Note Type Enum

Whole

Half

Quarter

Eighth

16th

32th

64th

/2

/4

/8

/16

2x

4x

Figure 5.6: Domain entities and how they are related

of Exercise Note (see �gure 5.6). This object can be created by any module manually or
read by a persistence �le, and it is mainly used as input for an exercise.

The Exercise Note is a universal container that stores all the information about a music
note inside the system. A note can have many representations in the application, so
this object encapsulate all of them (see �gure 5.6). These representations are the midi
value, which is an integer assigned uniquely to each note, and the string representation,
which is the classic way of music notation (C4, D5...). This object also stores the type
of note, which speci�ed its duration, as explained in 3.1.1, taking into account the
Quarter Note Reference Time stored in the Game Instance (see section 5.4.1).

The Note Type enumeration allows to represent the type of the note. The system supports
7 di�erent types of notes, from the whole note (four time the quarter note) to the 64th note,
which is the value of the quarter note time divided by 16, as is shown in �gure 5.6.

5.3. COMMUNICATION LAYER

The communication layer is in charge of collecting the information produced by the
user, thus allowing the interaction between the system and the user. It basically consists of
two important parts: receptors and the communication module.

5.3.1. Receptors

An application related to music, in which communication is required between the user
and the application, mechanisms are needed to enable this action. These can be emulations of
instruments within the app to simulate a real one, or mechanisms that collect the information
from a real world instrument and convert it so that the information is understood by the
system. This need resides in the fact that, since the whole application is in a musical context,

CHAPTER 5. ARCHITECTURE 43

the input mechanisms must follow this approach. To this end, the use of so-called receptors
is proposed.

A receptor is the mechanism in charge of collecting the notes provided by the user, in
other words, it is the means by which the user can interact with the application during an
exercise. Allegra supports many di�erent types of receptors. Every receptor implemented
on the app must inherit from the abstract class called Receivable. This class is in charge of
the most general functionalities of a receptor. This class also inherits from Monobehaviour
as in Unity every game object must inherit from that class (see section 3.12).

Listing 5.2: Code from Receivable abstract class� �
1 abstract public class Receivable : MonoBehaviour
2 {
3 / / Reference to communication module
4 public CommunicationModule module;
5 / / If true then the receiver is active
6 protected bool isActive = false;
7 / / If true then the receiver cannot be used by the user
8 protected bool isLocked = false;
9

10 / / Called when the receiver method is activated
11 public abstract void OnActivated ();
12 / / Called when the receiver method is disactivated
13 public abstract void OnDeactivated ();
14 / / Event Handler when a note is received
15 public abstract void OnNoteChecked(int midi , string ←↩

↪→ NoteString , bool isCorrect , float FeedbackTime);
16 / / Event Handler when the receiver method is locked or unlocked
17 public virtual void OnLocked(bool locked , float Delay)
18 {
19 isLocked = locked;
20 }
21 }� �
As is shown in the code on listing 5.2, a receiver must know whether it is active or locked

and who is the module to which the information is send to (explained in 5.3.2).

The variable isActive is used to determine whether a receiver is being used by the user
or not. Of all the receivers only one of them can have this variable to true, as only one
receiver can be active at a time. The input manager, is the module responsible of switching
between receivers. When a receiver is activated, this module subscribe the event handlers
OnNoteChecked and OnLocked to the events with the same name on the exercise (see 5.2.1)
and the function OnActivated is called to perform the corresponding actions. However, if
the receiver is deactivated the function OnDeactivated is executed and the event handlers
are unsubscribe from the exercise, so that, only the handlers of the active receiver are called.

While the receiver is active, it can be used by the user except in some speci�c moments,
such as, while a melody is being played. For those cases, there is a variable called isLocked

44 5.3. COMMUNICATION LAYER

1

2

Receivers Exercise
Receiver	1

Receiver	2

Receiver	N
...

Communication
Module

Notes
Comparator

Events
System

34

Figure 5.7: Receivers communication with exercise

used to check whether the receiver must send information or not, depending on the game
state. To change it value, an exercise (see section 5.2.1) must invoke the OnLocked event,
passing the locking information. This information is a boolean variable (true for locking
and false for unlocking) and a delay to perform the action.

The OnNoteChecked function will be called after the exercise check the note provided by
the user using this receiver. It will provide the midi and string representations of the note, a
boolean variable saying if the note is correct or not and the time that the exercise will be
giving feedback. With this information, the receiver is also capable of create and give its
own feedback to the user.

As mentioned above, a receptor is the mean by which the user introduces notes to the
application, so an important task is sending notes to the communication module. For that, it
is as simple as calling the speci�c function for each receiver in the communication module.

The diagram in Figure 5.7 illustrates the process of communication between receptors
and the exercise. In this way, a set of receptors, of which only one will be active for use,
sends the note information (1) to the communication module. This module processes the
note and forwards it to the exercise comparator. Here it is evaluated and compared according
to the rules established for later use of the event system (3) that sends the information from
the comparison result to the active receiver (4).

To summarize, there is a Receivable class that de�nes the basic behavior of every receptor,
and a set of event handlers that allow the communication of other modules with the receptors.
This approach has the great advantage of making this part of the system highly scalable.
When the developer implements a new receptor module by introducing an input method,
he simply has to inherit from that class, register the input method in the Input Manager, and
place all the necessary logic in the resulting class, completely transparent to the rest of the
system.

Currently, in Allegra, there are 2 di�erent receptors implemented: a Virtual Piano and a
Microphone Pitch Detector.

CHAPTER 5. ARCHITECTURE 45

Virtual Piano

The virtual piano is one of the receptors implemented in Allegra. It consists in a set
of virtual keys displayed on the button part of the screen during game play. Each key
has associated a note so, when the key is pressed, that note is sent to the PlayPressedNote
function in the core script of this module as shown in listing 5.3. This is the function in
charge of sending the note to the communication module (see section5.3.2) and also uses
the NotePlayer (see section 5.2.1) module to reproduce the note simulating a real piano.

Once the exercise has checked whether the note is correct or incorrect, the event handler
OnNoteChecked is invoked, so the receiver can give some feedback to the user. In this case,
the virtual piano colors the pressed key in green if the note is correct, or in red if it is
incorrect.

Listing 5.3: Core code from VPianoCore Script� �
1 public class VPianoCore : Receivable
2 {
3 [...]
4 / / Called by the pressed key
5 public void PlayPressedNote(string PressedNote)
6 {
7 if (! isLocked && !isKeyPressed)
8 {
9 notePlayer.Play(PressedNote);

10 module.SendVPiano(PressedNote);
11 }
12 }
13 / / Called when the note is checked by NoteCheckEvent
14 public override void OnNoteChecked(int midi , string ←↩

↪→ NoteString , bool isCorrect , float FeedbackTime)
15 {
16 [...]
17 if (key != null)
18 ColorKey(key , isCorrect , FeedbackTime);
19 }
20 }� �

Microphone Pitch Detector

A receiver method implemented in Allegra is a Microphone Pitch Detector, based on the
RAPT1 Pitch Detector algorithm. This algorithm takes as reference a fundamental frequency
that is the quantity that is being estimated by all virtual pitch trackers and is an inherent
property of periodic signals and tens to correlate well with perceived pitch. This means,
this fundamental frequency is compared with the frequency obtained from the input signal
using a cross-correlation function. It is a complex but fast process detailed in [19].

1A Robust Algorithm for Pitch Tracking

46 5.3. COMMUNICATION LAYER

Listing 5.4: Core code from MicrophoneCore Script� �
1 public class MicrophoneCore : Receivable
2 {
3 / / Volumen Threshold
4 [Range (-100.0f, 12.0f)]
5 public float VolumeThreshold = -40.0f;
6 / / Detector reference
7 private MicrophonePitchDetector detector;
8 / / Stores midi data from mic until it is sent
9 private List <int > MidiBuffer;

10 [...]
11

12 / / Called by the detector
13 public void MicReceiverCallback(List <float > ←↩

↪→ pitchList , int samples , float db)
14 {
15 [...]
16 / / When volume is higher than threshold it start recording
17 if (pitchList.Count > 0 && db > VolumeThreshold ←↩

↪→ && pitchList [0] > 0)
18 MidiBuffer.AddRange(pitchList);
19 / / Data in the bu�er is sent as the volume is too low to get more data
20 if(MidiBuffer.Count != 0 && db < VolumeThreshold)
21 SendDataToCommunicationModule ();
22 }
23

24 / / Called when data must be sent to the module
25 void SendDataToCommunicationModule ()
26 {
27 List <int > frequentValue = ←↩

↪→ GetDominantValues(MidiBuffer);
28 for(int i = 0; i < frequentValue.Count; i++)
29 {
30 if (frequentValue[i] >= minValue && ←↩

↪→ frequentValue[i]<= maxValue)
31 {
32 module.SendMic(frequentValue[i]);
33 break;
34 }
35 }
36 }
37 [...]
38 }� �

CHAPTER 5. ARCHITECTURE 47

MicrophonePitchDetector

RAPT	Algorithm

MicrophoneCore

MicReceiver
Callback

onPitchDetected

SendData

Buffer
Communication
Module

1 2

4

3
5

Figure 5.8: Simpli�ed conceptual scheme of Microphone Detection Module

In listing 5.4 is shown the core code of this module. The attribute called detector holds a
reference to theMicrohonePitchDetector instance, which is the script that actually implements
the RAPT algorithm.

This module, as shown in Figure 5.8, when the microphone detects any sound (1),
forwards the collected data to MicReceiverCallback function (2), that is a handler previously
subscribe to the onPitchDetected event invoked by the detector. This function stores the
pitch data in a bu�er called MidiBu�er (3) while the volume of the input is higher than the
VolumenThreshold. This threshold is the minimum value from which the microphone starts
to record. If the volume of the sound detected is lower than this value, the data is ignored.
This is also used to detect when a note is �nished to be played, as when the data is being
stored in the bu�er, if the volumen decreases from this threshold, then it is interpreted as
the note is being �nished to be played (4), forwarding then the data to the communication
module (5). This last task is performed in SendDataToCommunicationModule, where the
dominant pitch is found and forwarded to the communication module.

5.3.2. Communication module

The Communication Module is the intermediate module between the receivers on the
Communication layer and the Gami�cation and UI layer. It purpose is to receive the
information provided by the active receiver and forward it to the exercise comparator (see
5.2.1). Thanks to this approach, greater isolation is achieved between the di�erent receptors
and the exercise module. The receptors only have to know whi is the communication
module, ignoring the game mode of the exercise, and at the same time, the exercise works
the perfectly independently of the receptor that is being used in each moment, being the
communication module the intermediary that facilitates the communication process.

In listing 5.5 is the core code for this Communication Module. It inherits from MonoBe-
haviour as it is a script attached to a Unity game object (see section 3.12). It must know the
Exercise that is being played, and the range of e�ective notes. The function SendToCompara-
tor is intended be called by receivers to send the note information to the exercise if it is in
the e�ective range. It is the core function of this module. It receives as parameter the note
midi representation, if the note representation is not midi, it must be translated to it.

48 5.4. PERSISTENCE LAYER

Listing 5.5: Core code of the Communication Module� �
1 public class CommunicationModule : MonoBehaviour
2 {
3 / / Reference to Exercise
4 public Exercise exercise;
5 / / Notes interval where notes are parsed
6 public string MinNote = "A3";
7 public string MaxNote = "F5";
8 [...]
9 void SendToComparator(int note)

10 {
11 if(note >= MinMidi && note <= MaxMidi)
12 exercise.Comparator(note);
13 }
14 }� �

5.4. PERSISTENCE LAYER

In an application that deals with player progress, status, and levels, each with unique
information, it is of great importance to keep these data in some persistent storage perma-
nently to avoid losing them. For this, this section will see the di�erent technologies and
media that have been selected for this task. In addition, it will explain the use of having a
container within the application itself to share information between the di�erent modules.

5.4.1. Game instance

In a mobile application, it is common for the user to navigate between di�erent windows
and these windows may have to share certain information. An example of this is that
the level selector selects a song from a list and the exercise must read it. For this type of
communication, it is of special interest to have a persistent container during the whole
execution, that means, that it is not destroyed when changing the screen, and where these
information can be stored.

Game Instance is the name given to this module because it works as a container to share
information persistently during game play. This object is instantiated at the beginning of
the main map of the app but it must remain existing during the whole execution, so Unity
deals with that as follows.

In Unity, objects exist in the world. The world is actually a Scene, so when the game
changes from a Scene to another all the object in the old scene are deleted and all of the new
scene are instantiated. In case the developer would like to maintain alive an object across
di�erent scenes, he must set the object to not destroy when a new scene loads. Unity o�ers
a function called DontDestroyOnLoad()2 which can be set to true, so that object will not be

2
h�ps://docs.unity3d.com/ScriptReference/Object.DontDestroyOnLoad.html

https://docs.unity3d.com/ScriptReference/Object.DontDestroyOnLoad.html

CHAPTER 5. ARCHITECTURE 49

destroy. However, when the game changes from a scene to another and then came back to
the main scene the GameInstance object will be created again, resulting two instances of
the same object. This does not make sense in this context, because it is not necessary to
have two persistent containers with di�erent data across the game as it would lead to data
inconsistency. To avoid this situation the singleton pattern has been used. The singleton
pattern is explained in detail in section 5.5.

Listing 5.6: Most relevant code from GameInstance script� �
1 public class GameInstance : MonoBehaviour
2 {
3 / / Selected Song
4 public SongLevel SelectedSong;
5 / / Current player state
6 protected PlayerState playerState;
7 / / Selected game mode
8 public GameMode gameMode;
9 / / �arter note time duration

10 public float QuarterNoteTime = 1.0f;
11 [...]
12 }� �
At the beginning of the code in listing 5.6 there are four attributes. These are the data

that can be stored in this container.

Selected Song: this is a reference to a SongLevel object. It is set when a song is selected
to be played, independently from the game mode. It contains all the information
relative to that level (notes set, rewards, name of the song, etc).
Player State: this object is load at the beginning of the execution. The information is
retrieved from the cloud using Firebase module and any time it is modi�ed by the app,
it is synced with the cloud (see 5.4.3).
Game Mode: a value from a enumerate where all the game modes are speci�ed. At the
moment there are two game modes: the practice mode and the popular song mode.
Quarter Note Time: the reference of how long a quarter note is being played. Its value
can be changed in a song sta� if this duration is speci�ed.

Game	Instance

Level Selector
Lessons

Level Selector
Popular Songs Score Manager Custom Dictation

Exercise Persistence
(Firebase)

Input
examples

Output
examples

Figure 5.9: Example of some modules interacting with the Game Instance

50 5.4. PERSISTENCE LAYER

5.4.2. XML reader

MusicXML is an XML-based �le format used to represent Western music notation. As it
is an XML �le with speci�c labels (speci�ed by the W3C3), it is read as a regular XML, so
that it is needed some means or library to be able to perform this operation. XMLFileReader
is the module implemented in Allegra and it is charge of the execution of this task, making
use of the Microsoft library XDocument4.

The XMLFileReader script consists of two parts. The �rst one is in charge of reading
the notes in the MusicXML �le. This part retrieved from the �le the pitch and the duration
of each of the notes, and creates a list of ExerciseNote. ExerciseNote is a class that holds all
the information of each note, so any module of the app knows how to deal with this data,
avoiding the access the �le several extra times.

Listing 5.7: Example of a level speci�cation in Lessons.xml �le� �
1 <levels >
2 <level >
3 <title >Sol Mayor I</title >
4 <path >04_-_SolMayorI </path >
5 <difficulty >1</ difficulty >
6 <requiredXP >1750 </ requiredXP >
7 <coinsForeachStar >20</ coinsForeachStar >
8 <xpForPlayedNote >400 </ xpForPlayedNote >
9 </level >

10 </levels >� �
The second part of the script is in charge of reading from a list of songs or levels, obtaining

the general information of each one. In listing 5.7 an example of this song speci�cation is
shown. Then this data is parsed to an object of type SongLevel, so that, any other module
deals with an object that encapsulates all this information, including the ExerciseNote list,
instead of dealing with the raw data from the XML �le.

This script is invoked at the beginning of the execution to read the SongLevel list,
including all the information except the notes. This operation takes as an input a �le, that
can be changed in execution time, allowing to have several levels database. This is useful, for
example, to di�erentiate from lessons and popular songs. The notes are read at the begining
of the exercise based in the selected song level.

5.4.3. Firebase realtime database

As the player moves up and down the level, his progress improves and has to be persis-
tently stored to ensure that progress is not lost. There are lots of technologies developed for

3
h�ps://www.w3.org/2017/12/musicxml31/

4
h�ps://docs.microso�.com/es-es/dotnet/api/system.xml.linq.xdocument?view=netframework-4.8

https://www.w3.org/2017/12/musicxml31/
https://docs.microsoft.com/es-es/dotnet/api/system.xml.linq.xdocument?view=netframework-4.8

CHAPTER 5. ARCHITECTURE 51

SongLevel

Song	Information
Title

Rewards
...

ExerciseNote List

N1 N2 Nn...

SongLevel

XMLFileReader

ExerciseNote

1 *

Figure 5.10: SongLevel speci�cation and XML relation with other classes

this purpose, however, as the target platform is a mobile device a cloud storage can be com-
promised if the device lost connection, something really common for these devices. Other
solution is a local storage approach, which does not depends on network connection, but in
case the app is uninstalled or the user changes his device, the progress would get lost. Then,
the perfect approach would be a mixed technology, with local storage for non-connected
devices and cloud storage to assure that the progress is not lost. An example of these kind
of technologies is Firebase Realtime Database.

Firebase5 is a mobile and web development platform created in 2011 and adquired by
Google in 2014. Currently it o�ers more than 15 di�erent products aimed to ease the
development for the cited platforms. One of those platform is Firebase Realtime Database6, a
NoSQL database hosted in the cloud. The data is stored in JSON format and synchronized in
real time with each connected client, and remain available when the app has no connection
[12].

These characteristics were determinant to take this technology as the one chosen to take
care of the persistence of the state of the di�erent users, in addition to the fact that there is
a library adapted and ready to use for Unity.

The Firebase Realtime Database module is queried at the beginning of the execution of
the application, obtaining a copy of the JSON tree stored on the cloud that is parsed in a
container which is the PlayerState class. After reading the information, the Firebase module
creates an instance of PlayerState with the current information. When this state is updated,
for example when a reward is obtained, it is automatically synced with the cloud. If the
device is not connected to the network, then the updates are stored locally in a cache �le
waiting to be connected again.

Every operation performed using the Firebase library is an Asynchronous operation, this
means, is not executed in the main execution thread, but in another specially created for that
operation. This can leads to concurrency problems so there must be a mechanism to control
this. This mechanism is an events system. The system will not perform the operations

5
h�ps://firebase.google.com/

6
h�ps://firebase.google.com/products/realtime-database/

https://firebase.google.com/
https://firebase.google.com/products/realtime-database/

52 5.5. DESIGN PATTERNS

related to the database data until the event in invoked, so this assures that the execution
order is the correct one.

5.5. DESIGN PATTERNS

A design pattern is a solution to a design problem. It is de�ned as a set of techniques
for solving common problems in software development [6]. Thanks to a good selection of
design patterns a simpler and more scalable architecture can be obtained. Therefore, in
order to face certain di�culties, 3 patterns have been used in the development of Allegra .

5.5.1. Singleton pa�ern

Singleton is a pattern that represents a solution to two problems: maintaining only one
instance of a class and having a global access point to that instance. However, many authors
consider it an anti-pattern, as they advise the use of other alternatives when there is only
one of the two problems [23].

It is for this reason that Allegra’s architecture has not used a pure implementation
of this pattern, but a variation that allows to solve the �rst problem: maintain a single
instance of a class, in this case the Game Instance, previously de�ned in this section. In the
implementation used, a static variable containing the instance of the class is maintained,
but unlike the implementation recommended by the pattern, this variable is private and
simply checks whether there is already an instance of that class or not. The reason for this
approach is due to Unity’s work�ow.

Unity tries to create an instance of the Game Instance class every time the main menu
is accessed, but it �rst checks if this instance already exists, in which case it removes the
new one, as can be seen in the listing 5.8. This code shows how the GameInstance class
contains a static reference to an instance of this class, so, when a new one is being created,
its reference is stored in the variable called _instance, if there is already an instantiated
object, it is destroyed. This is performed in the Awake() function, which is executed before
the �rst frame of the scene.

5.5.2. Command pa�ern

The Command pattern can be understood as a substitute for a callback function. It
consists of encapsulating a function within an object [6]. An example of implementation
would be to generate a Command class with an abstract Execute function, which will later
be used to encapsulate di�erent functions, which will be launched when the function is
executed[21].

CHAPTER 5. ARCHITECTURE 53

Listing 5.8: Singleton implementation variation in Game Instance class� �
1 public class GameInstance : MonoBehaviour
2 {
3 [...]
4 / / Singleton
5 private static GameInstance _instance;
6

7 void Awake()
8 {
9 if(_instance != null && _instance != this)

10 {
11 Destroy(this.gameObject);
12 }
13 else
14 {
15 _instance = this;
16 [...]
17 / / Remains the object alive in all scenes
18 DontDestroyOnLoad(this.gameObject);
19 }
20 }
21 }� �
The Unity event system is based on pattern. This system of events encapsulates within

the UnityEvent object a set of references to functions that will be invoked when the Invoke()
function is executed.

5.5.3. Observer pa�ern

The Observer pattern is a design pattern widely used in the software development
industry that allows an entity to execute a piece of code to announce or notify events
without worrying about who will receive the noti�cation [23].

A classic implementation of this pattern speci�es that two classes must be created, an
Observer in charge of receiving the events, from which all those who want to receive those
events must inherit, and another Subject that will be the base class in charge of sending the
events. However, in Allegra, this pattern has been made use of through the system of events
and delegates that Unity’s technology o�ers the developer.

The exercise module sends the CheckedNote and Locked events in a transparent way to
the entities who are managing them, being able to be any entity subscribed to these events.
In the same way, the speci�c implementation of the exercise logic sends noti�cations to a
GUI module through a set of delegates, speci�c to each game mode. Thanks to this approach
it is possible to achieve a behavior as speci�ed by the observer pattern through a simpler
implementation and using the tools o�ered by the Unity technology.

CHAPTER 6

RESULTS

This chapter will address the �nal result of this project. First, it will discuss the proto-
type of the developed artifact, Allegra , and the levels and functionalities that have been
implemented. It will also show the landing page of the application. Finally, a brief summary
of the project cost will be made. Moreover, the whole project, including the source code and
an Android apk �le for testing, is available in the following link:

h�ps://github.com/adrian-ollero/Allegra-MelodicDictation

6.1. ALLEGRA - MELODIC DICTATION APP

Allegra is the result of the development process of this project. A complete app prototype
has been developed, from a scalable architecture to a user-friendly graphical user interface,
including a unique identity with a logo (shown in �gure 6.1) and a landing web page.

Figure 6.1: Logo designed for Allegra

The application has been developed using the architecture described in chapter 5. It
consists in a main screen from which the di�erent menus can be accessed (�gure 6.2).

From this menu, the user can navigate to practice a lesson (1), buy and enjoy a popular
song (2), check the statistics and create a new custom dictation (3), play a daily or weekly
challenge (4) or simply check the player state status (5) which is the XP points and the
MusiCoins that the user currently owns.

https://github.com/adrian-ollero/Allegra-MelodicDictation

56 6.1. ALLEGRA - MELODIC DICTATION APP

1. Button to access
 the Lessons list

2. Button to access
 the Songs list

5. Player state
 information

3. Button to access
 the statistics
 menu

4. Challenges menu.
 In red means new
 challenges available

Figure 6.2: Allegra’s menu layout

6.1.1. Lessons practice

The practice screen is the the menu where all the guided lesson dictations can be found,
as shown in �gure 6.3. This screen shows a set of di�erent lessons (1), each one represented
as a big gray button, where its information, such as the tittle (4), is displayed. Lessons are
organized by the di�culty and experience required to unlock them. There are 4 levels of
di�culty: easy, normal, hard and insane, and it is displayed in (5). Each level also has a
minimum number of experience points from which it is considered that the user has enough
ability to play that level (6), so only if the user reaches this number the lesson would be
unlocked. An unlocked level is represented as a light-colored button (2), while a dark one
with a locker over it represents a locked lesson (3). Also, as it will be seen in all menus, there
is a back button (7), to return to the main menu.

1. Lessons or Songs
 list

2. Unlocked
 Lesson or Song
 representation

3. Locked Lesson or
 Song representation

4. Lesson or Song
 Tittle

5. Difficulty assigned
 to a level

6. XP points required
 to unlock a level

7. Back button

Figure 6.3: Lesson selection screen

The user is free to select any of the unlocked lessons, as many times as he wants, allowing
the repetition of a level to ensure that the knowledge it tries to transmit, is acquired by the
user, as well as the rewards, that are earned again. Once a lesson is selected, an exercise
begins and the exercise screen is displayed.

CHAPTER 6. RESULTS 57

6.1.2. Popular songs

The popular songs screen is a selection menu, similar to the lessons one, but instead of
lessons what can be selected are well-known songs that the user can unlock in exchange for
MusiCoins, the in-game currency. This way you don’t need XP points to be able to unlock
each level, but those for which the user has enough coins to be able to buy them will be
unlocked. As can be seen in the �gure 6.4, each of the songs has a certain price (1) and when
the user purchases one of them, that amount of coins is subtracted from the total coins of
the player.

1. Song cost
expressed in in-
game currency

5. YES button. It
starts a level loading
the purchased song

Figure 6.4: Popular songs purchase screen

As it is a direct modi�cation of the user’s resources, before carrying out the purchase
action, the user is asked to con�rm the transaction by means of the dialog shown in the
�gure 6.5. This dialog is displayed showing the information of the selected song, such as
name (2) and the price (3). Here the user can choose between two options: return and not
make the purchase of that song with the NO button (4) or accept the purchase and spend
MusiCoins to play the song with the YES button (5).

2. Name of the
song to purchase

4. NO button to
cancel the purchase

3. Cost of the song
expressed in the in-
game currency

5. YES button. It
starts a level loading
the purchased song

Figure 6.5: Purchase con�rmation dialog

Thanks to these popular songs is intended to motivate the user to play and progress to
win coins and unlock fun songs. However, these songs only give XP points as a reward, as it
would not make sense to reward such practices with coins.

58 6.1. ALLEGRA - MELODIC DICTATION APP

6.1.3. Statistics and custom dictations

When the user has spent some time playing and solving the exercises proposed by the
application, it is of special interest to know certain data about how e�cient is being the
progress, the strong points of the user, as well as in which concepts he needs to improve. In
order to do this, in the statistics screen your can be helpful.

When the user accesses this screen, a piano is shown, as we can see in �gure 6.6(a),
whose key layout is equivalent to the range of notes that can be worked with Allegra . The
notes will be coloured according to the user’s success rate on that note according to table
6.1. This screen consists on a scroll view (1) to navigate throughout the whole key set, a
“Generate Dictation” button (2) and other information that can be displayed as well (3).

The “Generate Dictation” button basically starts an exercise where the notes are selected
based on the statistics. The user can specify the number of notes that the exercise is formed
by and even customize it completely.

Table 6.1: Relationship between correct note rate and key color

Color Correct Rate

0 - 25 %
25 - 50%
50 - 75%
75 - 100%

The keys of the piano are actually buttons, which can be pressed to see more detailed
information. An example is shown in �gure 6.6(b). This information contains the name
of the pressed note (4), a bar showing the percentage success (5) where the green part
represents the number of correct hits (6) and the red part the number of incorrect times
(7). Also an addition of these two values, which is the total times this note has been played
during the exercises, is shown in (8). Finally, to close this dialog the OK button (9) can be
used.

(a) Statistics Menu (b) Detailed statistics dialog

Figure 6.6: Allegra’s statistics system

CHAPTER 6. RESULTS 59

6.1.4. Challenges

Challenges are one of the most interesting features of the whole application. They allow
you to play levels every 24 hours or 7 days obtaining greater rewards than the regular
exercises. To access this screen, in the lower right corner of the main menu it can be seen
the “Challenges button”. This button can take two colors: gray if there is no challenge that
can be played, or red with a golden exclamation that indicates that there is at least one
challenge unlocked. This is illustrated in �gure 6.7.

Figure 6.7: Challenges button in main menu changes color according to unlocked challenges.

The challenges screen consists on two main elements (see �gure 6.8): the daily challenge
button (1) and the weekly challenge button (2). Each of the buttons will launch the corre-
sponding exercise. The rewards if this exercise is di�erent for each one, as can be seen in
(3). If a challenge is unlocked and can be played, the button will be enabled, however if it is
not, a timer is displayed (4) over the button showing the remaining time until this challenge
can be played again.

1. Daily challenge
 (unlocked)

3. Rewards
obtained when
this challenged
is achieved

2. Weekly challenge
 (locked)

4. Time remaining to
be able to play the
challenge

Figure 6.8: Statistics detailed dialog when a key is pressed

6.1.5. Exercise

The exercise screen is where the game really takes place. In Allegra the game mode that
has been implemented complies with the rules of the traditional Simon Says, that is, the user
is asked to repeat a sequence of notes, which increases in number of notes, so that when

60 6.1. ALLEGRA - MELODIC DICTATION APP

it is complete is considered to have passed the level. However, if the note is incorrect, the
level is restarted and the initial sequence has to be started again. This approach allows, in
addition to working on the identi�cation of notes through auditive perception, to improve
musical memory, so that it is easier for you to identify notes within a context.

The exercise, shown in �gure 6.9, basically consists on rounds, each one asking a round
note. This note is represented as a white sleepy music note (1). The user is asked to introduce
the lighted up note (2) and any time a round note is hit, it is marked as correct, what is
represented as a golden happy note (3), and a new round starts. This new round will play
the asked note sequence adding a new note, until all the remaining notes are completed (4).
The background sta� (5) is a helpful tool specially for beginners. It represents, in a G-clef,
the note played by the user, so he obtained some visual feedback in a representation he may
�nd easier that hearing.

1. Round requested
 note

2. Current asked
 note

4. Lesson or Song
 Tittle

5. Staff to represent
 the user note

6. Input management
 control

7. Receptor graphic
 interface

8. Repeat botton

9. Exit button

Figure 6.9: Exercise screen used to perform the lessons and songs

The input method adapts to the user and can be changed at any time. Using the input
controller (6) the user can switch between the two implemented methods: the Virtual Piano
(�gure 6.10(a)) and the Microphone Detector (�gure 6.10(b)). The graphic interface of these
methods is displayed in the bottom part of the screen (7).

To improve the user experience, some controls have been added to the left part of the
screen. The repetition button (8) is used to repeat the asked sequence and can be used at
any time. The Exit button (9) allows to quit the exercise, but if this operation is performed
all progress and rewards are lost.

(a) Virtual Piano GUI (b) Microphone Detector GUI

Figure 6.10: Implemented inputs methods

CHAPTER 6. RESULTS 61

Finally, when an exercise is completed, the whole melody is played and a new screen
is loaded. This is the End Game screen (�gure 6.11) and it is used to display the earned
MusiCoins (1) and XP points(2), and the stars obtained (3). The home button (4) is used to
return to the main menu.

1. MusiCoins
 earned 2. XP points

 earned

3. Stars achieved4. Home button

Figure 6.11: Final screen when an exercise is being achieved

6.2. LANDING PAGE

The market for mobile applications, as mentioned above, is very saturated as thousands
of applications are uploaded every day, so highlighting Allegra is a di�cult task. However,
there are certain techniques and mechanisms that can help to position and promote the
application.

In order to publicize Allegra , a landing page presenting the app has been developed. This
web page, that can be accessed at www.allegramelodicdictation.com, contains keywords
that would help in SEO positioning. To obtain which are the most relevant keywords related
to this app a tool called Google Trends1 has been used (see Figure 6.12). This tool provides a
list of the most common words searched on Google by date, geographical location, etc. and
the statistics of some custom words provided by an user. In this case, as the two terms that
�t best with the description of the app they both were compared and the most

Figure 6.12: Musical Dictation (Blue) vs Ear Trainer (Red) - Google Trends

1
h�ps://trends.google.es/trends/

www.allegramelodicdictation.com
https://trends.google.es/trends/

62 6.3. WORK DISTRIBUTION

Allegra’s website has been designed with special attention to these keywords and also
includes monitoring tools, such as Google Analytics2, to improve the quality and information
of it.

Figure 6.13: Preview of Allegra’s Landing Page

6.3. WORK DISTRIBUTION

Starting from the methodology explained in chapter 4, this section will detail the itera-
tions that have shaped this project up to the current result, as well as the tasks that each of
them has accomplished. At the end of each one of them, a meeting was held with the tutor
and the musician advisor, in order to validate the new functionalities and de�ne the scope
and requirements of the next one.

Iteration 1: Initial Plan
From: 21st January To: 9th February
Starting from the idea of facilitating the practice of melodic dictation, a study is begun on
the feasibility of the development and study of similar previous tools. Once the idea is
considered viable, tests are carried out with di�erent development tools to �nd the most
suitable one. Among these tools, Unreal Engine and Unity were tested, and the last one
was the selected one to develop the system as is more adequate for multimedia mobile
apps.

2
h�ps://analytics.google.com/analytics/

https://analytics.google.com/analytics/

CHAPTER 6. RESULTS 63

Iteration 2: Concept test
From: 10th February To: 17th February
Once the tools and libraries were identi�ed, during the week that lasted this iteration a
prototype was developed that reproduced a random note and identi�ed the notes detected
through the microphone, drawing them on the screen, and giving feedback on the coinci-
dence of both, in order to validate that the operation of the libraries was correct and the
desired.
This prototype was also tested on mobile devices to speed up subsequent testing phases
on real devices.

Iteration 3: Design and communication implementation
From: 18th February To: 5th March
During this iteration, the general design of the application, the distribution in layers and of
the responsibilities were carried out. With this in mind, the two communication modules
began to be implemented, one built-in the application itself, such as the Virtual Piano,
and the other using the microphone thanks to the previously tested libraries, and the
Communication Module that will be in charge of parsing the information generated by the
receptors and sending it to the logic module.
In this time, an event system is developed that allows communication between the di�erent
layers
As it has several communication elements, the Input Manager module is added in order to
be able to switch between them at any time.

Iteration 4: Exercise implementation
From: 6th March To: 20th March
With the communication layer working, the logic of a game mode could be implemented.
For this purpose, the Exercise class was created, which de�ned the bases that each exercise
had to comply with, in order to subsequently proceed with the implementation of the
exercise in question. The �ow that was decided to follow was that of the well-known game
Simon Says, whose behavior was replicated and adapted to the context of the exercise.
Also, in this iteration, the gami�cation techniques to be used were de�ned in a general
way, such as the use of experience points, coins to buy songs, scores, etc.

64 6.3. WORK DISTRIBUTION

Iteration 5: Levels scores and gammi�cation techniques
From: 21st March To: 12th April
With the exercise correctly implemented, levels could be introduced. A brief study was
made on which was going to be the format to store the levels, resulting MusicXML as the
ideal one for this system. Several exercises were de�ned and exported to this format.
In order to be interpreted by the application, the XMLFileReader module was implemented,
which parsed the information contained in the score �les to notes for the exercises.
In this iteration, the gami�cation techniques de�ned were also implemented. The exercises
calculated scores, gave rewards that could be spent for new songs and levels were unlocked
according to progress. These techniques could be introduced relatively quickly thanks to
the architecture in place to date.

Iteration 6: Statistics and Challenges
From: 13th April To: 1st May
From the information produced during the exercises and with the scores calculated at the
end of the exercises, a system of statistics was created that the user could consult at any
time. Special care was taken to ensure that the report was clear and intuitive to view. A
personalized dictation module was also implemented thanks to the processing of these
data.
In addition, as a mechanism to motivate and engage the user, a module is implemented to
manage challenges and their rewards.

Iteration 7: Graphics improvements
From: 2nd May To: 22nd May
Up to this point in the development the graphic aspect of the application was quite poor, so
this iteration was dedicated to do a graphic review and completely modify the aesthetics of
the graphical interface. These modi�cations include animations of some elements, sound
e�ects on buttons, aesthetic improvement in the menus, among others.

Iteration 8: Firebase
From: 23rd May To: 30th May
This iteration was intended to improve the persistence layer. Thanks to Firebase technology,
a persistence system with storage in the new and real-time synchronization could be
introduced into the application easily thanks to its high compatibility with Unity. During
this iteration, in addition, numerous tests were carried out to ensure the proper functioning
of the system.

CHAPTER 6. RESULTS 65

Iteration 9: Landing Page and documentation
From: 31st May To: 21st June
Once the system is in a stable version, a landing page tries to make it known. During
this last iteration, this page is prepared and uploaded to the network under the domain
allegramelodicdictation.com, selected after a brief keyword study. At the same time, the
whole document about the project is made.

6.4. PROJECT STATISTICS

All the work detailed in the previous section has been registered in theGitHub repository3

of this project, so that the data collected in it will be shown next.

The project, at the time of writing of this document, has a total of 128 commits distributed
from February 10 to June 20, as shown in Figure 6.14(a) where the 76.0% of the code is written
in C# and the rest 24.0% is written in many other languages such as the Unity notation used
to de�ned scenes and prefabs, XML, JSON, ShadelLab, etc. The only contributor has been
the author of this document with a total of 9508 resulting lines, distributed in added and
deleted as shown in Figure 6.14(b)).

(a) Commmit per week (b) Lines additions and deletions

Figure 6.14: GitHub repository statistics charts

6.5. DEVELOPMENT COST

Allegra is a project that has been developed between January 21st and June 21st. This
period of 4 months has meant a total of 480 hours assuming 4 weeks per month and 5
days a week to half a day, 6 hours. On average, a software developer costs about 30 €/h

3
h�ps://github.com/adrian-ollero/Allegra-MelodicDictation

https://github.com/adrian-ollero/Allegra-MelodicDictation

66 6.5. DEVELOPMENT COST

according to a popular web page called Infojobs4, which means a total of 14.400 € for the
entire development and assuming a single developer, as has been the case of this application.

Other costs to take into account are software pieces used, whose license had a cost.
These are Pitch Recognizer, purchased at the Unity Asset Store (18€) and Obri Landing Page
Template (9€), to facilitate the development and layout of the website. The website also
requires a hosting and a unique domain. For the domain a .com has been chosen, which has
cost 9€ and for the hosting the OVH5 platform has been used, for a total of 10€.

For the development of the application, the following tools have been used: a MSI GE63
7RD Raider computer, sold in Amazon for 1299€, a Android smartphone BQ Aquaris X5 Plus
for testing, currently sold for 219.90€, and the free license of Unity.

Taking into account only the detailed expenses, the project cost results in a total of
15.920,89€. In table 6.2 a summary is shown.

Table 6.2: Total cost calculation (taxes excluded)

Resources Units Cost/u Cost

Pitch Recognizer Package 1u 18,00€ 18,00€
Obri Template 1u 9,00€ 9,00€
Domain + Hosting 1u 4,99€ 4,99€
MSI Ge63 7RD Raider Computer 1u 1.299,00€ 1.299,00€
BQ Aquaris X5 Plus 1u 219,90€ 219,90€
Developer Salary 480 hours 30,00€/h 14.400,00€

Total: 15.950,89€

4https://www.infojobs.net/
5
h�ps://www.ovh.es/hosting/

https://www.ovh.es/hosting/

CHAPTER 7

CONCLUSIONS

This chapter will include the conclusions obtained throughout the design and devel-
opment of this project. Firstly, the degree of satisfaction of each of the speci�c objectives
de�ned at the beginning will be assessed in order to determine whether the main objective
has been achieved. Subsequently, possible future lines of work will be brie�y discussed.
Finally, the author will conclude with his personal conclusion.

7.1. ACHIEVED OBJECTIVES

This section will detail what solutions have been adopted to achieve each of the objectives
de�ned in the section 2.

1. Automatic dictation evaluation. Thanks to the Comparator module, implemented inside
de Exercise, which is capable of resolving whether a note is correct or incorrect, an
automatic correction of dictations is achieved, as established in this objective. In
addition to this, this action has been enriched with visual feedback in order to inform
the user in a simple way the result of the correction.

2. Progressive learning. In order to achieve this objective, the application has been divided
into levels. The levels have been selected from a book called "Dictados Progresivos" by
Antonio Zamorano (see [24]). This book contains material for practicing dictation and
is widely used and recommended by music schools thanks to its methodology. The
methodology used has been developed by its author after many years of experience
as a teacher in charge of the discipline of Melodic Dictation. Additionally, to ensure
that the user does not access a level without having perfectly understood the previous
ones, a system of experience points (XP) has been used. In order to access a certain
level, a speci�c amount of these points is required, which are earned by making the
levels already unlocked. In this way, the user is forced to play one level several times
before being able to advance to the next one.

68 7.2. FUTURE WORK

3. Student motivation by means of gami�cation techniques. This objective is considered
achieved thanks to all the gami�cation techniques used in the �nal result of the
application. Rewards are the main element that contributes to this motivation. The
more the application is used, the greater the rewards and bene�ts earned by the user.
Thanks to these rewards, familiar songs can be purchased that can increase the interest
of the user, as they convey a strong sense of fun. In addition, to encourage continued
use of the application, the challenges o�er generous rewards, encouraging the user’s
return everyday.

4. Adaptability to enable the use of the system anywhere, anytime. To ensure this adapt-
ability, the application has been targeted entirely to mobile devices as everyone can
carry with them at any time. In addition, the application o�ers several communication
systems that the user can use depending on where they are.

5. Good user experience. An attractive, simple and intuitive graphical user interface has
allowed to make the user experience pleasant. By means of simple menus, visual
feedback and a constant feeling of gameplay, they allow the user to generate positive
sensations during the time of application usage. In addition, since there are many
student pro�les that may be interested, depending on their experience or the instru-
ment they master, in the use of this tool, several communication mechanisms have
been implemented. In this way, one of them allows the student to use his favorite
instrument to perform the exercises, while another simulates a piano that allows to
use the application even not knowing how to play any instrument.

6. Scalability to integrate new dictations and levels. This objective can be considered
completed thanks to the design adopted for the architecture. On the one hand, starting
from the basic concept of Exercise, a multitude of game modes can be derived only
by de�ning their behaviour, as all the necessary communications and dependencies
are already de�ned previously. On the other hand, since the di�erent levels and the
notes that each one contains are de�ned in XML �les that the application loads at
the beginning of the execution, simply adding in these �les the speci�cation of new
content, this would be automatically loaded in the application.

7.2. FUTURE WORK

This section will describe the lines of work to be followed in the future as improvements
or additions to this project.

Publish the application on the market. Taking a stable version of the application
resulting from this project, it would be very interesting to publish it in the most

CHAPTER 7. CONCLUSIONS 69

important application markets, such as Google Play Store and Apple App Store. In
order to do so, it would be necessary to package both Android and iOS platforms
and upload each of them to their respective platforms. For this to be possible, the
corresponding fees charged by each of the platforms must be paid and the validation
process must be awaited. Once completed, the application would be public and
accessible by any interested user.

Add new levels and songs. With the aim of o�ering a better quality in the educational
aspect, it is proposed to increase the quantity of exercises and to categorize them
according to the di�culty, so that they are better adapted to the level of each user.
The catalogue of popular songs would also be extended, adapting to the most popular
songs of each moment.

Database of levels and songs in the cloud. In order to allow greater �exibility when
including new levels and songs, it is proposed to change the location of the �les
that store the speci�cations of the levels and songs, currently stored locally, to a
database hosted in the cloud. For this purpose, Firebase technology can be used,
already employed to store the player’s state, which o�ers the possibility of integrating
a storage service in the cloud synchronized in real time with every device. In this way,
simply adding new content here would automatically appear in the applications of all
users.

Usability testing with real students. In order to verify the real e�ectiveness of the
application developed, it is proposed to carry out tests with potential users. These
tests would consist of a pre-test to know the pro�le of the student and his experience
with the practice of melodic dictation. The user would then test the application for
a few minutes, carrying out a few exercises and experimenting with the di�erent
functionalities o�ered. Finally, a �nal test would be carried out, this time on the
aspects worked on in the application and their opinion about it.

Tutorial for beginners. In order to help those who do not have previous knowledge of
music to become familiar with it, it is proposed to elaborate a step-by-step tutorial
adapted to the students’ unknowledge of the musical concepts involved, and a set
of very basic and guided levels to introduce this complex competition in a very
progressive way.

Multi-language support. In order to make the application available to a wider and more
international audience, several languages are proposed to be supported. To achieve
this, it is possible to use a �le that stores all the text strings of the application and
loads only those that correspond to the language speci�ed by the user.

70 7.3. PERSONAL OPINION

Teacher Monitoring Tool. It is proposed to develop a system that allows teachers to
control the levels and monitor the activity of each of their students who use the
application. In this way, the selection of levels would be more e�cient and the
e�ectiveness of the use of this tool would increase. To achieve this, the use of Firebase
technology and its Realtime Database can be used. In this database are already stored
the statistics of each user, and could also store the speci�cations of the levels. In this
way, by means of a tool, for example a web platform, the teacher can have access
to the information related to the student, viewing and assigning his practices and
dictations.

7.3. PERSONAL OPINION

This is the project that puts an end to my university studies. After 4 years of a lot of
e�ort and work, I conclude a period in which I have learned about my passion and I have
been able to grow and train myself to be a good computer engineer, and this work aims to
re�ect, in a single project, all the skills and competences acquired.

Allegra ’s design and development process has allowed me to experience �rst-hand what
it means to face a development of this magnitude, with all the di�culties that this brings.
First of all, designing a complete system paying attention to requirements such as scalability
and usability, has been a complex task for me, but thanks to what has been studied about it.
I think it has been quite achieved. In addition, the use of an agile methodology has been a
great success and very helpful, as it has allowed adapting and reacting quickly to unexpected
events and changes.

Moreover, Unity, the tool used to accomplish the development, was a technology that
before this project had barely used and always from the graphic side. Thanks to this
development I have been able to deepen in the power that it gives us and to know how to
take advantage of it to obtain solid systems.

Finally, I would like to emphasize that, thanks to this project, I have been able to verify
the scope of Computer Engineering, and how it can complement other areas. From my
point of view, applications such as Allegra , which can increase the interest of children and
adults for, in this case, melodic dictation, are necessary for a society so adapted to new
technologies, to appreciate and take advantage of traditional practices and disciplines. For
this reason, after the dedication and e�ort that this work has meant, I would be very excited
to see this system being used by students, thus contributing to their training as professional
musicians.

APPENDICES

APPENDIX A

EXERCISES SOLUTIONS

This appendix aims to show the solutions of all the exercises and songs included in
Allegra in order to show the progression they follow.

A.1. LESSONS

These are the exercises that are intended to introduce di�erent musical concepts to the
student.

Do Mayor I:

Do Mayor II:

La Menor I:

Sol Mayor I:

74 A.2. POPULAR SONG

Mi Menor I:

Si b Mayor:

Fa # Mayor:

A.2. POPULAR SONG

Fur Elise by Beethoven:

Serenata Nocturna by Mozart:

Spiderman BSO by Danny Elfman:

Avengers BSO by Alan Silvestri:

APPENDIX B

JSON TREE IN FIREBASE REALTIME
DATABASE

This is the JSON tree used in the Firebase Realtime Database with data examples. Each
user that uses the application will be assigned an ID, in this case «player_test».

� �
1 {
2 "player_test" : {
3 "challenges" : {
4 "daily" : 1559738073 ,
5 "weekly" : 1560736986
6 },
7 "state" : {
8 "coins" : 178,
9 "xp" : 1792

10 },
11 "statistics" : {
12 "songs" : {
13 "bought" : 10,
14 "played" : 62
15 },
16 "notes" : {
17 "A3" : {
18 "correct" : 0,
19 "incorrect" : 3
20 },
21 "A4" : {
22 "correct" : 151,
23 "incorrect" : 29
24 },
25 "B3" : {
26 "correct" : 22,
27 "incorrect" : 14
28 },

76

29 "B4" : {
30 "correct" : 43,
31 "incorrect" : 58
32 },
33 "C4" : {
34 "correct" : 104,
35 "incorrect" : 9
36 },
37 "C5" : {
38 "correct" : 22,
39 "incorrect" : 26
40 },
41 "D4" : {
42 "correct" : 19,
43 "incorrect" : 35
44 },
45 "D5" : {
46 "correct" : 13,
47 "incorrect" : 27
48 },
49 "E4" : {
50 "correct" : 35,
51 "incorrect" : 30
52 },
53 "E5" : {
54 "correct" : 3,
55 "incorrect" : 25
56 },
57 "F4" : {
58 "correct" : 46,
59 "incorrect" : 32
60 },
61 "F5" : {
62 "correct" : 1,
63 "incorrect" : 25
64 },
65 "G4" : {
66 "correct" : 54,
67 "incorrect" : 33
68 },
69 [...]
70 }
71 }
72 }
73 }� �

BIBLIOGRAPHY

[1] Pekka Abrahamsson et al. “Mobile-D: an agile approach for mobile application devel-
opment”. In:Companion to the 19th annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications. ACM. 2004, pp. 174–175.

[2] Mónica Balo González, Pilar Lago Castro, and Luis Ponce de León Barranco. “Los
alumnos ante el dictado musical: las TIC como aliadas para mejorar las experiencias”.
In: Didáctica, innovación y multimedia 28 (2014), pp. 01–14.

[3] José H Canós and Mª Carmen Penadés Patricio Letelier. Metodologías ágiles en el
desarrollo de software. 2012.

[4] Yu-Kai Chou. Actionable Gami�cation: Beyond Points, Badges and Leaderboards. Octal-
ysis Media, 2014. isbn: 978-1511744041.

[5] Patricio De La Cuadra, Aaron S Master, and Craig Sapp. “E�cient Pitch Detection
Techniques for Interactive Music.” In: International ComputerMusic Association Journal
(ICMC). 2001.

[6] E. Gamma et al. Patrones de diseño: elementos de software orientado a objetos reutilizable.
Addison-Wesley professional computing series. Pearson Educación, 2002. isbn: 978-
8478290598.

[7] Robert Gauldin. Harmonic practice in tonal music. WW Norton, 1997. isbn: 978-
0393976663.

[8] Fabian Groh. “Gami�cation: State of the art de�nition and utilization”. In: Institute of
Media Informatics Ulm University 39 (2012), p. 31.

[9] Iván Linares. “Clash Royale es una mina de oro, Supercell gana miles de millones”. In:
El Androide Libre (Feb. 2017).

[10] David R Michael and Sandra L Chen. Serious games: Games that educate, train, and
inform. Muska & Lipman, Premier-Trade, 2005. isbn: 978-1592006229.

[11] Tomás Thayer Morel. “Música y tecnología: taller para la integración de las TIC en el
aula de educación musical”. In: Contextos: Estudios de Humanidades y Ciencias Sociales
27 (2016), pp. 109–124.

78 BIBLIOGRAPHY

[12] Laurence Moroney. “The Firebase realtime database”. In: The De�nitive Guide to
Firebase. Springer, 2017. isbn: 978-1484229422.

[13] Galera Núñez, Mª del Mar, and Rosario Gutiérrez Cordero. La tecnología musical como
herramienta didáctica.

[14] Michael Pilhofer and Holly Day. Music theory for dummies. John Wiley & Sons, 2015.
isbn: 978-0764578380.

[15] Alejandro Ramirez. “Introducción a los Patrones de Diseño”. In: Creative Commons.
Agosto (2004).

[16] K. Restivo. “Worldwide Quarterly Mobile Phone Tracker”. In: International Data
Corporation ().

[17] Mar Rodrigo Fernandez. El potencial educativo de la música. 2015.

[18] Paolo Roma and Daniele Ragaglia. “Revenue models, in-app purchase, and the app per-
formance: Evidence from Apple’s App Store and Google Play”. In: Electronic Commerce
Research and Applications 17 (2016), pp. 173–190.

[19] David Talkin. “A robust algorithm for pitch tracking (RAPT)”. In: Speech coding and
synthesis 495 (1995), p. 518.

[20] Ailie KY Tang. “Mobile app monetization: App business models in the digital era”. In:
International Journal of Innovation, Management and Technology 7.5 (2016), p. 224.

[21] Unity Technologies. Unity User Manual (2019.1). url: h�ps://docs.unity3d.com/

Manual/index.html.

[22] Daniel Terdiman. “No, Flappy Bird developer didn’t give up on $50,000 a day”. In:
CNET (Feb. 2014).

[23] D. Vallejo Fernández and S. Sánchez Sobrino. Curso de Experto en Desarrollo de Video-
juegos: Módulo 1. Universidad de Castilla-La Mancha, 2019. isbn: 978-1517309558.

[24] A Zamorano. Dictados progresivos. 1997. isbn: 978-8488038951.

[25] B.C. Zapata. Android studio application development. Packt Publishing Ltd, 2013. isbn:
978-1783285273.

https://docs.unity3d.com/Manual/index.html
https://docs.unity3d.com/Manual/index.html

	Abstract
	Resumen
	Agradecimientos
	Índice general
	List of Figures
	List of Tables
	Listings
	1 Introduction
	2 Objectives
	2.1 General objective
	2.2 Specific Objectives

	3 State of the art
	3.1 Musical education
	3.1.1 Basic concepts
	3.1.2 Melodic dictation as a competence
	3.1.3 Piano as learning tool
	3.1.4 Learning methodologies

	3.2 Technological tools in music learning
	3.2.1 Overview
	3.2.2 Digital systems to practice melodic dictation
	3.2.3 Mobile devices apps

	3.3 Gamification
	3.3.1 Introduction
	3.3.2 Application domains
	3.3.3 Gamification techniques used in musical apps

	3.4 Development process for mobile devices
	3.4.1 General background
	3.4.2 Monetization models
	3.4.3 Development tools

	4 Methodology
	4.1 Work methodology
	4.2 Resources
	4.2.1 Hardware resources
	4.2.2 Software resources

	5 Architecture
	5.1 Overview
	5.2 Gamification and GUI layer
	5.2.1 Exercise module
	5.2.2 Levels
	5.2.3 Statistics
	5.2.4 Challenges
	5.2.5 Song level and exercise note

	5.3 Communication layer
	5.3.1 Receptors
	5.3.2 Communication module

	5.4 Persistence layer
	5.4.1 Game instance
	5.4.2 XML reader
	5.4.3 Firebase realtime database

	5.5 Design patterns
	5.5.1 Singleton pattern
	5.5.2 Command pattern
	5.5.3 Observer pattern

	6 Results
	6.1 Allegra - Melodic dictation app
	6.1.1 Lessons practice
	6.1.2 Popular songs
	6.1.3 Statistics and custom dictations
	6.1.4 Challenges
	6.1.5 Exercise

	6.2 Landing page
	6.3 Work distribution
	6.4 Project statistics
	6.5 Development cost

	7 Conclusions
	7.1 Achieved objectives
	7.2 Future work
	7.3 Personal opinion

	A Exercises Solutions
	A.1 Lessons
	A.2 Popular song

	B JSON tree in Firebase realtime database
	Bibliography

