
UNIVERSIDAD DE CASTILLA-LA MANCHA

ESCUELA SUPERIOR DE INFORMÁTICA

BACHELOR IN COMPUTING ENGINEERING

Gamification-based Tool to Practice Basic
Exercises with Wind Instruments

Antonio Pulido Hernández

July, 2020

GAMIFICATION-BASED TOOL TO PRACTICE BASIC EXERCISES WITH
WIND INSTRUMENTS

UNIVERSIDAD DE CASTILLA-LA MANCHA
ESCUELA SUPERIOR DE INFORMÁTICA

Department of Tecnologías y Sistemas de Información

BACHELOR IN COMPUTING ENGINEERING
SOFTWARE ENGINEERING

Gamification-based Tool to Practice Basic
Exercises with Wind Instruments

Author: Antonio Pulido Hernández

Advisor: David Vallejo Fernández

Co-advisor: Diego Molero Marín

July, 2020

Antonio Pulido Hernández

Ciudad Real – Spain

E-mail: Antonio.Pulido@alu.uclm.es
Telephone:639 871 986

c© 2020 Antonio Pulido Hernández

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is included in the section entitled "GNU Free Documentation License".
Some of the names used by companies to differentiate their products and services are registered
brands. The names that appear in this documents and when the author was informed about the
registered brands, will be in caps or with a proper name.

i

TRIBUNAL:

Presidente:

Vocal:

Secretario:

FECHA DE DEFENSA:

CALIFICACIÓN:

PRESIDENTE VOCAL SECRETARIO

Fdo.: Fdo.: Fdo.:

iii

Abstract

Music can be understood as the art of combining sounds to produce beauty following
the rules of rhythm, melody, and harmony. Learning how to play a musical instrument is
considered as an important part of education nowadays. The reason is that musical learning
helps to develop the creative thinking of students.

Musicians need to practice countless hours aiming to learn how to correctly play an instru-
ment. There are music schools where students learn and practice with different instruments.
However, they also need to practice exercises at home. These exercises, which are performed
as a warm-up prior to a practice session, are aimed at developing technical skills with the
instrument. In this context, one of the challenges to be addressed is that these exercises tend
to be repetitive and boring, which can result in a lack of motivation.

The project discussed in this document was conceived as a way of solving this issue when
apprentices study at home. The main problem is that most of the time apprentices perform
these exercises in an incorrect way and they do not have feedback until the next class. This
situation may ultimately lead into a lack of motivation. Thus, the key idea behind this project
is to design, develop, and validate a software application to address this issue.

The proposed application will be primarily oriented to tablets. The reason behind this
approach is that the screen size of a tablet allows a correct visualization of music sheets.
Another important aspect of the application is the integration of gamification techniques to
give feedback and motivate students. In this context, the application will give support to
wind instruments. The reason is that in order to measure and record the sounds produced by
an instrument it is necessary that only one note is played at a time. The problem is that there
are instruments, for example, the piano that can play two notes at the same time pressing two
keys. As a result, the application will focus its attention to wind instruments that can only
play one note at the same time.

v

Resumen

La música puede ser definida como el arte de combinar sonidos para producir belleza
siguiendo las reglas del ritmo, melodía y armonía. El aprendizaje musical es considerado
una parte esencial de la educación en este momento. Esto se debe a que el aprendizaje
musical ayuda a desarrollar la creatividad de los estudiantes.

Los músicos necesitan practicar incontables horas tratando de aprender como tocar cor-
rectamente su instrumento. Hay escuelas musicales donde los estudiantes practican difer-
entes instrumentos. Sin embargo, es necesario que practiquen ejercicios en casa también.
Estos ejercicios, que son practicados como un calentamiento previo a la realización de una
practica más extensa, son necesarios para el desarrollo de habilidades técnicas con el instru-
mento. En este contexto, uno de los retos abordados es que estos ejercicios tienden a ser
repetitivos y aburridos, lo que puede resultar en una falta de motivación.

El proyecto detallado en este documento ha sido concebido como una manera de resolver
el problema de los estudiantes cuando estudian por su cuenta. El principal problema es
que la mayoría de los estudiantes realizan ejercicios de una manera incorrecta y no tienen
una realimentación hasta la siguiente clase. Esta situación puede llegar a producir una falta
de motivación. Por eso, la idea principal detrás de este proyecto es el diseño, desarrollo y
validación de una aplicación software que aborde este problema.

La aplicación propuesta estará orientada principalmente a tablets. La razón detrás de este
enfoque es el tamaño de las pantallas de las tablets que es apropiado para la visualización de
partituras. Otro aspecto importante de la aplicación es la integración de técnicas de gamific-
ación para dar retroalimentación y motivar a los estudiantes. In este contexto, la aplicación
dará soporte a instrumentos musicales. La razón es que para medir sonidos producidos por
instrumentos musicales es necesario que solo una nota se escuche a la vez. El problema es
que hay instrumentos, por ejemplo, el piano, con el que se pueden tocar más de una nota a
la vez. Por esta razón la aplicación estará orientada a los instrumentos de viento que solo
pueden tocar una nota a la vez.

vii

Thank-you note

Este proyecto surge de la fusión de mis dos grandes pasiones la música y la informática.
Debo dar las gracias a muchas personas que han formado parte de mi vida y que me han
ayudado a crecer como persona, en especial a mis padres por la educación que he recibido de
ellos y por las oportunidades que me han brindado, sin su ayuda y sin su apoyo en momentos
difíciles no hubiera llegado hasta aquí.

Me gustaría agradecer a mi profesor de música José Julián, ha sido quien me ha estado
enseñando a tocar la trompeta desde hace más de 10 años y gracias a él descubrí mi amor
por la música.

También a mis profesores en la carrera, en el instituto y en el colegio, ellos me enseñaron
todo lo que sé y algún día me gustaría ser como ellos.

Gracias a todos los amigos que tengo y que siempre han estado allí para apoyarme, a los
que conozco de toda la vida del pueblo, a los amigos que hice en el instituto, a los que he
hecho en la carrera y en especial a Eduardo, Ismael y Ana por todas esas tardes juntos.

Gracias a mi hermano pequeño, por ser siempre alguien en el que confiar y apoyarme,
espero que dentro de 3 años estés presentando tu TFG.

Gracias a toda mi familia en general, abuelos, tíos, y primos. En especial a mi abuelo
Pedro, siempre me enseñaste la importancia de estudiar y querías que todos tus nietos tuvi-
eramos la oportunidad de tener una carrera, hubiera sido una gran felicidad que estuvieras
aquí para verme en este momento.

Por supuesto también gracias a mis compañeros de Alarcos, en especial a David por de-
jarme formar parte de un proyecto tan apasionante.

Y para concluir me gustaría dar las gracias a mis dos tutores en este proyecto, gracias
Diego por ser un amigo y compañero que siempre ha estado para ayudarme. También a mi
director y amigo David por todos sus consejos, sus horas invertidas en ayudarme cuando lo
he necesitado y su confianza en mí cuando surgió la idea de este proyecto.

Antonio

ix

A mis padres

xi

Contents

Abstract v

Resumen vii

Thank-you note ix

Contents xiii

List of Tables xvii

List of Figures xix

List of code listings xxi

List of acronyms xxiii

1 Introduction 1

2 Objectives 5

2.1 General objective . 5

2.2 Specific objectives . 5

3 State of art 7

3.1 Musical training . 7

3.1.1 Basic concepts . 7

3.1.2 General learning . 10

3.1.3 Trumpet practice . 12

3.1.4 Basic exercises to practice with wind instruments 14

3.2 Gamification in education . 15

3.2.1 Basic concepts . 15

3.2.2 Applications of Gamification . 16

3.3 Technology and music . 19

xiii

0. Contents

3.3.1 Relationship between music and video games 19

3.3.2 Mobile applications for wind instruments 20

4 Methodology 23

4.1 Software development methodology . 23

4.1.1 Why Extreme programming . 23

4.1.2 The application of Extreme Programming 24

4.2 Hardware and Software Resources . 25

4.2.1 Hardware resources . 25

4.2.2 Software resources . 25

5 Architecture 27

5.1 Architecture overview . 27

5.2 Graphical user interface layer . 29

5.2.1 Menu Module . 30

5.2.2 Exercise Module . 31

5.3 Control and tracking layer . 33

5.3.1 Tracking Module . 33

5.3.2 Manager Module . 35

5.4 Persistence Layer . 37

5.4.1 JSONParser . 38

5.4.2 Web Server Module . 39

5.5 Design patterns . 41

6 Results 45

6.1 Work distribution . 45

6.1.1 Iterations . 45

6.1.2 User stories . 47

6.2 Windy Melody: Final Result . 50

6.3 Project cost and resources . 58

6.4 Project statistics . 58

7 Conclusions 61

7.1 Reached objectives . 61

7.2 Problems faced . 62

7.3 Addressed competences . 62

7.4 Future work . 63

xiv

A Appendix A 67

A.1 Image References . 67

B Appendix B 71

B.1 Routine represented in a JSON file . 71

References 75

xv

List of Tables

6.1 User story US-LOGIN. 47

6.2 User story US-REGISTER. 48

6.3 User story US-PROFILE. 48

6.4 User story US-STATISTICS. 48

6.5 User story US-LOGOUT. 48

6.6 User story US-SCALE. 48

6.7 User story US-TUNER. 49

6.8 User story US-CREATIVE. 49

6.9 User story US-PRACTICE. 49

6.10 User story US-LONG. 49

6.11 User story US-EXERCISE. 49

6.12 Estimated budget for the developed project. 58

xvii

List of Figures

3.1 Notes from Do4 to Do5 . 8

3.2 Notes duration. 9

3.3 Rest notes . 9

3.4 Types of clefs . 10

3.5 Music sheet . 10

3.6 Trumpet parts . 12

3.7 Trumpet tessiture . 13

3.8 Do Mayor Scale . 14

3.9 Long notes exercise . 15

3.10 Rapid notes exercises. 15

3.11 Starbucks reward app . 17

3.12 mango health app . 18

3.13 Duolingo web app . 18

3.14 Tonestro app . 21

3.15 How to play Trumpet app . 21

3.16 Canciones de trompeta . 21

5.1 General architecture of the system. 28

5.2 GUI Layer Architecture . 30

5.3 State diagram . 33

5.4 Control and Tacking layer . 34

5.5 Midi to note . 36

5.6 Example in the Manager Module . 37

5.7 Database diagram . 38

5.8 Database diagram . 40

5.9 Factory method . 42

5.10 MVC design pattern . 43

5.11 Builder design pattern . 44

xix

0. List of Figures

6.1 Working environment. 50

6.2 Login Menu. 51

6.3 Register Menu. 52

6.4 Profile Menu. 52

6.5 Statistics Menu. 53

6.6 Create scale menu. 54

6.7 Exercise Menu. 55

6.8 Creative Menu. 56

6.9 Tuning Menu. 56

6.10 Long Notes Menu. 57

6.11 Practice Mode. 57

6.12 Additions and Deletions per week. 59

A.1 Login reference. 67

A.2 Register reference. 68

A.3 Profile reference . 68

A.4 Statistics reference. 69

A.5 Routines reference. 69

A.6 Scale reference. 70

A.7 Icons designed https://www.flaticon.es/autores/freepik. 70

xx

https://www.flaticon.es/autores/freepik

List of code listings

5.1 Script associated to Login Menu . 31

5.2 Script associated to Login Menu . 37

5.3 Example of Exercise in JSON File . 39

5.4 Example of Exercise in JSON File . 41

B.1 Example of Routine in JSON File . 71

B.2 Example of Routine in JSON File . 72

B.3 Example of Routine in JSON File . 73

xxi

List of acronyms

MVC Model View Controller

JSON JavaScript Object Notation

GUI Grahpical User Interface

HTTP Hypertext Transfer Protocol Secure

PHP Hypertext Preprocessor

MIDI Musical Instrument Digital Interface

SQL Structured Query Language

NOSQL not only SQL

xxiii

Chapter 1

Introduction

Music has been one of the most important form of arts in the History of Humanity. Ac-
cording to several studies, music its an essential part in the culture and psychology of people
[Kra03], “music reflects culture“, it was present in prehistory when people used their voice
or simple percussion instruments and it is present nowadays in a lot of different forms.

There is no an agreement in the scientific community of when music instruments were
created by humans, it is roughly said that it started between 60,000 and 40.000 years ago. The
possible oldest known wind music instrument is the Divje Babe Flute, it was created 43.000
years ago, there are experts that argued that maybe is not a musical instrument and it is part
of the Aurignacian culture, however the Divje Babe Flute is still known as a Neanderthal
flute. It is not until 1400 BC that the first form of musical notation appears, an ancient tablet
created in Babylonia and it has simple instructions to perform a melody with a lyre [Wes94].
Musical notation was born as a system to visually represent, modern musical notation is
used since the 13th century, it includes concepts as tempo, pitch and duration.

As vocal music was the first type of music created by humans and percussion is considered
the second one, we could say that wind instruments were the third. Humans at that time used
shells, bones or plants to create wind instruments. The first ones were able to produce only
one pitch and it was common to get different instruments in order to create a melody playing
them. It was not until the discovery of finger holes that basic melodies and harmonies could
be played with just one wind instrument, since them wind instruments were evolving slowly
until the 19Th century. It was in 1820 were the first modern trumpets were created and 1840
when the saxophone was invented by Adolphe Sax [How03]. It was also a gold time for
compositors and instrument makers, new techniques and mechanics where applied to create
due to the advances in the technology. These days most of the wind instruments are based
on the ones created in that century.

Learning to play an instrument is a tedious task that requires years of practice. It implies to
practice with the instrument and be able to read different music sheets. Nowadays, musicians
start learning musical language before practicing with any instrument and when they could
read simple music sheets they start practicing with an instrument.

1

1. Introduction

Musical language is as important as learning how to play an instrument for musicians.
Read properly a music sheet is not a trivial issue; musicians have studied for years in order to
acquire the knowledge necessary to understand a music sheet. In addition, musical language
includes another concepts such as ear training with melodic dictations and rhythm with
rhythmic dictations.

The traditional model of learning how to play an instrument is simple. Students go once or
twice a week to classes where they are taught how to play some notes and melodies. Then,
at home, they have to practice with their instrument music sheets that will be played the next
week in class. Music has a curious aspect: even if you do not know anything about music
theory you could guess when something is played wrong in a melody. However, this is not
enough for musicians that are aiming to master their skills. Only practicing at home and
finding out what they are doing wrong until the next class could not be efficient.

Music cannot be understood without technology, and that is why listening to music has
changed over the last centuries. In the past, people had to go to a concert or a festival in order
to be able to listen to music. It was not until 1860 that the first song was recorded; its name
was Au clair de la lune, a French Folk. Nowadays, music is unimaginable without recording
devices. The revolution that technology has brought to music was not only the possibility of
recording songs, it is also changing the way we learn music. In the past, there were no many
ways of learning to play an instrument. The only option was going to an academy or being
taught by someone that already knew how to play that instrument. However, that situation
has changed thanks to the Internet and new technologies. The Internet is the primary source
of information and even if it is extremely difficult to learn music only using the Internet. It
is possible to complement the role of a teacher in learning music. For example, there are
tutorial videos where musicians can learn some concepts about their instruments.

One of the major issues of music learning is the lack of motivation when musicians prac-
tice with their instruments at home, since they must spends hours performing repetitive ex-
ercises that are essential for them. There are studies that affirms that mastering a wind in-
strument requires more than 10.000 hours [SDHM96]. One aspect to take into consideration
is that musicians that were in a music course spent less than half of time that the ones that
study without any help. We could say that even if it is necessary to practice a lot of time is
more important to use efficiently that time.

New technologies are present in our lives, due to the increasing accessibility to information
through e-learning has changed; there are a lot of online platforms that are used as a help for
students. Depending on the type of information a different approach could be taken, there are
applications that support students in some tasks. There are platforms that are used as a way
of exchange information between students and teachers while there are others that stimulate
the self-learning on the students.

2

One of the more influential technology is mobile devices. They are way more versatile
than desktop computers and they are more present in our lives. According to the Global

Consumer Survey 2017 made by Deloitte1 94% of people used Smartphones the last 24
hours. And the market of mobile applications is increasing every day. The use of mobile
application as a source of information is common nowadays, knowledge of any field can be
acquire with a mobile device.

Self-learning applications are getting more and more popular nowadays. However, a prob-
lem of this kind of applications is that it is not easy to make students motivated to learn and
take advantage of this approach. One of the solutions that is arising is the use of gamific-
ation techniques in order to motivate students [CLSBÁRCG18]. A lot of researchers have
been studying that try to explain what makes video games fun and how use it in education
[Mal80], using the game mechanics in educational application could improve the results.

On the other hand, it is not an easy task to make an educational application fun by applying
some games mechanics. Gamification techniques should come with a great idea and a design
that adapts to them. There are plenty of examples of success of applications that apply
gamification techniques. They can even be applied in other fields that are not education. It
is possible to observe examples of this kind of applications in different domains like health,
business and workplace.

Taking into account the concepts explained above, the idea of making an application that
helps musicians to study at home keeping the motivation appeared, using the mobile techno-
logies that provide ease to use and a connection to Internet its possible to create an application
that helps students to deal with the lack of motivation. Windy Melody is an application that
was born with the idea of allowing musicians to practice common exercises for wind instru-
ments that are useful for beginners and experts, while they have fun by means of gamification
techniques. Every musician even if it is an expert or a beginner practice some exercises to
improve their skill, these exercises have all the same basic principles, the only different is
the difficulty of them.

Windy Melody, the project discussed in this document, applies gamification techniques
that give feedback to users and defines clear learning goals. The users will have the freedom
of even creating their own exercises, which is a way of motivating them. What is more,
creating their own exercises allows them to set a proper difficulty for them. Windy Melody

applies the traditional learning techniques in the field of music, and it gives feedback about
the exercise they are playing. Furthermore, the users will have different profiles assigned
to each instrument they play and they would be able to consult the statistics of each profile.
In addition, Windy Melody is an Android application designed especially for tablets. It will
not be easy for musicians to read a music sheet in their mobile phones but the size of a

1https://www2.deloitte.com/content/dam/Deloitte/es/Documents/
tecnologia-media-telecomunicaciones/Deloitte-ES-TMT-Consumo-Movil-2017.pdf

3

https://www2.deloitte.com/content/dam/Deloitte/es/Documents/tecnologia-media-telecomunicaciones/Deloitte-ES-TMT-Consumo-Movil-2017.pdf
https://www2.deloitte.com/content/dam/Deloitte/es/Documents/tecnologia-media-telecomunicaciones/Deloitte-ES-TMT-Consumo-Movil-2017.pdf

1. Introduction

common tablet fits well, since it takes the advantages of the mobile applications explained
above. Even if this application is though to use it at home with your instrument, a mobile
application is more comfortable for users than a desktop application.

4

Chapter 2

Objectives

In this chapter, the general objective and the specific objectives proposed for this project
are introduced and described.

2.1 General objective
The main objective of this project is to design and develop a software tool that facilitates

and motivates, through gamification techniques, to practice wind instruments. It is
intended to create a mobile application easy to use and that is appropriate for beginners with
their instruments and for experts that want to use this application to improve their skills or to
warm up. The application needs to record the sounds that an instrument produce and evaluate
if its the right note every time the musician plays them.

2.2 Specific objectives
In order to carry out the development of the project, the general objective is structured into

the following specific objectives:

• Scalability. In order to create a system able to adapt to changes it is necessary to
create a scalable system. This type of system would allow the addition of new features
and the inclusion of new types of exercises, routines, and instruments. Furthermore,
the client could change the requirements in any moment and the system has to adapt
easily to these changes.

• User’s motivation. Gamification techniques will be applied in the design and devel-
opment of the project in order to encourage musicians to practice exercises that are
essential for them. The system will have a profile menu and a statistics menu where
the users will be able to check their progress. For every exercise the system will use
gamification techniques to show what notes they are playing.

• Ease of use. Having a pleasant user experience is as important as the provided func-
tionality. The user will follow the quality guidelines for the development in Android-
based devices1 in order to achieve this objective.

1https://material.io/design/usability/accessibility.html#writing

5

https://material.io/design/usability/accessibility.html#writing

2. Objectives

• Intuitiveness. The application will integrate application views that the user will under-
stand. Even if the application is useful for expert musicians that know a lot of technical
concerns about music, beginners with their instrument have to be comfortable to create
exercises without knowing music theory, only the basics for reading a simple music
sheet.

• Validation regarding a specific wind instrument. An application of these character-
istics is intended to work with a high variety of instruments, in this case wind instru-
ments. In order to validate the system, the trumpet in SiB is the chosen instrument.
There are other wind instruments, like the clarinet and the flugelhorn, which are in SiB
too. This means that validating the system with the trumpet will allow us to ensure
that it will work with most wind instruments.

6

Chapter 3

State of art

3.1 Musical training
Sounds are present in the world everywhere, sound can be perceived from birds, other

people, when two objects collide, with instruments. So what kind of sounds are considered
as music? Music can be understood as the art of combining sounds following the rules of
rhythm, melody and harmony. One of the most common and traditional ways of creating
music is using instruments, learning how to play an instrument it is not a trivial issue and
requires a lot of years of study and practice. Musicians take extremely serious their practice
with their instruments because any of them even if they are amateurs or professionals have
to follow specific routines if they want to improve or even to keep their skills.

3.1.1 Basic concepts
Sounds are a essential part of music, a sound is created by the vibration of an object and

this causes the medium around it to vibrate too. Vibrations which travel by air are are called
longitudinal waves, these waves are what humans can hear [dlF13].

longitudinal waves have two magnitudes which determine how the wave is and how the
sound will be perceived by humans, these two magnitudes are wave length and frequency.
These are the physicals aspects of sound. However, in music we are more interested in the
concepts of pitch and intensity [Ler04]:

• Pitch: it is a concept that is closely related with the concept of frequency and almost
equivalent. While frequency is a physical concept and absolute (440 Hz, 446 Hz),
pitch is referred to the ear’s perception of that frequencies, depending on the pitch we
have different note names.

• Intensity: it depends on the position of the listener with respect to the source of sound,
it will decrease as the listener moves away from the source and will increase if the
listener gets closer. This property is what makes a sound louder or softer.

These concepts are necessary to explain what is a musical note. A note or tone is the pitch
of a particular sound and the time it lasts, this means that if we want to refer to a particular
frequency the term pitch can be used. However, if this sound has a particular duration the

7

3. State of art

Figure 3.1: Notes from Do4 to Do5

term note is preferred. In music there are 7 names of notes which are: DO, RE, MI, FA, SOL,

LA, SI. Even so, it is common knowledge that there are more than 7 possible notes,this is
handled by octaves and semitones. An octave has 12 different notes that are separated by a
semitone but in a octave are used the 7 names previously commented, to represent the other
5 notes sharps and flats are used.

This notation is not unique, there are different notations used to name the notes. The most
popular ones are the Latin notation which is the explained above and the English notation
that has 7 names of notes as well but the names are different,this are the equivalences LA(A),
SI(B), DO(C), RE(D), MI(E), FA(F), SOL (G)(see Figure 3.1).

Notes have a pitch assigned, which means that there is a way to calculate the frequency
that a particular note has. The frequencies assigned to the different pitches has changed
through history. The standard way nowadays is to have the pitch LA 4 with a frequency of
440Hz. The rest of frequencies are calculated using the next formula where n is the number
of semitones that are between LA 4 and the note that is calculated [TC06]:

Frequency = 440∗2n/12 (3.1)

As notes have different names depending on the pitch they have, the duration of a note it
has a particular name. The most common types are: Semibreve, Minim, Crotchet, Quaver or

Semiquaver.

Music is commonly represented graphically in a music sheet where it is possible to observe
the following elements:

• Staff: it is made by 5 horizontal lines, notes can be placed between the lines or in
the lines and depending where they are placed the pitch of the note changes. It is
possible to place notes below and above the staff, in that case it is mandatory to add
complementary lines in order to differentiate the notes.

• Notes: depending on the duration of the note they have completely different shapes,
as we can observe in Figure 3.2.

• Beats: the speed in a music sheet is defined by the beats per minute. There are music

8

Musical training

Figure 3.2: Notes duration.

Figure 3.3: Rest notes

sheets that specifies a concrete number for the bpm. However, the most common way
is to specify a range of bpm, in music this ranges have names, for example Adagio(66
– 76 bpm), Andante (76 – 108 bpm) or Allegro(110 – 168 bpm).

• Rest notes: it is a special type of note, a rest note specifies the absence of any sound,
there are different symbols for rest notes depending on the duration of the absence of
sound (see Figure 3.3).

• Clef: it is used to assign a particular pitch to a line of the staff. There are 4 commonly
used clefs which are treble clef, bass clef, tenor clef (see Figure 3.2). The most com-
mon one is the treble clef which assign sol4 to the third line of the staff. This means
that when a note is placed in the third line its corresponding frequency is 391.995 Hz.

• Time signature: it is a notation to specify how many beats are contained in each bar
and what duration has each beat. A 2/4 music sheet has 2 beats and a duration of a
crotchet (4) for each beat.

9

3. State of art

Figure 3.4: Types of clefs

Figure 3.5: Music sheet

3.1.2 General learning
Music is part of our lives. It is studied in elementary schools and in secondary schools.

There are also music academies where people learn how to play instruments like the trumpet,
the piano or the clarinet. There are also superior music studies in which people study a
bachelor of music to become a professional musician.

Music learning covers a wide range of knowledge, it goes from music history to technical
skills for learning how to play an instrument. In our case we will focus the attention on how
musicians learn to play an instrument.

As music is taught at schools, kids start to learn some concepts like rhythm or to differen-
tiate two sounds with different frequencies. In addition, students at secondary schools learn
how to play the flute, they learn to play each note and to read a music sheet.

Although music learning is part of the education nowadays, the knowledge learned in
basic education is limited and should be complemented if the aim of the student is to be
a professional. Musicians that want to learn how to play an instrument usually go to an
academy in which they are taught how to play one or more instruments.

10

Musical training

Music learning is not just about learning to play an instrument, every musician in academies
learn musical language. Musical language covers the part of learning how to read music
sheets, creating compositions and be capable of distinguish between different notes. Mu-
sical language allows musicians to be able to play more complex music sheets and not just
simple ones.

There are a lot of different instruments and each one has specific characteristics, but they
can be divided in three distinct mayor types that are called families which are as follows
[Car02]:

• Wind instruments: the sound is produced by the vibration of the air. Depending on
the type of the mouthpiece and the length of the tube the sound is different. Some
examples are the trumpet, clarinet, and saxophone.

• String instruments or chordophones: the sound is produced by the vibration of the
strings, some of them are played by plucking them with the fingers like the guitar,
others are hit with a hammer and the rest are rubbed with a bow like the violin.

• Percussion instruments: this instruments are a bit special and can be identified be-
cause they are played by striking them. Percussion instruments usually play rhythm.
However, they also can play melody or harmony, for example the xylophone play
melody in some music sheets.

Even inside a family of instruments there are differences between them. The bigger family
would be wind instruments. These instruments of this family are formed by one or several
tubes and the sound it is produced depends on the length of the tubes, this kind of instruments
do not allow to play different pitches at the same time like the guitar or the piano, this
property is called monophony [APL10]. Wind instruments are also divided in two types,
brass instruments and woodwind instruments.

• Woodwind instruments: these instruments used to be made of wood, nowadays they
are not strictly made of wood. They are played by blowing air through their mouth-
piece and can changes the frequency by opening or closing the holes they have. These
family includes instruments such as the flute, the clarinet, and the oboe.

• Brass instruments: they got their name because they were made of brass and they
are still made by it. The sound is usually made by the vibration of the musician’s lips
and they tend to end in a bell-like form. These family includes instruments such as the
trumpet, the cornet and, the bugle.

A concept that is important in order to understand the differences between instruments
even in the same family is tuning, tuning can be referred to the act of adjust an instrument so
the frequency of a note corresponds to the theoretical frequency. For example, the trumpet
has tubes that can be adjusted to make the total length of all the trumpet shorter or larger,

11

3. State of art

Figure 3.6: Trumpet parts

changing the length of the trumpet changes the frequency. The act of tuning is made by
trying to play the standard pitch LA 4 (440Hz) and adjusting the tubes until the frequency
played is 440 Hz or similar.

3.1.3 Trumpet practice
To understand how an instrument is played and how musicians practice with them it is

useful to focus the attention in only one instrument and then extrapolate it to the others. The
case of study will be the trumpet.

The trumpet is a wind instrument, in particular a brass one that has 3 piston valves that
are used to open or close some tubes of the trumpet in order to modify the sound (see figure
3.61).

The trumpet has a large history, it is considered that the first trumpets were made 3.500
years ago. However, they were very different from the modern trumpets, they didn’t have
valve pistons and had only one tube. We could say that modern trumpets started around the
year 1820, they had valve pistons and were very similar with the ones nowadays.

There are different types of trumpets, for example bass trumpet which is the largest type
of trumpet or the piccolo trumpet that is the smallest one. However, the most common ones
are the SIB trumpet. They are called SIB trumpets because their tuning is SIB, this tuning is
1 tone below the standard tuning which is DO.

SIB Trumpets are common in bands and some orchestras, while others use DO trumpets.
However, they are usually the first ones that a musician learns to play.

1https://allmusicalinstruments.net/trumpet-for-beginners/trumpet-parts/

12

https://allmusicalinstruments.net/trumpet-for-beginners/trumpet-parts/

Musical training

Figure 3.7: Trumpet tessiture

Any wind instrument has a range of notes that are comfortable to play, this means that
even if it is possible to play notes below and above this range the sound will tend to be more
difficult to control and compositors prefer to use other instruments to play this notes. This
range is called tessitura and for the trumpet the standard one is between FA 3 and DO 7 as
we can observe in Figure3.7.

Exercises that are used to practice with the trumpet usually have notes inside its tessit-
ure, so in order to improve with the trumpet and any other instrument musicians practice to
increase the range of notes they can play inside the tessiture of their instrument.

As any other brass instrument, the trumpet put a considerable workload in the lips of a
musician, this particularity makes necessary to train the resistance and the strength of the
lips, for trumpet players is common to use exercises with long notes for that purpose. It is
also common to play scale exercises to improve the quality of the sound, trying to play the
exact frequency for that note and the right strength and duration in order to make a clean
sound and there are other exercises that improve the skills with the piston valves that make
possible to play more different notes in a shorter period of time.

Despite having only 3 piston valves which means that there are only 9 possible combina-
tions the trumpet is able to produce every note inside its tessiture, therefore it is possible to
produce more than 40 notes. Depending on the position of the lips, the sound of a trumpet
will vary, when the lips are closer the pitch will increase. For example, DO 4 and SOL 4 are
2 different notes that in the trumpet are played with no valves pressed. One of the main draw-
backs of this characteristic is that students that are beginners with the trumpet find difficult
to learn all the positions of the notes.

Brass instruments have a lot of tubes that are used to modify the total length of the in-
strument, this is a relevant difference with woodwinds instruments. For instance, despite the
trumpet is relatively small it has a total length of 2 meters taking into account every tube.

For beginners, there are a lot of manuals that explain how to play the trumpet. One of the
most popular ones is the Louis Maggio system for brass [MM85], this book has been taking

13

3. State of art

Figure 3.8: Do Mayor Scale

as a reference in academies for decades and it is still used.

3.1.4 Basic exercises to practice with wind instruments
Learning to play an instrument is not just practicing famous music sheets or the ones that

are going to be played in a concert. Musicians expend a huge amount of time on practi-
cing exercises to improve skills like velocity or the quality of the sound they are able to
produce.

There are specific exercises for brass instruments and for woodwind instrument. however,
brass instruments can be divided in 3 different types: exercises to improve the quality of
the sound produced (intensity, proximity to the perfect frequency), exercises to improve the
lung’s capacity and exercises to improve velocity (rapid notes).

• Scale exercises: a scale is a sequence of ordered notes, they are ordered by ascendant
pitch and there are different types of scales depending on the distance between the
notes, the most known types are mayor and minor scales. For example, mayor scales
have this separation between notes: tone, tone, semitone, tone, tone, tone, semitone
for example in Figure 3.8

• Long notes exercises: this is a type of exercise that is designed to improve the resist-
ance of the lungs.It is recommended to practice between 5-15 minutes with this type
of exercises but more would be unfavorable for the musician. The notes are usually at
least semibreve for example in Figure 3.9.

• Rapid exercises: this type of exercise is designed to improve the skills with the fingers
or the hands in order to be able to play more shorter notes like semiquavers or even
shorter notes. Depending on the instrument the importance of these exercises varies.
In the case of the trumpet, practicing with this exercises makes easier to change the
position of the piston valves improving the sound of each short note, for example in
Figure 3.10.

Depending on the instrument the importance of each type is a bit different, there are some
instruments that require more velocity like the trumpet or the clarinet, while others require
a higher resistance, for example the tuba. Even if the exercise type is the same, they could
look totally different because of each tessitura, for some instruments is common to have

14

Gamification in education

Figure 3.9: Long notes exercise

Figure 3.10: Rapid notes exercises.

notes with high frequencies, however, others have notes with low frequencies.

3.2 Gamification in education
The concept of gamification can be defined as the use of game design elements in non-

game contexts [Gro12]. Gamification is not a modern concern; it has been used along the
human history in order to teach children how to do some daily task or even for adults. The
purpose of using gamification in repetitive tasks is to make people more motivated while
they are doing those tasks.

3.2.1 Basic concepts
Although the idea of making non-game activities look like games is not a recent concern,

the term gamification is a recent one. The term was adopted in the scientific community, in
a general way in 2010. Since then, gamification has become a new field of research, there
are important articles about the benefits of gamification [KC16] and depending on the author
its possible to observe different components that gamification should have. However, it is
accepted that these are the essential components that have to be taken into account to apply
gamification:

• Accomplishment: setting objectives for the players to give a reason to play the game.
This will make people feel accomplishment when they achieve that goal.

• Rules: rules are an important part of any game, they specify what the player can not
do and what actions the user is able to do in order to complete a goal.

• Feedback: the players should have feedback about their progress of reaching a goal.
This could be made by sending messages and informing the players of their actual
progress.

• Rewards: give rewards when the user puts effort and achieves a goal, the main purpose
of giving rewards is to increase the motivation of the users.

15

3. State of art

• Motivation: there are two types of motivation, one is the extrinsic motivation which
is refer to the motivation given by external sources. For example, rewards and intrinsic
motivation that is related with the people desires of getting new things and achieving
difficult goals.

Gamification has a psychological aspect; it tries to motive users and in order to achieve
that its necessary to understand how motivation works. There are multiple articles or books
that are taken as a reference in order to understand motivation, one of the most famous one
is A Dynamic Theory of Human Motivation [Mas58], according to this article, the physical,
psychological and affective necessities are the motivations of people. Taking into account
these theories, gamification techniques are created. Even if there are countless techniques
and possible ways to apply gamification, these are some of the most popular ones:

• Leaderboards: it allows users to compare each other in some way and increase mo-
tivation by appealing to the competitive feelings of people.

• User statistics: allows the users to check their progress in the application. It is a good
idea to incorporate graphical elements to make it easier for the user

• Virtual economy: giving ways for the users to get coins and create an economy based
on them inside the game.

• Build a community: it offers to the users the opportunity of share their progress,
discuss with other users and improve themselves together in the application.

• Narrative: a relevant part in some games is the story behind them, this element helps
the user to get involve in the game.

It is important to understand that gamification is not only to add some features like goals
or rewards to an existing application or activity. Gamification techniques are applied when a
non-game activity is thought as a game, this means that gamification is applied in the design
state of the activity and not as an extra feature.

3.2.2 Applications of Gamification
Gamification can be applied in different domains, it is not something that is only applied

in learning, there are a lot of companies that are applying gamification for their products or
even in their business processes in order to benefit from the advantages of gamification.

• Product gamification: gamification can be used to make a product more attractive for
the end user, companies could fail on making an attractive product for the public even
if the functionality of the product is quite good. For example, The Nike + Run Club2

is an application of Nike that offers to runners the possibility to join a community of
runners and share their achievements between them.

2https://www.nike.com/es/nrc-app

16

https://www.nike.com/es/nrc-app

Gamification in education

Figure 3.11: Starbucks reward app

• Work gamification: using gamification techniques in a work environment could im-
prove the motivation of the worker, the aim is to improve the productivity by giving
positive feedback to the worker and making their daily tasks less repetitive. One good
example could be the US Army, they create games as a way of training their pilots and
other soldiers.

• Marketing gamification: original marketing campaigns is what a lot of companies are
searching for. There are some companies for example Starbucks that used gamification
techniques in the application My Starbucks Reward (see Figure 3.11)3

• Health: treatments in healthcare can be tedious for patients, using gamification could
help patients to have more motivation. It is also used for young and old people, it is
easier for them remember the rules of a game than the steps of a medical treatment.
For example, mango Health4 (see Figure 3.12) developed a mobile application that
provide information about the medication they are taking like side effects in order to
avoid dangerous situation and reminds them when to take their medication.

• Gamification of learning: one of the main concerns of education is how to increase
the motivation and the interest of the students for a subject. Gamification is used in
education to get these things. An example of gamification of learning is the application
called Duolingo5, it is an application to learn foreign languages that uses the principles
of gamification.

3https://www.starbucks.com/rewards/
4https://www.mangohealth.com/
5https://www.duolingo.com/

17

https://www.starbucks.com/rewards/
https://www.mangohealth.com/
https://www.duolingo.com/

3. State of art

Figure 3.12: mango health app

Figure 3.13: Duolingo web app

It is argued that the high percentage of students that fail to graduate could be decreased
applying gamification in schools and universities, even if gamification of learning was tested
with great results in the past, it is not until the appearance of computers and Internet that
gamification has become one of the most popular ways of learning.

Gamification of learning is having a huge impact on the way of learning nowadays, this
impact can not be understood without taking into account E-Learning. E-learning was a
great innovation in education but had an important drawback, it was lacking emotional inter-
actions on the users. As it is mentioned before, one of the essentials parts of gamification is
motivation and have a psychological effect on the user, using gamification in E-learning is a
possible solution to the lack of emotions in E-learning.

18

Technology and music

3.3 Technology and music
Technology has changed the world and due to this change music is so different now, new

types of music genres have been created but talking about classical music it has not changed
too much at least on the surface. If someone thinks about classical music it will come to their
mind orchestras. Is there any difference that people without musical knowledge can guess
between orchestras 50 years ago and now? Nowadays what is changing a bit is the way we
learn music, it is just not go to class and practice at home, technology can be used to help to
practice or search for some theoretical information.

3.3.1 Relationship between music and video games
The relationship between music and video games is a very close one, a good soundtrack

can improve the overall quality of the game. Music can be used to transmit feelings to the
user and improve the immersive experience of the user. Imagine a horror game without a
soundtrack or a soundtrack that can not help you to feel as closer as possible to the game.

This type of music is called background music, it refers to all the sounds that appear in
a video game. There are several studies that explain the relationship between background
music and the success of video games [Fu15]. From the perspective of this studies it can
be concluded that video games that take the most from background music can cause a more
immersive experience in players. Every sound in the game can be used as a complement of
the action inside the game. The challenge in this aspect is to link in a consistent way the
music and the action of the game, that is the reason why there are soundtracks designed for
a concrete game.

The importance of music in video games is huge, there are several examples of video
games that were independently developed and became very famous for giving a great user
experience and one of the reasons was the soundtrack. For example, the video game called
Bastion6

Even if the relationship explained above is the principle one, there are other ways of using
music in video games. There are some video games that has music as the core of the game
and players have to interact with the music. At this moment, music stops to be an added
feature to improve the overall of the game and becomes part of the game-mechanics of the
video game.

It can be observed that there are known games that actually use music as the principle part
of the game, for example Patapon 2 were the user has to command a civilization using the
principles of rhythm that are the same like in every music sheet.

Even tho, these games have music as their core they are not made aiming to teach music or
practice music, games that are made intending to teach music or to practice it are less known,

6https://store.steampowered.com/app/107100/Bastion/

19

https://store.steampowered.com/app/107100/Bastion/

3. State of art

the main reason could be that not everybody is so interested in music, the majority of this
games are intended to learn how to play piano. The piano is usually the second instrument
that every musician learns and there are many applications that teach how to play piano.

3.3.2 Mobile applications for wind instruments
It is possible to find apps in the Play Store which are used to learn how to play instruments,

most of them focus the attention on teaching the correct position of the fingers in order to
play a particular note, for example How to play Trumpet7 in 3.15. Which is an app that
allow you to learn how to play several notes by using the piano as a reference. However, the
position of the piston valves in a trumpet is not enough to determine a musical note. There
are some notes that are played using the same valves but changing the position of the lips.

Another application which tries to solve this problem is called canciones de trompeta -

aprender a tocar8. This teaches how to play the trumpet by letting you use 3 buttons as
pistons and to simulate the position of the lips while playing a music sheet. It has 5 options
ordered by intensity so for example the app will ask you to reproduce a bass sound you
will have to choose which pistons are needed and, in this case, a low intensity. Even if this
solves the problem, it stills looks unnatural even to ones that have played the trumpet for
years. However, apps that check the sound of the trumpet in order to determine if it is played
correctly are so limited. One example of this kind of app can be tonestro9 (see Figure 3.14)
which let you select the instrument you play and while you play one of the several music
sheets it has the app, it will check if the sound is the correct one. Even if this is quite good
to learn when you have a trumpet it has some drawbacks, because it is difficult to determine
some variations like linking a note.

In addition, there are applications that focus their attention in ear training, musicians needs
to train their ears in order to identify the different pitches produced by an instrument just
listening it. The traditional way of practicing this skill was going to a music class and the
teacher would play notes and the students would try to guess what pitch was, this type of
exercise is called melodic dictation. For example the Troubadour: A Gamified e-Learning

Platform for Ear Training [PVŠ+20] use gamification techniques in order to motivate the
students to practice these exercises.

These applications have something in common, they use gamification principles. We can
observe that these applications give feedback of the actions that the user takes and there is a
clear goal which is playing the correct notes. In the case of tonestro, there are also rewards
when the user play well enough a music sheet and it unlocks other music sheets.

7https://play.google.com/store/apps/details?id=com.spintec.android.HowToPlay.
Trumpet&hl=es 419

8https://play.google.com/store/apps/details?id=com.learntomaster.trumpet.songs&hl=
es 419

9https://www.tonestro.com/

20

https://play.google.com/store/apps/details?id=com.spintec.android.HowToPlay.Trumpet&hl=es_419
https://play.google.com/store/apps/details?id=com.spintec.android.HowToPlay.Trumpet&hl=es_419
https://play.google.com/store/apps/details?id=com.learntomaster.trumpet.songs&hl=es_419
https://play.google.com/store/apps/details?id=com.learntomaster.trumpet.songs&hl=es_419
https://www.tonestro.com/

Technology and music

Figure 3.14: Tonestro app

Figure 3.15: How to play Trumpet app

Figure 3.16: Canciones de trompeta

21

Chapter 4

Methodology

This chapter will explain which methodology is used and the variations needed for this par-
ticular project. In addition, the resources used during the development of this project will be
detailed.

4.1 Software development methodology

In order to develop this project, the main ideas of Extreme Programming [Jos08] have
been followed. It may be difficult to apply pure extreme programming due to special charac-
teristics of an undergraduate project. For example, pair programming is not an option with
just one member in the development team. However, the general characteristics where ex-
treme programming is appropriate fits perfectly with the characteristics of the project. One
of this characteristics would be dynamically changing software requirements which was de-
scribed as an important characteristic of this project as well. Another would be having a
small, co-located extended development team which is the case of this project.

4.1.1 Why Extreme programming
Choosing a methodology is a critical part of any software project. The first step is to

decide if it needs a traditional methodology or an agile methodology.

For this project, some traditional methodologies were considered. For example, OPenUP1

(Open Unified Process). However, traditional methodologies are not appropriate for this
project. One of the problems would be that traditional methodologies are rigid and not ap-
propriated for projects with changing software requirements, another difficulty in this context
would be the less user involvement in the project process that is a risk in this project.

Agile methodologies as extreme programming follows the 4 principles of the agile mani-
fiesto2. Agile methodologies are more flexible and put more attention in the interaction with
the user than tradition ones. This project has some characteristics like uncertainty which
are handled better with agile methodologies. In addition, changing requirements will be
common in this protect so it is appropriate to base the project in short iterations with agile

1http://www.utm.mx/~caff/doc/OpenUPWeb/index.htm
2https://agilemanifesto.org/iso/es/manifesto.html

23

http://www.utm.mx/~caff/doc/OpenUPWeb/index.htm
https://agilemanifesto.org/iso/es/manifesto.html

4. Methodology

methodologies.Another relevant point is that agile methodologies promote a fluent commu-
nication with the client and this will allow us to refine requirements and make changes every
iteration.

Between agile methodologies as adaptive software development, feature-driven develop-
ment or extreme programming. The last one was chosen due to its high adaptability and its
management of changes. Extreme programming is though for many experts as one of the
best agile methodologies for adapting to changes as we can observe in the article of Kent
Beck Embracing change with extreme programming[Bec99].

4.1.2 The application of Extreme Programming
Extreme programming is based on values. It is possible to add more values but are going

to focus our attention on the principle ones.

• Simplicity. Do what is needed and asked for, but no more. This principle is unques-
tionable in almost every agile development and of course this case is not an exception,
the time is important and it can not be lost in modules that are not necessary and the
client doesn’t need it.

• Communication. Everyone is part of the team and we communicate face to face. This
principle is applied not only inside the development team, that has only one member,
this principle is applied to any stakeholder.

• Respect.Everyone gives and feels the respect they deserve as a valued team member.
In our case is not only inside the development team, the customer has to be like a
valued member.

• Feedback.Take every iteration commitment seriously. The customer must know which
is the state of the software at the end of every iteration.

• Courage. We will tell the truth about progress and estimates. Trying to lie about
the progress will make it even worse. It is not critical fail one user story in a certain
iteration we should just adapt to changes and keeping a good relationship with the
client.

Taking into account the principles above a set of rules are defined [Bec99]:

• Fix Extreme programming when it breaks. It is a good idea to follow the basic
rules, however, it is possible to change whatever does not work. For example, in this
project was needed to adapt or ignore some rules like pair programming.

• Iterations and user stories. Iterations in extreme programming should be between 1
week and 3 weeks. It is supposed that 1 week is the best choice even though it seems
short. The iterations in this project have a duration of 2 weeks, this is understand-
able because of having just 1 member in the development team. At the end of each

24

Hardware and Software Resources

iteration a review meeting takes places with the client, in this meeting the customer
have to decide if the user stories are completed or not and choose with the help of the
development team what user stories will be done in the next iteration.

• The customer is always available. The customer’s work is not only to help the devel-
opment team, he should be integrated. In this case the customer will be an important
part in the project.

• Pair programming. Even though pair programming [HDAS09] is a rule in extreme
programming, it will be impossible because of having just 1 person in the development
team. This rule and the other rules that implies more than 1 member in the development
team will be omitted but without forge ting the principles of Extreme programming that
are related with that rules.

4.2 Hardware and Software Resources
In this section the different resources used during the development of the project are listed

and detailed.

4.2.1 Hardware resources
• Graphic card: it is a NVDIA GeForce GTX 10603, this graphic card provides a high

performance in graphical processing and it is commonly used in gaming computers

• Tablet Galaxy Tab A(2016)4: since the development of the system was oriented to
tablet devices, it was necessary to use a tablet to test the system and this was the
selected one.

• Samsom USB Microphone: it is a microphone provided by Furious Koalas Interact-
ive5 used in the development of the recording part of the application.

• MSI- Gs63 stealth 8re computer: it is one of the best gaming laptops in the market.
It has a 16 GB Ram memory that was essential during the development.

• Trumpet: even if it is not a real hardware, it is an element that it is important to be
considered as a resource of this project. The trumpet was essential to test the correct
functioning of the application.

4.2.2 Software resources
• Textstudio6: it is an open source environment which work as an editor for /Latex

documents. This software was used during the documentation of the project.

3https://www.nvidia.com/en-sg/geforce/products/10series/geforce-gtx-1060/
4https://www.samsung.com/es/tablets/galaxy-tab-a-10-1-2026-t580/SM-T580NZKEPHE/
5https://www.furiouskoalas.com/
6https://www.texstudio.org/

25

https://www.nvidia.com/en-sg/geforce/products/10series/geforce-gtx-1060/
https://www.samsung.com/es/tablets/galaxy-tab-a-10-1-2026-t580/SM-T580NZKEPHE/
https://www.furiouskoalas.com/
https://www.texstudio.org/

4. Methodology

• Overleaf: it is an cloud-based /Latex editor,this software was used to save the work
done in the Textstudio editor.

• Unity7: Unity is a game engine developed by Unity Technologies, it gives to users the
opportunity of creating 2D and 3D games. One of the main advantages of this game
engine is that it supports about 30 platforms such as Android, IOS or Windows.

• Github8: it is an software that provides online hosting for software development ver-
sion control, it operates with Git a version control system that takes track of changes
in a software project. It was used to save the software of the project.

• Visual Studio Code9: it is a free source code editor made by Microsoft, it may be
used with different programming language like C, PhP or JavaScript. The main use in
this project was for programming in C and it was configured as the main code editor
for Unity scripts.

• draw.io10: it is a diagramming application, it allow users to create and share diagrams,
it has support form UML and for useful types of diagrams that were used to designed
the application. In addition, some of the diagrams created with this tool are showed in
this document.

• JabRef11: it is an open source reference management software, its main purpose in
this project was to handle the different bibliographic references using BibLaTeX.

7https://unity.com/es
8https://github.com/
9https://code.visualstudio.com/

10https://app.diagrams.net/
11https://www.jabref.org/

26

https://unity.com/es
https://github.com/
https://code.visualstudio.com/
https://app.diagrams.net/
https://www.jabref.org/

Chapter 5

Architecture

This chapter presents a detailed analysis of the different parts of the system. A top-down
approach will be followed in order to discuss the architectural decisions that has been made.
Initially, an overview of the system will be introduced and explained in order to better un-
derstand the system as a whole. Afterwards, each part of the architecture will be explained
in detail.

5.1 Architecture overview
The architecture of the system follows a layered-based approach (see Figure 5.1). This

type of model allows the creation of a scalable system, which is divided into several inde-
pendent layers. As a result, each layer offers different functionality, so that if a change is
necessary in one layer that change would only affect the components of that layer, given that
the interface remains the same. In addition, this type of architecture increases the system
adaptability.

The structure of the system will be divided into three layers: graphical user interface

layer, tracking and control layer, and persistence layer. Each layer will be divided into
multiple functional modules, and each module will perform well-defined tasks.

• Graphical user interface layer. It is in charge of the graphical part of the applica-
tion and the interaction of the user with the application. In addition, it controls the
gamification-related functionality of the system, which represents a key feature in the
developed application. The GUI layer is composed of two different modules: i) the
menu module, which is in charge of controlling the different menus of the application
that allow the user to register, login and select a profile, and ii) the exercise module,
which manages the information about the exercise that the user is playing every mo-
ment.

• Tracking and control layer. Its responsibility is to control the information that the
users produce in the GUI layer. If the user interacts with the application through the
GUI layer, then the tracking and control layer will be in charge of transforming that
information into structures that are understandable in the domain of the application.
The information handled in this layer could vary between information about the user

27

5. Architecture

Control and tracking layer

Manager Module

Graphical Interface Layer

Menus Module

Login Menu
Creative Menu

Practice Menu

Create Menu
Register Menu

Exercise Gui Module

Persistence Layer

Profile Menu Statistics Menu
Tuner Menu

ManagerGUIManager

Tracking Module

PitchDetector

Web Server

Database

JsonParser

Exercise

Routine

Figure 5.1: General architecture of the system.

and frequencies produced by an instrument. This layer is divided into two modules: i)
the manager module, which is in charge of the information related with the menus, and
ii) the tracking module, which is responsible for the information related with sounds
and frequencies produced when the user is practicing with an instrument.

• Persistence layer. It is in charge of processing and storing the data that the application
needs about users, profiles, exercises, routines, and statistics. The proposed application

28

Graphical user interface layer

needs a permanent storage in order to save this information even when the user closes
the application. It has 2 important parts: i) the web server that controls the permanent
storage in the cloud and manages a database and ii) the jsonparser which is in charge
of parsing JSON files into structures that the persistence layer can process.

5.2 Graphical user interface layer
The GUI layer will be responsible for managing the interaction of the user with the system,

this layer will be in charge of the correct visualization of the different screens inside the
application. In addition, it will be responsible for the representation of the music sheet that
the user will use to practice an exercise.

Since this layer is in charge of visualization, it is necessary to take into account the gami-
fication aspects of the application while designing the layer. Create an application which
is not a game but looks like one is not an easy task. Every screen needs to be designed
following several rules and without forgetting to provide a good user experience.

There were different possibilities in order to apply gamification techniques, it is possible
to create a system using gamification techniques without any specific technology. However,
another possibility is to work with technologies that are specific for creating games. In this
case the decision was to use a game engine which is a software-development environment
designed to build video games. The use of a game engine will facilitate the integration of
gamification techniques in the application and it will make possible to control the execution
of an exercise like if it was a level of a game. On the other hand, it is possible that the use
of a game engine could make another aspects of the development more difficult due to the
specific features that a game engine has. However, the benefits that come from using a game
engine specially in the part of practicing an exercise overcome the possible drawbacks.

There are several game engines in the market that were suitable for the development of a
project of these characteristics. For example, the Unreal Engine1 and Unity. After studying
the advantages and disadvantages of the two technologies the decision was to use Unity. This
decision can be explained if we take into account that the development is oriented to Android
devices in particular to tablet devices and Unity has the possibility of creating multi-platform
applications.

The GUI layer is the one that interact the most with Unity features, in order to take the
most from Unity, it was necessary to study and understand how it works and what are the
main features used in the creation of video games to use them in the development of our ap-
plication. According to the Unity Manual2 GameObject is the most important concept in the
Unity Editor. Every possible entity in a video game is a GameObject in Unity. For example,
characters, lights, enemies, special effects and every object you can imagine. Considering

1https://www.unrealengine.com/en-US/
2https://docs.unity3d.com/2018.4/Documentation/Manual/GameObjects.html

29

https://www.unrealengine.com/en-US/
https://docs.unity3d.com/2018.4/Documentation/Manual/GameObjects.html

5. Architecture

Graphical Interface Layer

Menus Module

Login Menu
Creative Menu

Practice Menu

Create Menu
Register Menu

Exercise Gui Module

Profile Menu Statistics Menu
Tuner Menu

Figure 5.2: GUI Layer Architecture

the importance of GameObjects in Unity, the GUI of the application has to be designed us-
ing them, whats more, it has to be based on them, every screen in the GUI will be based on
GameObjects, and every input, text or image will correspond to a GameObject in this system
in order to follow the rules of interactions in Unity.

In addition, GameObjects can have scripts associated to them, this scripts are used to con-
trol everything about GameObjects, from its position in the screen to the several function-
alities a GameObject has. In Unity scripts inherit from the class Monobehaviour, this class
has special methods as Start() and Update(). The Update() method is called every frame in
the application, it can be understood as a loop that is managing the events that happen to
the GameObject associated. These methods will be vital in the implementation of the most
important part of this layer which is the visualization of the music sheet.

As this layer will mainly result into several screens inside the application, it is interesting
to analyze the flow of the application, in Figure 5.3 is possible to observe the relationships
between the different screens.

This layer will be divided in two modules that will take the responsibility of different
tasks: the Menu Module and the Exercise Module

5.2.1 Menu Module
In order to create an application that will have different menus or screens that a user will

use to interact with it, it is necessary to design and implement a solution that would allow
the management and representation of the different screens involved in the application.

As it was exposed above, in this module the intention is to take the most from the Unity

Editor in order to apply gamification techniques in the design of the different screens. The
Menu Module is defined by the different scripts and GameObjects involved in the correct
visualization of the different screens in the application. The idea was to create a separated

30

Graphical user interface layer

part of the application that would only manage the graphical part with the aim of improving
the scalability of the system.

There were different options to create screens using the Unity features and applying gami-
fication. One of the options was creating a Unity Scene for each screen in the application,
according to the Unity Manual in each Unity Scene you place your environments, obstacles,
and decorations, essentially designing and building your game in pieces. As a result, each
Menu of the system would be defined by a Scene. However, the decision was to create a
Unity Scene for the complete menu module.

This decision can be understood due to the specific features of a Unity Scene. Each Unity
Scene can be understood as a level in a video game, for this reason Unity destroys each
GameObject that were in the previous Scene. In this case, there are elements that have to
be used in different menus. While there are some ways of preventing the destruction of
GameObjects when changing a Scene, it was considered that it was a better option to use the
same Scene for the different menus in order to facilitate the reuse of elements in different
menus.

Even if the menus are in the same Scene, they are handled in a separated way. Each menu
will be defined by a parent GameObject, a set of child GameObjects that will represent the
different elements in a screen and a script that will handle the interaction of the user with
that menu.

Scripts that handle a menu look similar, as we can observe in listing 5.1 each script will
have some variables that correspond to each input, button or text in the screen and a set of
GameObjects that correspond to the menus that can be reached from the one that handles
script. In addition, the scripts will have methods to send and receive information from other
layers, in this example the script have a Login() method to send the data from an user a
receive a response.

1 p u b l i c c l a s s LoginMenu : MonoBehaviour {
2 p u b l i c TMP_InputFie ld u s e r n a m e F i e l d ;
3 p u b l i c TMP_InputFie ld p a s s w o r d F i e l d ;
4 p u b l i c TMP_Text e r r o r T e x t ;
5 p u b l i c B u t to n l o g i n B u t t o n ;
6 p u b l i c GameObject loginMenu ;
7 p u b l i c GameObject p r o f i l e M e n u ;
8 p u b l i c GameObject s u c e s s f u l P a n e l ;
9 p u b l i c GameObject r e g i s t e r M e n u ;

Code listing 5.1: Script associated to Login Menu

5.2.2 Exercise Module

The GUI layer does not only handle the visualization of menus where the users can check
their information, it also manages the representation of a music sheet when users practice
with their instrument. It was convenient to separate this module from the Menu module
because the data and the way it is managed this screen was totally different.

31

5. Architecture

As it has a totally different function from the other Menus it was necessary to create a
specific module to handle the exercise practice of the application. In addition, as it was
explained in the menu module Unity Scenes are used when working with different levels in
a video game. As we are considering the menu module as a way of configuring the exercises
that will be practiced by the user we could consider the exercise practice as a level of a game.
As a consequence, the decision was to create a new Unity Scence that was a completely
different environment in order to look like a level of a game. Even if this approach will
make more difficult the relationship between the menu module and the exercise module, the
advantage of this approach is that the system is taking the most from the technology we are
using in order to integrate gamification techniques and create an application that looks like a
game.

The Exercise Module is in charge of the correct visualization of the music sheet and the
interaction with it. As we know, depending on the pitch of a note the position in the staff will
change, whats more, depending on the duration of that note the shape of it also changes. As
a result, the module will deal with the visualization of notes dynamically.

Another aspect to take into account in this module is the necessity of measuring the time
in a music sheet, as we know, in order to play correctly a note it is necessary to start playing
it in the correct moment. The Exercise Module needs to measure the time and calculate when
the user has to play each note considering the velocity of the exercise.

In order to solve these problems, we decided to use another time the features that Unity
provides. This module will have a set of GameObjects to control the execution of an ex-
ercise. The most important GameObjects in this module are the ExerciseMenu, which will
handle everything related with the correct representation of the music sheet and the Mi-

crophoneDector which will be in charge of recording any sound that is produced when this
Module is active. The ExerciseMenu will represent the information received from the Man-
ager Module, this information will be composed by the information about notes, exercises
and time. In addition, it will interact with the tracking and control layer in order to check if
the notes played are the correct ones. It will also highlight the incorrect notes that the user
plays.

In addition, it was essential to measure the time accurately in order to create a good en-
vironment to practice music. The simplest option was to use the Update() method that Unity
provides and check whether the note has to be played at that time or not. The Update()
method is executed every frame in the application, the problem was that if the method ex-
ecutes every frame, it was possible to have an error measuring when a note had to be played.
Tests were performed in order to check if the error was acceptable and the decision was to
assume that error because it was negligible.

32

Control and tracking layer

Sign up

Login

Creative Mode

Select an exercise

Practice Mode

Select options to create Exercise

Create Exercise

Select an exercise

Exercise screen

F

Statistics Mode Tuner Mode

Select Statistics mode
Select Tuning mode

Select creative mode
Mode Screen

Login with a user

Select a profile

Profiles Screen

Sign in

Register

Figure 5.3: State diagram

5.3 Control and tracking layer
This layer (See Figure 5.4) is in the middle of the system and is in charge of transforming

the information produced in the GUI layer into information that can be handled by the
domain of the application. In addition, it will send to the Persistence layer what is the
information that has to be permanently stored. It has 2 modules, the Manager Module which
deals with the information from the Menu Module, and the Tracking Module which will be
in charge of tracking the pitches of an instrument while the user is practicing.

5.3.1 Tracking Module
The tracking module will be responsible for the management of the audio input in the

system. While users are playing with their instruments is necessary to handle that inform-

33

5. Architecture

Control and tracking layer

Manager Module

ManagerGUIManager

Tracking Module

PitchDetector

Figure 5.4: Control and Tacking layer

ation and transform it into numerical values in order to check if the notes that are played
correspond with the ones in the music sheet displayed.

In this context, it was necessary to study the different options to record the sounds and
extract their corresponding frequencies, one possibility was to create our own script that
could perform this specific task. However, it was rejected due to the complexity of this kind
of functions. Finally, the decision was to use an external library that could be integrated
the architecture and could perform this task. The library selected was the Human Voice

Pitch Detector, a library in the Unity store that uses the RAPT Pitch Tracking algorithm
described in the paper A Robust Algorithm for Pitch Tracking [TK95]. It consists of a Cross-
correlation function that gets the frequency that is currently recorded.

Tracking the different frequencies was another challenge. The problem was that if fre-
quencies were measured over time and registered the result, the amount of data would be
enormous and some of it would be just noise that would disturb the correct performance of
the application. The solution was to take samples over a little amount of time and register
the value that was repeated several times ignoring the noise, this approach was tested with
music instruments and worked perfectly as it was intended. In addition, the implementation
of this approach used another relevant feature of Unity that are coroutines. Coroutines are
like a function that has the ability to pause execution and return control to Unity but then to
continue where it left off on the following frame, this was the way of solving the problem of
recording accurately the frequencies.

Moreover, it was also necessary to convert the frequencies into pitches, in order to make
this possible the idea was to transform frequencies first to the MIDI Note System. MIDI was
born as a standard which describes a protocol that allows different electronic instruments,
computers and devices to connect and interact which each other. In this case, the relevant
part is the note system inside the protocol that associates each possible pitch to a natural
number. This notation was used in the application instead of pitches that would have made

34

Control and tracking layer

the Module more complex.

Once the frequencies produced by an instrument are converted into the MIDI note sys-

temmidi(see Figure 5.53.It is possible to compare the Midi value with the values that the
player wants to play. The Tracking Module will be in charge of this comparison as well as
the conversion from MIDI note system into pitches that could be handled by the Exercise
Module in the GUI layer.

5.3.2 Manager Module
As we explained in the GUI layer, scripts associated to menus will send and receive in-

formation in order to perform actions that the user has requested. The information sent and
received needs some processing and calculations and this module will be in charge of man-
aging information.

The necessity of this module could be explained considering that the architecture model
that the system follows is a layered model. As it was explained before it is necessary that the
layers perform different tasks and if something in any layer changes the others would stay
unchangeable. It was possible to have this processing in the GUI layer. However, this situ-
ation would go against the philosophy of the layered model. In this situation, if a change in
the GUI layer was needed it would be necessary to change the processing of the information.
In contrast, creating a module of this characteristics in the tracking and control layer will
make possible to change the GUI for a totally new one and still using the same processing of
the information what leads into a more scalable system.

This module is divided into two components, the Manager and the GUIManager. They
perform similar tasks, as they receive and transform the information of the GUI layer and
send it to the Persistence Layer. Since they perform a similar task, it was reasonable to create
just one component in order to control this information. At first, the application had only one
component. However, the volume of information was growing, and it could be divided in
two types. On the one hand, one type was the domain application information, which is the
information related with user, exercises, routines and statistics. On the other hand, it was
information that had to be calculated for the Exercise menu. These calculations are related
with the position of notes, the tuning of the current instrument and graphical configurations
related with the music sheet displayed. Thus, as a way of separating concepts and increasing
the scalability, a division between these two managers was executed.

As it can be observed, in listing 5.2 the methods in the manager have the same structure,
it receives information in this case about a user, then it consults the Persistence layer and re-
turns a response to the GUI layer. In Figure 5.6 is possible to observe the flow of information
that has to be controlled by the manager module in order to check the users credentials.

3https://newt.phys.unsw.edu.au/jw/notes.html

35

https://newt.phys.unsw.edu.au/jw/notes.html

5. Architecture

Figure 5.5: Midi to note

36

Persistence Layer

User
1. Click on log in button

2.ManageLogIn(user, password)

LoginMenu

3.LogIn(user, password)

7. Successful login

Manager.cs

4.user,
password

6. Successful login

PlayerDao.cs

GUI Layer Manager Module Persistence Layer

5. Successful login

Database

Figure 5.6: Example in the Manager Module

1 p u b l i c s t r i n g Login (s t r i n g username , s t r i n g password) {
2 s t r i n g r e s p o n s e = " e r r o r " ;
3 P l a y e r l o g g e d P l a y e r = n u l l ;
4 t r y {
5 l o g g e d P l a y e r = t h i s . d a o P l a y e r . ge tP laye r_Use r_PasswordM (username , password) ;
6 } c a t c h (E x c e p t i o n e) {
7 Uni tyEng ine . Debug . Log (" [LOGIN] E x c e p t i o n "+e . Message) ;
8 r e s p o n s e = " Wrong c r e d e n t i a l s " ;
9 }

10 i f (l o g g e d P l a y e r == n u l l) {
11 e s p o n s e =" User n o t r e g i s t e r e d " ;
12 } e l s e {
13 r e s p o n s e = " User lo gg ed " ;
14 t h i s . c u r r e n t P l a y e r = l o g g e d P l a y e r ;
15 }
16 r e t u r n r e s p o n s e ;
17 }

Code listing 5.2: Script associated to Login Menu

5.4 Persistence Layer
Any application in the market needs to store data, there are applications that only need

to store data while it is working, in that case it is not necessary to use a permanent storage.
However, our system needs to store data even when the user close the application, the reason
is that the system stores the data about the progress of the users, credentials, exercises and
this kind of information has to be permanently available. It would be possible to create
a local permanent storage for the application. Nevertheless, it was proposed that having an
online permanent storage to manage the information of every user could be more interesting
for future work on analysis.

In addition, this layer will have another responsibility that is giving support to the creation
of exercise using data in a file instead of using the screens of the application.

37

5. Architecture

Figure 5.7: Database diagram

The Persistence Layer will have two components the Web Server that manages the per-
manent store in the cloud and the JSONParser that process JSON files.

5.4.1 JSONParser
Users will be able to create new exercises using the different menus of the application.

However, the idea of exchanging exercises between users was thought; and there were dif-
ferent possibilities to accomplish this objective. Finally, we decided to add a module able to
read files that contains the information about an exercise or a routine and add them into the
system. Even if this functionality is not available for users at this moment it still have several
parts fully implemented.

There were different options to represent an exercise in a file, one option would we using
standard formats for exchange information about music sheets. The most spread format is
MusicXML4 which was designed for sharing music sheet files between applications. Even
tho, this format is complex, and it has several features that would not be useful for our
system. At the end, we decided to use JSON files that would have the same information that
the user fills to create an exercise inside the application. Following this approach allows the
users to understand the information inside these files and modify it.

JSON is a standard file format and a data-interchange format that was based on a subset of
JavaScript. However, it is a language-independent format and nowadays is one of the most
popular data-interchange formats in any application[HSN+14].

The JsonParser Module has a script associated which is called JsonParser.cs that is in
charge of reading data about exercises (see Code 5.3) and transform it into information that
the system can store permanently. In addition, The JsonParser.cs script is able to process
routines as well, this feature was tough as a way to interchange routines between users. For
example, a music teacher could create a routine and give the JSON file to the students in order

4https://www.musicxml.com/

38

https://www.musicxml.com/

Persistence Layer

to practice it.
1 {
2 " t y p e " : " E x e r c i s e " ,
3 " E x e r c i s e " : {
4 " E x e r c i s e T y p e " : " S c a l e " ,
5 " S c a l e " : {
6 " b e a t s " : 60 ,
7 " t u n e " : " SIb " ,
8 " t i m e S i g n a t u r e " : " 4 / 4 " ,
9 " f i r s t N o t e " : "LA# 3 " ,

10 " s c a l e T y p e " : " Mayor S c a l e " ,
11 " d u r a t i o n " : 4
12 }
13 }
14 }

Code listing 5.3: Example of Exercise in JSON File

5.4.2 Web Server Module
As it was exposed above, the system needs a permanent storage, this module was created

in order to handle the information that was going to be saved permanently in the system. The
decision to solve this problem was to use a database where the data would be saved in a
permanent way.

A database is a collection of structured information stored in a computer system[Dar09].
There are mainly two types of databases, relational databases and NOSQL databases. NOSQL

databases store unstructured or semi-structured data while Relational databases store struc-
tured data and are table-based. In order to decide what type of database was the best option
for the system it was necessary to take into account different aspects as performance, scalab-
ility and what type of data is going to be stored. The system will store exercises, information
about players information and statistics, this type of information is already structured. As a
result, the decision was to use a relational database.

Any relational database needs a schema, which is the organization of the data in the data-
base. In this case the designed schema for the database handles the information about play-
ers, profiles, exercises and the relationships between them (see Figure 5.8).

Any database needs a Database Management System to work. There are different techno-
logies in the market like Oracle Database5, MySql6 or Sql Server7. The selected one for our
system was MySql that is an open-source relational database management system which is
owned by Oracle.

Connecting the system to a database is easily performed when the connection is with a
computer, the device can connect directly to the database with a driver. However, a mobile
application like our system can not connect directly to a database.

One way to solve this problem is to use a web server, the mobile device will make HTTP

5https://www.oracle.com/es/database/
6https://www.mysql.com/
7https://www.microsoft.com/es-es/sql-server/sql-server-downloads

39

https://www.oracle.com/es/database/
https://www.mysql.com/
https://www.microsoft.com/es-es/sql-server/sql-server-downloads

5. Architecture

Exercise

IdExercisePK

difficulty

description

tune

signature

beats

Routine

IdRoutinePK

description

finalDate

Profile

idPlayerPK

instrumentPK

ExercisesInRoutines

IdRoutinePK

idExercisesPK

ExercisesPlayedInRoutine

idExercisePK

DatePK

mark

NoteInExercise

idExercisePK

midiPK

fechaPK

duration

position

playedDuration

Player

usernamePK

password

email

name
surname

LongNotesExercise

idExercisePK

noteTime

noteDurationScaleExercise

IdExercisePK

typeScale

firstNote

duration

ProfileRoutines

IdRoutinePK

usernamePK

instrumentPK

Note

midiPK

nameNOte

Figure 5.8: Database diagram

40

Design patterns

requests to the web server, then the server will connect to the database and execute the SQL

Queries and finally it will return to the mobile device the requested data.

The technology used to handle the web server was XAMPP8, XAMPP is an open source
software developed by Apache friends9 which works as a local server, its main functionality
is to use it while developing the software in order to test the system without having to create
an online server. Our web server will receive HTTP request to get the resources that are
stored in the Database and will execute PHP code to execute the SQL Queries.

In order to understand better how the web server is able to execute different SQL sentences
and retrieve information, this listing is an example (see Listing 5.4).

1 $ s q l = " S e l e c t ∗ from P l a y e r Where username = ’ " . $ l o g i n U s e r . " ’ " ;
2 $ r e s u l t = $conn−>query ($ s q l) ;
3 i f ($ r e s u l t −>num_rows > 0) {
4 / / o u t p u t d a t a o f each row
5 w h i l e ($row = $ r e s u l t −> f e t c h _ a s s o c ()) {
6 i f ($row [" password "] == $ l o g i n P a s s) {
7 $ a r r = a r r a y (’ username ’ => $row [’ username ’] ,
8 ’ name ’ => $row [’ name ’] , ’ surname ’ => $row [’ surname ’] ,
9 ’ e m a i l ’ => $row [’ e m a i l ’] ,

10 ’ password ’ => $row [’ password ’]) ;
11 echo j s o n _ e n c o d e ($ a r r) ;
12 } e l s e {
13 echo " Not c o r r e c t password " ;
14 }
15 }
16 } e l s e {
17 echo "No u s e r wi th t h a t name " ;
18 }
19 $conn−>c l o s e () ;

Code listing 5.4: Example of Exercise in JSON File

5.5 Design patterns
A design patter is a general repeatable and proved solution of design problems that are

common in the process of development software [FA12]. The idea behind a design pattern
is to use solutions that are accepted and checked in other projects and adapt that solution
to the system you are implementing. In the development of this project the convenience
of using several design patters to increase the scalability of the system was discussed. In
this context,the decision was to implement the pattern factory method,the pattern model-

view-controller and the pattern builder to solve several problems that are detailed in the next
subsections.

Factory method
This design pattern is a creational pattern and a simplification of the design pattern ab-

stract factory. It provides an interface for creating different objects. This pattern is com-
monly used when it is necessary the creation of different objects that are similar to each
other. The main advantage of this pattern is that it promotes the loose-coupling. In other

8https://www.apachefriends.org/es/index.html
9https://www.apachefriends.org/download.html

41

https://www.apachefriends.org/es/index.html
https://www.apachefriends.org/download.html

5. Architecture

Exercise

+ idExercise: int

+ description: String

+ tune: String

+ list_notes:List<Note>

+ beats: integer

+ timeSignature: String

+pitchToMidi(string,int):int

ExerciseFactory

+ createLongNotesExercise(JsonNode json):

+ createScale(JsonNode json):

JsonParser

+ loadJson(string): Exercise

ScaleExercise

+ firstNote : String

+ intervals: List<Intervals>

+ scaleType: ScaleType

+ durations: List<Duration>

+ createScale():

LongNotesExercise

+ note: String

+ noteDuration: Duration

+ numberNotes: int

-createLongNotes():

Figure 5.9: Factory method

words, this approach tries to have elements that depended on each other to the least extent.
The idea is to interact only with the interface and not knowing anything more about the
different objects that could be created.

As we explained before, the JSONParser Module will read files with information of dif-
ferent types of exercise and Routines. This information will be transformed into different
types of exercises and routines. In order to prevent coupling, the factory method was used
in this module. As a result, it will be easier to add new types of exercises into the system
without changing other parts.

As we can observe in the Figure 5.9 the Class JsonParser.cs sends a JSON string with the
information of different types of exercises and the class ExerciseFactory.cs is in charge of
creating the different types of exercises.

Model view controller (MVC)
The design pattern Model view controller (MVC) (see Figure 5.10) is an architectural

pattern that its main purpose is to isolate the domain of the application from the Graphical
User Interface. This pattern is composed of three different parts which are the view, the
controller and the model. The main benefits for this project are: i) Modifications only affect
one of the parts of the pattern and ii) It is appropriate for video games that can have multiple
GUIs.

As it can be noticed, the approach of the first benefit is similar to the benefits of using
a layered architecture. This pattern is fits perfectly in a layered architecture with 3 layers.

42

Design patterns

Controller

ModelView

Figure 5.10: MVC design pattern

The idea was to relate each part of the design pattern with one of the layers (GUI layer ->
View, control and tracking layer -> controller, and persistence layer -> model). Even if this
relationship is not totally exact, it will give to the system a more defined separation between
different layers.

Another consequence of using this design pattern is that it is possible to change the GUI
depending on the client demands. It can be possible that the client would want to change
almost everything in the graphical part of the application. In this case, using this pattern it
would only be necessary to change the View, since the other 2 parts could stay unchange-
able.

• View: it is the graphical user interface, the user interacts with this part of the system
through buttons and inputs. In this concrete project the View will be closely related
with the GUI layer. However, it is actually not the same thing.

• Controller: it receives the information from the view and translate it to the domain of
the application. Most of the functions related with the controller will be implemented
in the Manager Module.

• Model: the actions received in the model are independent from the view, it only works
with structures of the domain of the application and it usually receives operation of
type creation, update, consult or delete. In this application the model corresponds to
the classes related with exercises and users.

Builder
This design pattern is a creational pattern. It provides a way of resolving the creation of

different complex objects. It is important to notice that this pattern is very similar with the
factory method pattern. However, even if they are both creational pattern, they are used in
different contexts. The factory method pattern is used when it is necessary to create a family

43

5. Architecture

Note

+ midi: int

+ duration: Durations

+ dotted: bool
- percentage: double

NoteBuilder

- percentage: double

+ dotted: bool
+ duration: Durations

+ midi: int

+ setMidi(int midi): NoteBuilder

+ setDuration(Durations duration): NoteBuilder

+ setDotted(bool dotted): NoteBuilder

+ build(): Note

ScaleExercise

+ createScale():

Figure 5.11: Builder design pattern

of objects with a hierarchy. For example, in this system there are different types of exercises,
that is the reason why it was more accurate to apply the factory method in the example
explained above. In contrast, when the objects to create do not have an hierarchy, the typical
solution is to use the Builder pattern in order to simplify the creation of that objects.

The builder pattern encapsulates the creation and assembling of the different parts of an
object. Then if a class needs to create an object it has to call the builder that will create that
object instead of creating it directly. At first. Following this approach will make simpler the
creation of complex object.

In this system, the builder pattern was used in the creation of note objects. In this Fig-
ure 5.11 it is possible to observer a diagram that explains how it is implemented this pattern
in the system.

44

Chapter 6

Results

In this chapter the results obtained in the development of Windy Melody will be dis-
cussed. First, the work distribution during the development of the project will be detailed.
Then, the cost and resources related with the development of the project will be explained.
The source code of the project is available online on GitHub:

https://github.com/xlolux1

6.1 Work distribution
As mentioned in the chapter 4, the chosen development methodology is extreme program-

ming. It is a methodology based on short iterations. In this section, it will be discussed the
different tasks developed in each iteration, at the end of each iteration the work has been
validated with the tutor.

6.1.1 Iterations
As it is explained in chapter 4 the distribution of the project will be divided in short iter-

ations. Each iteration will last between 2 or 3 weeks and they will have some user stories
associated.

1# Initial Planning and study of technologies
User story -
Duration 2 weeks
Once the idea of creating a system that allow users to practice with their instruments was defined,
a research about the different technologies that allow the creation of this kind of system was
executed. Between the different technologies in the market as Unity and Unreal Engine, Unity was
chosen as the motor engine for the application due to its facility to work with mobile technologies.
It was also necessary to choose a technology capable of recording the sound and process it into
frequencies, in this case the decision was to use the Human Voice Pitch Detector library of Unity.
In addition, current systems that have similar systems that were related with music learning and
specially with wind instruments were analyzed.

45

https://github.com/xlolux1

6. Results

1# Testing microphone Detector
User story -
Duration 2 weeks
During these weeks the technologies selected in the previous iteration were prepared to be used
in the development of the project. In addition, a simple prototype able to process the sounds
recorded from a microphone and detect the corresponding pitches was developed. Tests were
performed using a trumpet, the idea was to play different notes with the trumpet in order to check
if the frequencies displayed in the screen were the ones played by the trumpet. Graphically, the
idea was to display the frequencies in an ascendant order like it would be in a music sheet.

3# Simple music sheet
User story -
Duration 3 weeks
Once the system was able to detect pitches from instruments in a consistent way the next step was
to create a simple exercise, in this a scale and test how the different notes could be measured and
displayed in the screen. It was necessary the creation of a new screen based on the previous one.
However, the new screen was designed in order to display the notes of the current exercise in a
music sheet.

4# Identification of users
User story US-REGISTER US-LOGIN US-PROFILE
Duration 3 weeks
In this iteration the logic of the system and screens related with the identification of the users
were developed. As a result, it was necessary to develop screens to register into the application
and to login, this screens were created taking into account the principles of design in Android
applications aiming to improve the user experience. The login screen will ask for a username and
a password, this information is necessary to access profile of an user. The register screen asks
for the username, name, surname, email, and password in order to create an account. In addition,
another feature developed in this iteration was the possibility of choosing an instrument.

5# Creation of Exercises and creative mode
User story - US-SCALE US-LONG US-CREATIVE
Duration 2 weeks
Once the user was able to create an account and access to it the next step was to allow users to
create their own exercises, the idea was to modify the current structure that allow the creation of
a simple scale and permit the user create different types of exercises, in this case scales and long
notes exercises. It was necessary to create a specific screen to list the exercises that a user created
before. In addition, two new screens one for each type of exercise were created. Each screen has
general inputs that would have every type of exercise and specific inputs for the concrete type.

46

Work distribution

6# Practice Mode creation and logout
User story - US-LOGOUT US-PRACTICE
Duration 2 weeks
During these weeks the practice mode menu was developed. This menu will show the routines
and the corresponding exercises for the routines that an user have. In addition, it was added a new
feature in the others screen that would allow the user to log out from the application in a safety
way.

7# Change Exercise module and join it with menus
User story US-EXERCISE
Duration 2 weeks
In this iteration, the simple screen that was created in the iteration 3 was changed to fit with the
style of the rest of the application. The visualization of the notes, buttons and background was
changed to look like a music sheet. In addition, it was necessary to create the logic to send an
exercise from the creative menu or the practice menu to the exercise menu.

8# Tuning menu and Statistics Menu
User story US-TUNER US-STATISTICS
Duration 2 weeks
Once the main functionality of the system was working. The next step was to create a tuning
menu that would allow users to tune their instruments so the results of the exercises will be more
accurate. In addition, during this sprint some of the graphical aspects of the application were
changed or redesigned.

6.1.2 User stories
User stories are an important part in every Agile project. They reason is that they represent

a feature of the system but in the perspective of the client, user stories are the best way to
understand what the system needs to do. In this subsection the user stories that were defined
during the development of the project are detailed.

Identifier US-LOGIN
Role As a user...
Functionality I want to be able to access to the system
Acceptance
criteria

The user must be able to access the system using their credentials, that credentials
are an username and a password. In case the credentials are wrong the system
needs to give feedback to the user about the impossibility of accessing the system.

Table 6.1: User story US-LOGIN.

47

6. Results

Identifier US-REGISTER
Role As a user...
Functionality I want to be able to create an account in the system
Acceptance
criteria

The user must be able to create an account in the system inserting their inform-
ation, this information consist in his name, surname, username, email and pass-
word. In case an account has already been created with the same username the
system will not create the account and needs to give feedback of the possible
errors to the user.

Table 6.2: User story US-REGISTER.

Identifier US-PROFILE
Role As a user...
Functionality I want to be able to access to a profile related with a particular instrument
Acceptance
criteria

The user must be able to select a profile related with an instrument after accessing
the system. The system must show the different instruments that are supported
and the user needs to be able to select the one that want to use at that moment

Table 6.3: User story US-PROFILE.

Identifier US-STATISTICS
Role As a user...
Functionality I want to get feedback about statistics of my profile
Acceptance
criteria

The user must be able to consult the statistics of a concrete profile. The in-
formation showed in the statistics screen must include the number of exercise,
the number of routines, the number of exercises played and the number of notes
played.

Table 6.4: User story US-STATISTICS.

Identifier US-LOGOUT
Role As a user...
Functionality I want to close the application safely
Acceptance
criteria

The user must be able to log out from the application using a button that needs to
be placed in each screen except login screen, register screen and exercise screen.

Table 6.5: User story US-LOGOUT.

Identifier US-SCALE
Role As a user...
Functionality I want to create Scale exercises
Acceptance
criteria

The user must be able to create a scale exercise using a menu in the application.
The menu needs to contain the following inputs: beats per minute, first note, time
signature, type of scale and duration of notes

Table 6.6: User story US-SCALE.

48

Work distribution

Identifier US-TUNER
Role As a user...
Functionality I want to be able to tune my instrument.
Acceptance
criteria

The user must be able to check the tuning of his instrument in a separated screen.
For this purpose, it is necessary to show the current pitch played by an instrument
and the current frequency of recorded.

Table 6.7: User story US-TUNER.

Identifier US-CREATIVE
Role As a user...
Functionality I want to be able to see all the exercises that i have created and see what kind of

exercise i can create.
Acceptance
criteria

The user must be able to visualize to visualize the beats and time signature of all
the exercises that he created. In addition, the different types of exercises need to
be displayed

Table 6.8: User story US-CREATIVE.

Identifier US-LOGOUT
Role As a user...
Functionality I want to see all the routines that i have and each of the exercises of that routine
Acceptance
criteria

The user must be able to visualize a Routine and the different exercises that form
that routine.

Table 6.9: User story US-PRACTICE.

Identifier US-LONG
Role As a user...
Functionality I want to create Long Notes exercises
Acceptance
criteria

The user must be able to create a long note exercise using a screen in the applic-
ation. The menu needs to contain the following inputs: beats per minute, first
note, time signature, number of notes and duration of notes

Table 6.10: User story US-LONG.

Identifier US-EXERCISE
Role As a user...
Functionality I want to practice with my instrument a music sheet and get feedback about the

results
Acceptance
criteria

The user must be able practice a music sheet that has to be displayed in a screen
of the application. The notes have to change the colour between green, orange
and red depending on how good was performed that particular note.

Table 6.11: User story US-EXERCISE.

49

6. Results

6.2 Windy Melody: Final Result

Windy melody is the name of the application resulting of the development of this project. It
follows the architecture explained in the chapter 5. In this section the flow of the application
and the different menus that compose it are explained. Additionally the working environment
used during the development of the project is showed in Figure 6.1.

Login Menu
As soon as the application is initialized, this menu will be displayed (see Figure 6.2). As

with any other application that handles the data of different users, it is necessary to control
who is the user that is accessing to the system. Users will use this menu to access to their
account, any student will have to write their username and password in order to enter to their
respective accounts. If an user do not have an account created in the system yet, they would
have to click on the sing it up link and access the register menu where they can create an
account. This menu was intended to be a simple log in, that is the reason why gamification
techniques were not applied in this screen. However, other concerns as Android Guidelines

were applied during the development of this menu.

Register Menu
If an user do not have an account in the system they could access to this menu to create

a new account in Windy melody (see Figure 6.3). In order to create a new account, it is
necessary to fill all the information that is requested, the information includes the username,

Figure 6.1: Working environment.

50

Windy Melody: Final Result

name, surname, email and password. Once the user press the Register button, they system
will validate the information inserted and if every field was filled. If some information is
missing the system will prompt a message to the user informing him that all the fields are
required to create an account. Then, when it is checked that all the information was valid
the system will try to create a new account. If the process was successfully completed the
user will be redirected to the login menu so he can access to the system. However, if there
was any problem the system will prompt a message informing the user that was impossible
to create that account and the reason. This menu followed the same approach as the login

menu , a simple menu where it was not necessary to apply gamification techniques.

Profile menu

Once a user has accessed to its account through the login, this screen will be displayed
(see Figure 6.4). In this screen the user will be able to select a profile. Each profile will be
related with a different wind instrument. The idea behind choosing a profile is that there
are musicians that practice more than one instrument and it is reasonable to have separated
profiles so save exercises for each instrument. Another important consideration designing
this screen was the inclusion of icons to represent the different instruments. Icons for in-
struments will help to musicians that are not language-speakers to select the instrument they
want and improve the user experience. For now, the different instruments that can be selected
are the trumpet, the clarinet, the tuba, and the trombone.

Figure 6.2: Login Menu.

51

6. Results

Figure 6.3: Register Menu.

Figure 6.4: Profile Menu.

52

Windy Melody: Final Result

Figure 6.5: Statistics Menu.

Statistics menu
This is one of the menus that a user that have selected a profile can access (see Figure 6.5).

This menu will allow the user to consult some statistics that are related to their profile. In
other words, these statistics are specific for one instrument. In this menu the user will
show four different squares where a number and the meaning of that number are displayed.
For now, the information displayed is the number of exercises, the number of routines, the
exercises played, and the notes played.

Tuning menu
Users could navigate to this menu any time they want. Users will be able to tune their

instruments using this menu. As it is known, in order to measure the frequencies produced
by an instrument in a proper way, it is necessary that the instrument has its appropriate tuning.
The Tuning menu will record the sounds produced by the instrument and will show the pitch,
frequency and midi recorded. The idea is that the musician will try to play the note called
LA 4 that has a frequency of 440 Hz. If the frequency showed is not near 440 Hz then the
musician has to tune its instrument until it is near enough.

Create Scale menu
the purpose of this menu is to allow users to create their own exercises, in particular

exercises of type scale (see Figure 6.6). The idea behind this menu is to make it as easier as
possible for a beginner musician. As a result, the different options for creating a scale are
simple and only ask for information that every musician knows. In order to create a scale, the

53

6. Results

Figure 6.6: Create scale menu.

user needs to fill in every field and then press the saving button. Once that button is pressed,
the system will save that exercise and the user will be redirected to the creative menu.

Long Notes menu
the purpose of this menu is to allow users to create long notes exercises (see Figure 3.9).

This menu is very similar to the create scale menu, it also has several inputs that are necessary
to create an exercise of this type. The user has to fill every field and then press the save button
to create the exercise. Then, the user will be redirected to the creative menu where he could
visualize all the exercises associated with that profile.

Log Out and Profile
This feature can not be considered as a screen by its own. However, it is integrated in

almost every menu inside the application. It has two parts: i) a log out button that when
is pressed the user can close the application and ii) a text with the username of the current
user.

Creative menu
In this menu the users will have access to their exercises and to create new ones (see

Figure 6.8). As it can be observed, this menu has a list of exercises. This list of exercises are
the ones that a user has previously created with that profile. The information displayed for
each exercise will be the time signature, the beats per second and the number of that exercise.
In order to practice one of these exercises the user only has to press in the white square that

54

Windy Melody: Final Result

Figure 6.7: Exercise Menu.

contains the exercise and the user will be redirected to the exercise menu. In addition, this
screen has two additional buttons: i) create scale exercise and ii) create long notes exercise.
Each button will redirect the user to another screen where it is possible to create each type of
exercise. As it is possible to notice, the number of exercises that a user can have could vary.
In order to handle this issue, the buttons that contains the exercise are created dynamically
depending on the number of exercises and they are inside a scroll panel so users only have
to scroll if they want to see all the exercises that they have.

Practice menu
in this menu the users will have access to their routines (see Figure 6.11). The idea is that

the user could have a set of routines and each routine would have a set of exercises associ-
ated.In addition, it also has a scroll panel when the number of exercises make impossible to
display all in the screen. The user will have to press an exercises and the system will redirect
him to the exercise menu where the exercise could be performed.

Exercise menu
The exercise menu will be the screen where user will practice with their instruments. As

it can be observed in the Figure 6.7, this menu displays a music sheet that contains an
exercise, in this example it is a scale. This screen will be displayed when a user select an
exercise to practice in the creative menu or in the practice menu. The notes of that exercise
are calculated and placed in their corresponding places according to the rules of tuning and
depending on the type of clef. This screen contains two buttons: i) the rec button that will

55

6. Results

enable the microphone in order to record pitches produced by an instrument and ii) the go

back button that when is pressed it consider the exercises finished and redirect the user to the
profile screen. Once the rec button is pressed users can start practicing with their instruments.
While they are playing the notes will change its colour to green, orange, or red depending on
how well the note was played.

Figure 6.8: Creative Menu.

Figure 6.9: Tuning Menu.

56

Windy Melody: Final Result

Figure 6.10: Long Notes Menu.

Figure 6.11: Practice Mode.

57

6. Results

6.3 Project cost and resources
In this section the projected cost and resources used during the development are detailed

and explained (see table 6.3). The type of resources this project needed where both software
and hardware resources. In addition, other resources as a trumpet were needed.

This project required a high quality microphone in order to test how the different sounds
were recorded and to make sure that there was not any problem with the input device. The
microphone selected was the Go mic usb Microphone of Samsom and costed 55.25e. Other
Hardware resources as the Graphic card, the Msi computer and the trumpet were not took
into account because they were not acquire specially for the development of this project.

Resource Cost Amount Total
USB Microphone 55.25e 1 55.25e
Human Voice Pitch Detector 13e 1 13e
Personnel salary 1894.375 e/month 4 month 7577.5e
Total budget 7645.75e

Table 6.12: Estimated budget for the developed project.

Software resources can have a cost in terms of licensed, in this case the library Human
Voice Pitch Detector1 in the Unity Store had a cost of 13e. On the other hand, software re-
sources as Github were used with a student account so it did not have any additional cost.

In addition, in order to be as close as possible to the reality a salary for the developer has
been estimated. According to a popular web site called payscale2, the estimated salary for a
junior developer is about 21.65e/hour. This project needed a total of 350 hours which means
a total salary of 7577.5e.

6.4 Project statistics
In this section, some statistics of the project will be detailed. During the development of

the project the technology used to save the software was GitHub. It is possible to use this
technology in order to get statistics related with the development of the project.

The repository in GitHub was created the 12th of February and it has commits until the
28 of july. It is possible to observe different programming language that are present in the
repository. For example PHP and JSON . However, the 97% of the lines of code are written
in C#.

1https://assetstore.unity.com/packages/tools/audio/human-voice-pitch-detector-109019
2https://www.payscale.com/research/ES/Job=Junior Software Engineer/Salary

58

https://assetstore.unity.com/packages/tools/audio/human-voice-pitch-detector-109019
https://www.payscale.com/research/ES/Job=Junior_Software_Engineer/Salary

Project statistics

Figure 6.12: Additions and Deletions per week.

The only contributor of the repository was the author of the document, in this Figure 6.12
the additions and deletions per week in lines of codes can be appreciated.

59

Chapter 7

Conclusions

This chapter discusses the obtained results, the reached objectives, and the problems faced
while developing the software.

7.1 Reached objectives
In this section, I will explain in detail how the objectives proposed in chapter 2 have been

accomplished.

• Scalability. This objective can be considered completed thanks to several factors. One
of these factors is the type of architecture employed in the development of the system,
the layered model divides the system into three layers that are independent from each
other. This independence implies that if we change something in one layer it would
not affect the other two layers. In addition, the application was designed taking into
account that new types of exercises could be added to the application. Furthermore,
the addition of new wind instruments is also possible too. However, new instruments
will impact on the application due to the different tuning process between instruments.

• User’s motivation. This objective is considered accomplished due to the use of gami-
fication techniques used in order to keep users motivated while they study with their
instruments. The menus of the application are created with the intention of evoking a
feeling of familiarity with video games. Furthermore, each exercise in the application
is considered as a level of a video game.

• Ease of use. In order to develop a system that provides a good user experience, it is
necessary to create a GUI with several menus that are intuitive and give feedback to
the user about their actions. In this particular case, the system counts with different
menus that are intuitive. In addition, the application gives visual feedback when the
user takes any action. Another feature that improve the usability of the application is
the possibility of creating your own exercises, this feature is designed to allow any type
of musician to understand what type of exercise they are creating, it is not necessary
to be a professional in order to fill properly the fields necessary to create an exercise.
This feature will allow beginners to feel comfortable while it still provides full control
to the user to create exercises of the difficulty they want.

61

7. Conclusions

• Intuitive system. Making an intuitive application is a good way to improve the usab-
ility of the application. In order to create an intuitive system, it is important to develop
a GUI that is easy to understand for every user and does not require any extra explan-
ation. In the proposed system, most of the menus were designed so every user could
understand what to do in each one. However, there are some menus that need a bit of
previous knowledge about music. For example, the Create Exercise menu but as this
system is created for musicians and it is considered that is necessary a minimum music
knowledge to use the application we can consider that the objective is accomplished.

• Validation regarding a specific wind instrument. An application that is intended to
work with different wind instruments as Windy Melody needs to configure some fea-
tures considering aspects like the tuning and tessitura. In order to validate the system,
we decided to test it with a concrete wind instrument, the instrument selected was the
trumpet in SIB. Once the system was checked with the trumpet, we ensured that the
system would work for another SIB wind instruments. Furthermore, it should work
with any problem any other wind instruments if the tune and the tessitura selected is
the correct for it. In addition, it was also tested with a clarinet and the same results
were obtained.

7.2 Problems faced
During the development of the project there was some difficulties. In this section the more

relevant ones will be explained.

One of the difficulties faced was how to handle notes and their correct visualization. A
note can be understood as a pitch that sounds during a concrete amount of time. However,
the problem comes when it is necessary to display that note to different wind instruments.
Each instrument has a particular tune, a concept that is explained in chapter 3. As a result,
the same note needs to be displayed in a different position for each wind instrument, that is
the reason why it is necessary to select an instrument in the profile menu. In addition, there
are other considerations as the clef of the music sheet that also changes the position of the
notes.

Another important aspect that has influenced the project was the current world situation
due to the global pandemic and the resulting lockdown. In this context, it was required to
change the way of working and the planification. For example, the face to face meetings
with the client that were planned had to be cancelled. The solution to this concrete problem
was to have online meetings instead of face to face.

7.3 Addressed competences
In this section the competences related with the intensification of software engendering

that were applied in the development of this project are listed and explained.

62

Future work

• [IS1]Ability to develop system applying software engineering techniques. In or-
der to create this system, some of the most known techniques related with software
engineering were applied. For example, the application of design patterns during the
development when it was possible. In addition, standards for the development of An-
droid applications, in concrete for tablets were followed in the creation of the GUI.

• [IS3] Ability to create a system integrating available resources. In order to accom-
plish the objectives of this project different technologies were used. The technologies
were selected as a result of a study of the different possible solutions for a concrete
problem, then these technologies were integrated to create this system.

• [IS4] Ability to identify problems and design software solutions. During the cre-
ation of this system it is possible to observe different phases. First of all, the problem
was analyzed during the first iterations of the development of the project, then a solu-
tion was designed taking into account the different technologies selected. Finally, the
software project was implemented, tested and documented.

7.4 Future work
In this section, the improvements or additions that could be added to this project in the

future will be described.

• Exchange of exercises routines between users: with the aim of improving the user
experience and increasing the motivation of students that use the application, it is pro-
posed the integration of a new feature that allows students to exchange their routines
and exercises with others. The idea is to use the current JsonParser Module and modify
it to allow the creation of JSON files from exercises inside the application. As a result,
students would use a screen to charge a JSON with the information about an exercise
or a routine and the system would include it into their routines or exercises.

• Add new types of exercises and instruments: the current system has support for
two types of exercises. These two types are the two more relevant for musicians that
practice at home. However, the inclusion of new types would improve the quality of
the learning process. Additionally, other instruments like saxophone or flute could
be included in order to increase the number of musicians that would benefit from the
system.

• Graphical creation of exercises: in order to give to users more freedom to create their
exercises and modify them, specially for expert musicians, it is interesting to include
a way of creating exercises dragging notes to a music sheet. For this purpose, it would
not be necessary to include new technologies, the features that Unity gives support for
this type of screens.

• Teacher support tool: in order to improve the quality in the educational aspect, it

63

is proposed to develop a feature that would allow teachers to monitor the progress of
students in the application. In this context, the routines that a student practice would
be sent by their teacher. In addition, it is proposed to add a feature for teachers to get
feedback about the progress of their students in a routine. To achieve this objective, it
would not be necessary to create a new system, the solution could be the integration of
different types of users in the current system that would have different roles.

• Testing with different types of instruments: with the aim of adding new instruments
to the application and validate the system for all the possible wind instruments that
are suitable for this purpose, it is proposed to test different types of exercises with
different wind instruments. The idea would be that once the system is validated for
that instrument, it could be included in the possible instruments that a user can choose.

• Publish the application: this application was created with the intention of helping
musicians to study at home. In order to increase the public for the application it would
be interesting to publish it in application markets as Google play store1. To accomplish
this objective it would be necessary to pay a fee of 21,45e to register a development
account, then, after configuring privacy and other Google requirements it would be
possible to publish the app in the Google play store.

1https://play.google.com/store/

64

https://play.google.com/store/

Appendices

65

Appendix A

Appendix A

A.1 Image References

Figure A.1: Login reference.

67

Figure A.2: Register reference.

Figure A.3: Profile reference

68

Figure A.4: Statistics reference.

Figure A.5: Routines reference.

69

Figure A.6: Scale reference.

Figure A.7: Icons designed https://www.flaticon.es/autores/freepik.
and https://www.flaticon.com/authors/good-ware

70

https://www.flaticon.es/autores/freepik
https://www.flaticon.com/authors/good-ware

Appendix B

Appendix B

B.1 Routine represented in a JSON file
1 {
2 "type": " Routine ",
3 " description ": " Routine for warn up",
4 " finalDate ": " 20/10/2020 ",
5 "1": {
6 " ExerciseType ": "Scale",
7 "Scale": {
8 "beats": 100,
9 "tune": "SIb",

10 " timeSignature ": "4/4",
11 " firstNote ": "DO 4",
12 " scaleType ": "Mayor Scale",
13 " duration ": 8
14 }
15 },
16 "2": {
17 " ExerciseType ": "Scale",
18 "Scale": {
19 "beats": 120,
20 "tune": "SIb",
21 " timeSignature ": "2/4",
22 " firstNote ": "RE 4",
23 " scaleType ": "Mayor Scale",
24 " duration ": 4
25 }
26 }
27 }

Code listing B.1: Example of Routine in JSON File

71

1 {
2 "type": " Routine ",
3 " description ": " Routine to improve sound DO 4",
4 " finalDate ": " 20/10/2020 ",
5 "1": {
6 " ExerciseType ": " LongNotes ",
7 "Scale": {
8 "beats": 60,
9 "tune": "SIb",

10 " timeSignature ": "4/4",
11 " firstNote ": "DO 4",
12 " noteTimes ": 4,
13 " duration ": 2
14 }
15 },
16 "2": {
17 " ExerciseType ": " LongNotes ",
18 "Scale": {
19 "beats": 60,
20 "tune": "SIb",
21 " timeSignature ": "2/4",
22 " firstNote ": "DO 4",
23 " noteTimes ": 4,
24 " duration ": 2
25 }
26 }
27 }

Code listing B.2: Example of Routine in JSON File

72

1 {
2 "type": " Routine ",
3 " description ": " Routine with rapid exercises ",
4 " finalDate ": " 20/10/2020 ",
5 "1": {
6 " ExerciseType ": "Scale",
7 "Scale": {
8 "beats": 160,
9 "tune": "SIb",

10 " timeSignature ": "2/4",
11 " firstNote ": "LA 4",
12 " scaleType ": "Minor Scale",
13 " duration ": 4
14 }
15 },
16 "2": {
17 " ExerciseType ": "Scale",
18 "Scale": {
19 "beats": 160,
20 "tune": "SIb",
21 " timeSignature ": "2/4",
22 " firstNote ": "SI 4",
23 " scaleType ": "Minor Scale",
24 " duration ": 4
25 }
26 }
27 }

Code listing B.3: Example of Routine in JSON File

73

References

[APL10] KA Akant, Rajesh Pande, y SS Limaye. Monophony/polyphony classific-
ation system using Fourier of Fourier transform. International Journal of

Electronics Engineering, 2(2):299–303, 2010.

[Bec99] Kent Beck. Embracing change with extreme programming. Computer,
32(10):70–77, 1999.

[Car02] Adam Carse. Musical wind instruments. Courier Corporation, 2002.

[CLSBÁRCG18] Mónica Carreño-León, Andrés Sandoval-Bringas, Francisco Álvarez-
Rodríguez, y Yolanda Camacho-González. Gamification technique for
teaching programming. En 2018 IEEE Global Engineering Education

Conference (EDUCON), páginas 2009–2014. IEEE, 2018.

[Dar09] Hugh Darwen. An introduction to relational database theory. Bookboon,
2009.

[dlF13] Jesús Mariano Merino de la Fuente. Las vibraciones de la música. Edit-
orial Club Universitario, 2013.

[FA12] David Vallejo Fernández y Cleto Martin Angelina. Desarrollo de video-

juegos: Arquitectura del motor de videojuegos. Escuela Superior de In-
formática, UCLM, 2012.

[Fu15] Jiulin Zhang Xiaoqing Fu. The influence of background music of video
games on immersion. Journal of Psychology & Psychotherapy, 5(4),
2015.

[Gro12] Fabian Groh. Gamification: State of the art definition and utilization.
Institute of Media Informatics Ulm University, 39:31, 2012.

[HDAS09] Jo E Hannay, Tore Dybå, Erik Arisholm, y Dag IK Sjøberg. The effect-
iveness of pair programming: A meta-analysis. Information and software

technology, 51(7):1110–1122, 2009.

75

[How03] Robert S Howe. The Invention and early development of the saxophone,
1840-55. Journal of the American Musical Instrument Society, 29:97,
2003.

[HSN+14] Eric J Humphrey, Justin Salamon, Oriol Nieto, Jon Forsyth, Rachel M
Bittner, y Juan Pablo Bello. JAMS: A JSON Annotated Music Specifica-
tion for Reproducible MIR Research. En ISMIR, páginas 591–596, 2014.

[Jos08] José Joskowicz. Reglas y prácticas en eXtreme Programming. Univer-

sidad de Vigo, 22, 2008.

[KC16] Ming-Shiou Kuo y Tsung-Yen Chuang. How gamification motivates visits
and engagement for online academic dissemination–An empirical study.
Computers in Human Behavior, 55:16–27, 2016.

[Kra03] Lawrence Kramer. Musicology and meaning. The Musical Times,
144(1883):6–12, 2003.

[Ler04] Fred Lerdahl. Tonal pitch space. Oxford University Press, 2004.

[Mal80] Thomas W Malone. What makes things fun to learn? Heuristics for
designing instructional computer games. En Proceedings of the 3rd ACM

SIGSMALL symposium and the first SIGPC symposium on Small systems,
páginas 162–169, 1980.

[Mas58] Abraham Harold Maslow. A Dynamic Theory of Human Motivation.
1958.

[MM85] Carlton MacBeth y Louis Maggio. The original Louis Maggio system for

brass. Aven Corporation, 1985.

[PVŠ+20] Matevž Pesek, Žiga Vučko, Peter Šavli, Alenka Kavčič, y Matija Marolt.
Troubadour: A Gamified E-learning Platform for Ear Training. IEEE

Access, 2020.

[SDHM96] John A Sloboda, Jane W Davidson, Michael JA Howe, y Derek G Moore.
The role of practice in the development of performing musicians. British

journal of psychology, 87(2):287–309, 1996.

[TC06] Kuo Cheang Tan y Boon Liang Chua. The sound of music and its link with
mathematics. Teaching Mathematics and Its Applications: International

Journal of the IMA, 25(4):181–188, 2006.

[TK95] David Talkin y W Bastiaan Kleijn. A robust algorithm for pitch tracking
(RAPT). Speech coding and synthesis, 495:518, 1995.

76

[Wes94] Martin Litchfield West. The Babylonian musical notation and the Hurrian
melodic texts. Music & letters, 75(2):161–179, 1994.

77

Este documento fue editado y tipografiado con LATEX empleando
la clase esi-tfg (versión 0.20181017) que se puede encontrar en:

https://bitbucket.org/esi atc/esi-tfg

79

https://bitbucket.org/esi_atc/esi-tfg

	Abstract
	Resumen
	Thank-you note
	Contents
	List of Tables
	List of Figures
	List of code listings
	List of acronyms
	Introduction
	Objectives
	General objective
	Specific objectives

	State of art
	Musical training
	Basic concepts
	General learning
	Trumpet practice
	Basic exercises to practice with wind instruments

	Gamification in education
	Basic concepts
	Applications of Gamification

	Technology and music
	Relationship between music and video games
	 Mobile applications for wind instruments

	Methodology
	Software development methodology
	Why Extreme programming
	 The application of Extreme Programming

	Hardware and Software Resources
	Hardware resources
	Software resources

	Architecture
	Architecture overview
	Graphical user interface layer
	Menu Module
	Exercise Module

	Control and tracking layer
	Tracking Module
	Manager Module

	Persistence Layer
	JSONParser
	Web Server Module

	Design patterns

	Results
	Work distribution
	Iterations
	User stories

	Windy Melody: Final Result
	Project cost and resources
	Project statistics

	Conclusions
	Reached objectives
	Problems faced
	Addressed competences
	Future work

	Appendix A
	Image References

	Appendix B
	Routine represented in a JSON file

	References

