
UNIVERSIDAD DE CASTILLA-LA MANCHA

ESCUELA SUPERIOR DE INFORMÁTICA

BACHELOR IN COMPUTER SCIENCE

Intelligent system based on mixed reality for
diagnosis and assistance in primary care

Pablo del Hoyo Abad

July, 2024

INTELLIGENT SYSTEM BASED ON MIXED REALITY FOR DIAGNOSIS AND
ASSISTANCE IN PRIMARY CARE

UNIVERSIDAD DE CASTILLA-LA MANCHA
ESCUELA SUPERIOR DE INFORMÁTICA

Department of Technology and Information Systems

BACHELOR IN COMPUTER SCIENCE
COMPUTING

Intelligent system based on mixed reality for
diagnosis and assistance in primary care

Author: Pablo del Hoyo Abad

Advisor: David Vallejo Fernández

Co-advisor: Francisco Manuel García Sánchez-Belmonte

July, 2024

TRIBUNAL:

Presidente:

Vocal:

Secretario:

FECHA DE DEFENSA:

CALIFICACIÓN:

PRESIDENTE VOCAL SECRETARIO

Fdo.: Fdo.: Fdo.:

iii

Abstract

The use of new technologies is what characterises a new approach to healthcare known
as smart healthcare. By employing the tools provided by Artificial Intelligence (AI), Mixed
Reality (MR), the Internet of Things or cloud computing, healthcare systems have been able
to diagnose and treat diseases more efficiently. At the core of those kinds of improvements
are intelligent clinical Decision Support Systems (DSSs,) which aids physicians in the dia-
gnosis and treatment process.

In Spain, primary care attention faces many challenges. One of them is the integration
of technological advancements which could improve the quality of the services provided
by medical staff. It is in this context in which a system which merges two fields with the
potential of having a profound impact in medicine such as AI and MR has been developed as
part of this project.

The project consisted in the development of a system employing methods and techniques
from AI and MR to enhance the diagnosis and treatment capabilities of primary care staff.
At the core of the system, there is a MR virtual assistant which indicates the professional
the steps they have to perform according to a medical protocol which has had to be spe-
cified previously in a web application also develop as part of this project. Additionally, the
system supports querying a Large Language Model (LLM) about the contents of documents
containing relevant information for a medical procedure. Given the potential sensitivity of
the documents which the LLM uses to extract the information, the LLM has been hosted on a
server for compute intensive workloads owned by the UCLM.

Apart from helping the professional in the task of diagnosing and treating a disease, the
system can also be used by medical students to put in practice their knowledge without the
constant supervision of an expert who corrects them. Finally, the system may easily be
adapted to areas different than medicine where procedures are clearly defined, such as the
ones involving the repair of products.

v

Resumen

El uso de las nuevas tecnologías es lo que caracteriza un nuevo enfoque de la asistencia
sanitaria conocido como salud inteligente. Mediante el empleo de las herramientas propor-
cionadas por la inteligencia artificial, la realidad mixta, el Internet de las Cosas o la com-
putación en la nube, los sistemas sanitarios han podido diagnosticar y tratar enfermedades
de forma más eficientemente. La base de ese tipo de mejoras se encuentran en los sistemas
clínicos de soporte a la decisión, los cuales ayudan a los médicos en el proceso de diagnóstico
y tratamiento de enfermedades.

En España, la atención primaria se enfrenta a numerosos retos. Uno de ellos es la integra-
ción de avances tecnológicos que puedan mejorar la calidad de los servicios prestados por el
personal médico. Es en este contexto en el que un sistema que aúna dos campos con el po-
tencial de tener un profundo impacto en la medicina, como son AI y MR, ha sido desarrollado
el presente proyecto.

El proyecto consistió en el desarrollo de un sistema que emplea métodos y técnicas de
inteligencia artificial y realidad mixta para mejorar las capacidades de diagnóstico y tratami-
ento del personal de atención primaria. Este se basa en un asistente virtual que indica al
profesional los pasos que tiene que realizar según un protocolo médico que ha tenido que ser
especificado previamente en una aplicación web, también desarrollada como parte de este
proyecto. Además, el sistema permite consultar a un LLM sobre el contenido de los docu-
mentos que contienen información relevante para un procedimiento médico. Dada la posible
sensibilidad de los documentos que el LLM usa para extraer la información, el modelo se ha
desplegado en un servidor propiedad de la UCLM.

Además de ayudar al profesional en la tarea de diagnosticar y tratar una enfermedad, el
sistema también puede ser utilizado por estudiantes de medicina para poner en práctica sus
conocimientos sin la supervisión constante de un experto que les corrija. Finalmente, el
sistema podría adaptarse fácilmente a otros ámbitos distintos de la medicina en los que los
procedimientos están claramente definidos, como por ejemplo los que implican la reparación
de productos.

vii

Acknowledgement

En primer lugar, quiero expresar mi más sincero agradecimiento a mi familia, quienes han
sido mi mayor apoyo a lo largo de todo este camino. Gracias a mis padres, por su amor
incondicional, su paciencia y por haberme brindado siempre las mejores oportunidades. A
mis hermanos, por ser una fuente constante de ánimo y por creer en mí en cada paso que he
dado.

A mis profesores del colegio donde me he formado desde los tres años hasta terminar el
Bachillerato con dieciocho. La influencia que he recibido de ellos ha determinado en gran
medida la persona que soy hoy en día.

Una mención especial merecen mis tutores de TFG, David y Paco. Su orientación, con-
fianza, compromiso y, sobre todo, paciencia, han sido cruciales para la realización de este
trabajo.

Finalmente, quiero agradecer a todos mis amigos y compañeros de estudios, quienes han
sido una parte esencial de esta experiencia.

Pablo

ix

A mi familia

xi

Contents

Abstract v

Resumen vii

Acknowledgement ix

Contents xiii

List of Tables xvii

List of Figures xix

List of code listings xxi

List of acronyms xxiii

1 Introduction 1

1.1 Primary health care . 1

1.2 Smart healthcare . 1

1.3 Context . 3

1.4 Project proposal . 3

1.5 Applications . 4

1.6 Document structure . 5

2 Objectives 7

2.1 General objectives . 7

2.2 Specific objectives . 7

3 State of art 9

3.1 Deep learning . 9

3.1.1 Supervised learning . 9

3.1.2 Training neural networks . 12

xiii

0. Contents

3.1.3 Calculating the gradients . 12

3.1.4 Neural networks for sequence modelling 13

3.1.5 Language modelling . 13

3.1.6 Transfer learning . 15

3.2 Web development . 16

3.2.1 Frontend development . 17

3.2.2 Backend development . 21

3.3 Extended reality . 23

3.3.1 XR Hardware . 24

3.3.2 Developing XR applications . 26

4 Methodology 29

4.1 Development methodology . 29

4.1.1 Adaptive Software Development 30

4.1.2 Work distribution . 30

4.2 Development workflow . 31

4.3 Hardware and software resources . 32

4.3.1 Hardware resources . 32

4.3.2 Operating systems . 33

4.3.3 Software resources . 33

5 Architecture 37

5.1 Overview . 37

5.2 Web application . 38

5.2.1 Protocol editor . 40

5.2.2 LLM page . 47

5.3 The protocol service . 48

5.3.1 Saving a protocol . 49

5.3.2 Storing documents and protocol step resources 51

5.4 LLM service . 52

5.4.1 Running the self-hosted LLM . 53

5.4.2 Retrival Augmented Generation 55

5.4.3 The sentence embedding model 57

5.4.4 The vector database . 57

5.5 XR application . 58

5.5.1 Developing for the Meta Quest 3 58

xiv

5.5.2 Development . 60

5.6 Deployment . 61

5.6.1 Getting a domain name . 63

5.6.2 Dockerizing the services . 63

5.6.3 Connecting the two machines . 64

5.6.4 Use of a reverse proxy . 65

5.7 Design patterns . 67

5.7.1 Python decorators with arguments 67

5.7.2 Object pool . 68

5.7.3 Iterator . 68

5.7.4 Adapter . 68

6 Results 69

6.1 Real world example . 69

6.1.1 Uploading information . 69

6.1.2 Asking questions to the LLM . 71

6.1.3 Executing a protocol on the Meta Quest 3 72

6.2 Code statistics . 73

6.3 Project cost and resources . 74

7 Conclusions 77

7.1 Reached objectives . 77

7.2 Addressed competences . 78

7.3 Personal conclusion . 79

7.4 Future work . 79

A Appendix A 83

A.1 Instructions for running the system . 83

A.2 Requirements . 83

A.2.1 Configuring the services . 83

A.3 Environment variables . 84

A.3.1 LLM service . 84

A.3.2 Protocol service . 84

A.3.3 NextJS service . 85

References 87

xv

List of Tables

6.1 Lines of code of each system component 73

xvii

List of Figures

1.1 Visual representation of a healthcare professional making use of MR techno-
logy to assist a patient . 2

1.2 Interaction with the developed system . 5

3.1 Graphical representation of a feedforward neural network 11

3.2 Two modern HMDs . 24

4.1 Gantt chart of the work packages . 31

5.1 Architecture of the system . 38

5.2 Protocol editor page . 40

5.3 Example of a real medical procedure represented using a flowchart 41

5.4 Flowchart internal representation . 43

5.5 Example of an invalid protocol . 44

5.6 Flowchart representing the algorithm which determines when to save the
protocol state . 46

5.7 Byte stream to object stream representation 48

5.8 ER diagram . 50

5.9 Sequence of steps performed when a document is uploaded 52

5.10 Depiction of the RAG process . 56

5.11 Tree of Unity script references . 61

5.12 System architecture diagram . 62

6.1 Overweight diagnosis and treatment protocol in the protocol editor 70

6.2 Image associated to protocol step MBI range 71

6.3 Dialog showing documents containing information about overweight 71

6.4 Answers by the LLM using concatenate mode (six chunks) 72

6.5 List of protocols as displayed by the XR application 73

6.6 Step named BMI range shown on the XR application 74

xix

List of code listings

3.1 Simple HTML document for a SPA. The head tag has been omitted 20

xxi

List of acronyms

ADS Adaptive Software Development

AGI Artificial General Intelligence

AI Artificial Intelligence

API Application Programming Interface

AR Augmented Reality

ASGI Asynchronous Server Gateway Interface

BMI Body Mass Index

CA Certificate Authority

CGI Common Gateway Interface

CLI Command Line Interface

CRUD Create Read Update Delete

CSS Cascading Style Sheets

DNN Deep Neural Network

DOM Document Object Model

DSL Domain Specific Language

DSS Decision Support System

ER Entity–Relationship

GPU Graphics Processing Unit

HMD Head Mounted Display

HTML HypertText Markup Language

HTTP HyperText Transfer Protocol

IDE Integrated Development Environment

JSON JavaScript Object Notation

LLM Large Language Model

MIME Multipurpose Internet Mail Extensions

MRTK Mixed Reality Tool Kit

MR Mixed Reality

NIH National Institutes of Health

NLP Natural Language Processing

ORM Object Relational Mapping

OS Operating System

PC Personal Computer

xxiii

0. List of acronyms

RAG Retrival Augmented Generation

RDBMS Relational Database Management System

RSC React Server Components

SEO Search Engine Optimization

SPA Single Page Application

SSE Server Side Events

SSR Server Side Rendering

UI User Interface

URL Uniform Resource Locator

UX User Experience

VPN Virtual Private Network

VPS Virtual Private Server

VR Virtual Reality

XP Extreme Programming

XR Extended Reality

xxiv

Chapter 1

Introduction

IN this chapter, an introduction to the project is given. Firstly, the concept of primary health
and its origin are discussed. Then, the new paradigm of smart healthcare is described,

with a focus on Artificial Intelligence (AI) and Mixed Reality (MR). Finally, the project
proposal and the structure of this document is detailed.

1.1 Primary health care

Primary health care is a cornerstone of a robust and equitable health system, serving as the
first point of contact for individuals and families within the healthcare system. It includes a
broad spectrum of health services including prevention, wellness, and treatment for common
illnesses and conditions. Primary health care aims to improve health outcomes, reduce health
disparities, and enhance the efficiency of healthcare delivery [Org23].

The concept of primary health care gained global recognition with the Alma-Ata Declara-
tion in 1978, which emerged from an international conference organized by the World Health
Organization (WHO) and UNICEF. This declaration emphasized that health is a fundamental
human right and that governments have a responsibility to ensure the health of their people
through accessible, affordable, and equitable primary health care services [HM08].

1.2 Smart healthcare

In order to make the principles outlined in the Alma-Ata declaration possible, the health-
care sector has found in new technologies a great ally. The use of information technologies
in healthcare has given rise to the concept of smart healthcare [TYLG+19]. Smart healthcare
is characterised by the use of technological advancements such as big data, Artificial Intelli-
gence (AI), the Internet of Things, 5G, and cloud computing to provide a more efficient and
personalised way of treating patients. From the perspective of the patient, this new paradigm
has made possible to have a constant monitoring of their health by using wearable devices,
receive assistance thanks to the use of virtual assistants or the possibility of contacting health
care professionals with the help of telemedicine solutions. On the other hand, physicians are
also benefiting from this new approach to healthcare. Specifically, intelligent clinical De-
cision Support Systems (DSSs) have made the diagnosis more accurate. As a consequence,

1

1. Introduction

the patient condition can be described more precisely and personalized treatments become
more effective.

The area of Computer Science at the core of those DSSs is AI. In some situations, these
kind of systems have made better predictions than human doctors [DR15]. Specifically,
machine learning models have surpassed the diagnosis capabilities of physicians in some
experiments, specially those related to pathology and imaging [WS12]. However, the de-
cisions taken by these kind of systems are not blindly applied but serve as a complement to
the judgments made by a human doctor.

Another technology which has had a great impact in healthcare is Mixed Reality (MR)
[TYLG+19]. MR allows integrating virtual objects into the real environment without having
to resort to the cumbersome devices and external navigation systems which characterize most
Augmented Reality (AR) solutions [HFS+19]. This has enabled physicians to get a more
effective training by testing their knowledge and skills in an environment almost identical to
the real one without the costs and ethical barriers real experimentation pose [SSC+18]. MR

does not only implicitly benefit patients by being attended by well trained doctors but can
be used to reduce the gap in knowledge between both of them. Given the visualization and
interaction possibilities MR offers, a doctor can support their explanations with 3D models
which are simultaneously seen by the patient. This mechanism has led to a more accurate
and simple communication between both of them [HNM16]. Additionally, MR has been
used to make telemedicine more convenient and intuitive compared to the classical 2D screen
[HFS+19].

Figure 1.1: Visual representation of a healthcare professional making use of MR technology
to assist a patient

2

Context

1.3 Context
In Spain, the Alma-Ata declaration served as the basis for the Real Decreto 137/1984

de Estructuras Básicas de Salud1which laid the foundations of the Spanish primary health-
care system. In a study published by The European Observatory on Health Systems and
Policies [KBH+15], the Spanish primary care system was regarded as one of the best in the
several dimensions which were analyzed. However, even though Spaniards have a positive
opinion about it, specially when they are asked about the assistance received by the profes-
sionals, overall, its image has been affected as a consequence of the budget cuts which it has
experienced [LC17].

The primary healthcare system faces several challenges. Apart from the underfunding that
the system still suffers, the incorporation of new technological advancements which could
help medical staff as well as patients must also be addressed [LC17].

Given the transformative effects MR and AI can have in medicine, the system developed
as part of this project merges both fields with the aim of enhancing the diagnosis capabilities
of medical staff. This is done in an effort to incorporate new technologies to the healthcare
system. In order to ease its adoption, MR hardware affordable for consumer budgets has been
employed.

Notice that even though the system is focused on the healthcare sector, the techniques
which have been employed to merge AI and MR could be adapted to create similar applica-
tions for other kinds of fields. One which could take advantage of the methods this project
introduces is the construction sector. Specifically, in a future iteration of the system, the
virtual assistant could help a builder to correctly place the materials by showing them virtual
materials at the correct location. After the builder had put, for example, a brick where the
assistant had told them, that event would be detected by the system and it would move to the
next step. This would relieve the foreman from having to constantly supervise the builders
and would enable them to focus on other task related to the construction site.

Additionally, given the assistant’s knowledge on the specific domain and its abilities to
detect how the person has reacted to a instruction given by it, it could help students to test
their knowledge in a practical setting without the scrutiny of an expert because its role could
be almost substituted by the virtual assistant. Furthermore, data related to the way a student
has followed a specific instruction could be gathered and analyzed to evaluate their perform-
ance.

1.4 Project proposal
The project detailed in this document consist in the design and implementation of a sys-

tem which makes use of Artificial Intelligence (AI) and Mixed Reality (MR) to enhance the

1https://www.boe.es/eli/es/rd/1984/01/11/137/con

3

https://www.boe.es/eli/es/rd/1984/01/11/137/con

1. Introduction

diagnosis and treatment capabilities of primary care staff. By making use of a MR head-
set, doctors and nurses will be able to follow the steps indicated by an intelligent assistant
to perform the diagnosis and apply the right treatment with the advantage of not having to
utilize any device which limit the actions they can do with their hands. To ensure medical
protocols provided by the assistant are correct, these are previously specified in a web applic-
ation also developed as part of the project. These medical procedures will be represented as
flowcharts, which indicate the next step the assistant will show based on the options chosen
previously.

Nevertheless, accurately specifying a medical procedure is an arduous task which requires
the precious time of an expert. In case no one is available, a thorough study of the domain
is necessary. That implies reading and assimilating a considerable amount of technical doc-
umentation. Instead of waiting until the medical procedure is fully specified, a Large Lan-
guage Model (LLM) can be queried for the pieces of information which still are not shown by
the assistant. The LLM could also be used to provide more context about specific concepts
or facts which were not deemed necessary to include in a step. The model would obtain the
needed information to answer a query from a set of documents, which have to be uploaded
previously using the web application.

The medical care staff must be aware of the trade-offs between utilizing the assistant and
LLM. The assistant is guaranteed to be correct as long as the procedure does not contain
any errors. However, it is more inflexible given the constraint of having to structure the
information in the form of a flowchart. Instead, the LLM can process documentation written
in natural language so, in that sense, it is more flexible. However, its reasoning capabilities
are not comparable to the ones humans have so there is the possibility that it outputs incorrect
information. The use of one does not preclude the interaction with the other so both can be
used during the execution of a medical procedure.

Given the sensitivity of the data which the LLM may see to obtain the knowledge, the
model will be hosted on a server for compute intensive workloads owned by the UCLM.

A depiction of the way a person interacts with the system is shown in figure 1.2.

1.5 Applications
Medical staff can greatly benefit from the system developed as part of this project for

several reasons. Firstly, the system would reduce the number of mistakes a professional
can make. Those errors are normally a result of the stress and tiredness they experience
because of their responsibility and high number of hours the sometimes have to spent at their
workplace. The system could be used to ensure that specific medical guidelines have been
followed correctly, thus making the diagnosis process more accurate. On the other hand, by
using MR, the system is completely integrated into their environment. As a consequence,
the professional does not have to worry about using devices which could limit the range of

4

Document structure

Figure 1.2: Interaction with the developed system

actions and movements which might be necessary during a diagnosis process because they
only need to wear a MR headset. Additionally, the environment could influence the decisions
taken by the AI component which is part of the system.

1.6 Document structure
The rest of this document has been structured into the chapters listed below, according to

the standards for Final Degree Projects of the School of Computer Science, of the Castilla-La

Mancha University (UCLM).

Chapter 2: Objectives

In this chapter, the objectives and subgoals of the project are outlined.

Chapter 3: State of art

This chapter gives an overview of the current state of the main computer science fields
which this project has benefited from.

Chapter 4: Methodology

In this chapter, the methodology which has been followed is described. It also includes a
section on the resources which have been utilized for the development of the project.

Chapter 5: Architecture

This chapter describes the architecture of the developed system. Apart from outlining
how the system is structured, alternative approaches and major difficulties are also dis-
cussed.

5

1. Introduction

Chapter 6: Results

This chapter presents the final results of the project.

Chapter 7: Conclusions

This chapter discusses whether the proposed objectives have been achieved. Addition-
ally, it proposes future lines of work.

6

Chapter 2

Objectives

IN this chapter, the objectives of the project are outlined. Specifically, the general objective
is explained and then the subgoals which supports the main objective are detailed.

2.1 General objectives

The goal of the project is the design and development of a system based on Mixed Real-
ity (MR) and Artificial Intelligence (AI) to enhance the diagnostic and treatment capabilities
of primary care medical staff. This will be possible by creating a web application in which
procedures commonly carry out in medicine, which are referred as medical protocols, are
specified. The execution of a protocol in a MR application running on the Meta Quest 3
headset will support asking a Large Language Model (LLM) specialized on the contents of
the procedure with the aim of recieving answers with relevant information about it. Given
the sensitivity of the information the LLM may have to see in order to gain that knowledge,
the model will be hosted on a server for compute intensive workloads owned by the univer-
sity.

2.2 Specific objectives

The specific objectives which supports the general one are the following:

• Detailed study of Mixed Reality devices. The Mixed Reality paradigm will be stud-
ied as well as the devices which make it possible. Additionally, the tools which are
used in the development of a MR applications will be researched.

• Detailed study of large language models. LLMs will be studied to know the best way
in which to fit them into the project. Additionally, the tools and technologies which
make it possible to run these kinds of models in consumer hardware will be analyzed.

• Design and development of a MR application that allows the execution of medical
protocols by primary care staff. An application for the Meta Quest 3 headset will
be developed which will execute medical protocols by employing the unique features
the MR paradigm offers. It will also allow interacting with the LLM in an appropiate
manner.

7

2. Objectives

• Design and development of a web application that allows the definition of med-
ical protocols and the association of information basis for the inference process..
A web application will be developed in which medical protocols will be defined.
Moreover, it will allow attaching to each one the information which will be used by
the LLM to answer a question when a protocol is being executed.

• Deployment of a real medical protocol which allows the diagnosis and treatment
of a disease. A real medical protocol will be defined with the web application and will
be executed on the MR headset to prove that the system can easily integrate already
established medical protocols.

8

Chapter 3

State of art

IN this chapter, an overview of the current state of the main computer science fields which
this project has benefited from is given. These are deep learning, web development and

Extended Reality (XR).

3.1 Deep learning
The most recent advances in Artificial Intelligence (AI) have been possible thanks to the

techniques develop by the deep learning community. Deep learning is the subfield of AI

which uses a kind of model, known as Deep Neural Network (DNN) [GBC16], as its main
tool to approach different problems. One field where DNNs have achieved state of the art
results is in Natural Language Processing (NLP) [TSK+20]. Specifically, Large Language
Models (LLMs) have shown very promising results in tasks such as text summarization, ques-
tion answering, text classification or text generation [HQS+23].

3.1.1 Supervised learning
Some kind of problems can be approached using the supervised learning framework. In

this kind of problems, you have some input data and its corresponding output and the ob-
jective is to create a function which maps the input data to the output data. That mapping is
obtained by feeding a model those input-outputs pairs, which will adjust its parameters dur-
ing the learning process to capture the relationships between the inputs and the outputs.

In order to more formally define these problems, we will use a branch of probability theory
known as statistical learning theory [HTFF09]. Let Xs be the set containing the input data
and Ys be the output data and suppose there exists a probability distribution p(x,y) over Xs

and Ys from which we have sampled to obtain the training data D = {(x1,y1), ...,(xn,yn)}.
Our objective is to find a function h : Xs → Ys, known as the hypothesis, for which, given
a real valued function l(ŷ,y) which measures the dissimilarity between its arguments, the
value E(X ,Y)∼p[l(h(X),Y)] is minimized. Since we don’t have access to the distribution, the
expectation is usually approximated by the following expression [Kar16]:

L =
1
|D| ∑

(x,y)∈D
l(h(x),y) (3.1)

9

3. State of art

And that expression is the objective function for the optimization problem you setup to try
to find h(x).

There does not exist a rule which tells which dissimilarity function L(ŷ,y), which is known
as the loss function, to use. Sometimes you choose one for convenience and because it serves
its purpose of measuring dissimilarity but the most common thing is to choose one based on
some statistical property we are interested in. Specifically, there is a branch of statistics
called estimation theory which proposes different methods to estimate the parameters of a
statistical model. Among them, one which is particularly used in deep learning is called max-
imum likelihood estimation [Cha21]. Therefore, the loss function is chosen so that finding
the parameter configuration which minimizes it is equivalent to maximizing the likelihood
function.

The task described above would be easier if we restrict the choice of h(x) to a set of
functions with a specific form [Kar16]. In deep learning, we make use of a kind of functions
which were initially inspired by a very simple model of the brain and, as a consequence,
they were named neural networks. It is important to remember that the objective of neural
networks is not to create a perfect model for the brain, but a machine which achieve statistical
generalization [GBC16]. However, there is a surprising mathematical fact about them and it
is that they are universal function approximators. They are able to approximate functions of
some class (and that class of functions is enough for the objectives we have in a supervised
learning problem) to an arbitrary degree of precision, provided the neural network is "big"
enough [GBC16]. The hardest part is finding the right configuration of the model parameters,
a process known as training, which makes that happen. Neural networks not only work
because of that but also because they generalize very well for data outside of the training
dataset with the help of some techniques to prevent the model from memorizing the data.
The reason why this happen is not deeply understood.

The simplest neural network is called feedforward neural network. The model is the fol-
lowing [ZLLS23, GBC16]. Let xxx ∈ Rd be a vector which contains the features for a par-
ticular data point. Let WWW ∈ Rd×h be matrix, called the weight matrix and let bbb ∈ Rh be a
vector called the bias. Assuming φ(xxx) is a nonlinear function applied elementwise, which
is known as the activation function, the following transformation gives raise to the vector
ooo ∈ Rm, which represent the hidden units for this particular layer:

ooo = φ(WWW T xxx+bbb) (3.2)

The output ooo can be used as an input to another transformation which follows the same
structure as the one in 3.2, but with a different weight matrix and bias, whose dimension
must be set appropriately so that the matrix multiplication and addition can be applied. The
output dimension of that vector does not have to be equal to the input dimension and, in fact,

10

Deep learning

it will normally be different. Neural networks become deep when you stack a lot of these
transformations, one after another. The number of transformation you need will depend
on the task at hand and the only way to find one which works well is by trying different
numbers.

The number of transformations you stack, which is referred in deep learning jargon as the
number of layers of the neural network [GBC16], is an example of a hyperparameter because
it is not learned from the data but it is fixed when you choose the neural network architecture.
Another example of a hyperparameter is the dimension of the hidden units.

A graphical representation of a feedforward neural network with two hidden layers is
shown in figure 3.1.

Figure 3.1: Graphical representation of a feedforward neural network
Image from https://cs231n.github.io/neural-networks-1/

The nonlinear function φ(x) is what allows the neural network to learn nonlinear map-
pings. The ones which were first used were the sigmoid, σ(x) = 1

1+exp(−x) and tanh(x).
However, they have some undesirable properties which make the training process hard. For
that reason, other nonlinear function like the rectified linear unit or ReLU, max(0,x), are
used [GBC16].

Finally, notice that our training set consists of several features vectors. Assume we have
n. We could represent it using the matrix XXX ∈ Rd×n, where the ith columns corresponds to
the ith feature vector. This allows us to calculate the transformation 3.2 for all the feature
vectors in the following way

OOO = φ(WWW T XXX +BBB) (3.3)

and as a consequence, OOO ∈ Rh×n and BBB ∈ Rh×n. BBB results from horizontally stacking the
column vector bbb n times. This particular way of applying the transformation allows us to
leverage the parallel operations at which excel at.

11

https://cs231n.github.io/neural-networks-1/

3. State of art

3.1.2 Training neural networks
The process of training a neural network consists in finding the parameter configuration

which results in the smallest loss evaluated over the training set. In the case of a feedforward
neural network, these parameters are the weight matrices and the bias vectors. We will refer
to those trainable parameters as θθθ ∈Rp, where p is the number of parameters. Nevertheless,
that is not the ultimate goal. The real focus must be on achieving a good performance on
data which has not been seen during training.

Considering all the optimization algorithms that exist, the ones used to train a neural net-
work are remarkably simple because what is required from the objective function, which in
this case is the loss function over the training set, L : Rp→ R, is its gradient with respect to
the model parameters. Let’s denote that value by ∇θθθ L,

One of the most straightforward optimization algorithm is gradient descent [ZLLS23].
Gradient descent updates the parameters using the following rule:

θθθ ← θθθ −η∇θθθ L (3.4)

where η > 0 is a hyperparameter called the learning rate. Other algorithms use other update
rules but, in all of them, the gradient is normally involved.

The problem of using the gradient is that you need to iterate over all the training samples in
order to calculate it for a specific parameter configuration and, as a consequence, if you have
a lot of data, it will take a considerable amount of time to apply a parameter update. Since
this optimization process is actually a proxy to achieve generalization, researchers thought an
estimate of the full gradient would be enough for the task of training a neural network. The
idea is to randomly choose a certain amount of training samples, use only those to calculate
the gradient and use it in the update rule. And surprisingly, it worked [ZLLS23]. In deep
learning, the number of training samples we use to estimate the gradient is called the batch
size and it is also considered a hyperparameter. Let’s denote the loss over those training
samples, known in deep learning as a mini-batch, as Lb

In gradient descent, when we use an estimate of the gradient instead of the full the gradient,
the algorithm is known as stochastic gradient descent.

3.1.3 Calculating the gradients
Since a neural network is a composition of differentiable functions 1, the gradient ∇θθθ Lb

can be calculated using the multivariable chain rule. There is an algorithm for feedfor-
ward neural networks, known as the backpropagation algorithm, which uses the multivariable
chain rule to efficiently calculate it [GBC16]. However, the backpropation algorithm only

1Actually, ReLU is not differentiable at x = 0 but in practice it does not matter because the floating point
representation makes it very unlikely that we will have in memory exactly 0

12

Deep learning

works for that kind of functions. There are other kinds of neural networks which use other
transformations than 3.2 and, as a consequence, some modifications to the backpropagation
algorithm are required to take them into account. Those modifications were obtained by
applying the differentiation rules to those new transformations and explicitely incorporating
them to the code in charge of calculating the gradient.

However, with the advent of automatic differentiation frameworks like PyTorch, Tensor-
flow or JAX, you do not need to worry about updating the code which calculates the gradient
when you add or delete some kind of operation to the neural network architecture because
those frameworks transparently handle all of that for you. What they all do in a more or less
explicit manner is to build a computational graph of the function you want to differentiate
and then apply reverse mode differentation to it. In fact, the backpropagation algorithm is a
particular case of reverse mode differentiation. For more information, see [BPRS18].

3.1.4 Neural networks for sequence modelling

One of the disadvantages of feedforward neural networks is that the feature vectors which
act as an input to the neural network must be all of the same size. However, a lot of problems
can be thought as accepting a variable length sequence of elements which are not independ-
ent from each other. Problems such as speech recognition, language translation or image
captioning fall under this category [ZLLS23].

The deep learning community mainly used two kinds of neural networks to tackle these
kind of problems: convolutional neural networks (CNNs) and recurrent neural networks
(RNNs). The key innovation in these models is the use of parameters sharing [GBC16].
Since the variable length nature of these kind of problems prevents us from having spe-
cific weights for each feature, some weights are always used when processing the whole
sequence.

From those two models, RNNs were the most successful in natural language processing
tasks. However, the deep learning architecture behind all of the state of the art result is the
transformer and, as a result, they are not used that much as they used to. [ZLLS23]

3.1.5 Language modelling

The task of language modelling is actually a sequence modelling task. This is because text
can be seen as a sequence of tokens x1,x2, . . . ,xn which are fed into the model to produce the
desired output. More formally, the task of a language model consists of estimating the joint
probability distribution of the whole sequence [ZLLS23]:

P(x1,x2, . . . ,xt)

The process of obtaining tokens from a piece of text is called tokenization and the set of

13

3. State of art

all tokens which can be generated is called the vocabulary [PH22]. The most straightforward
tokenization algorithm is to consider each character as a token. The main advantages are
that it is simple to implement and results in a small vocabulary. However, this representation
makes it quite hard for the model to learn semantic relationships. Another approach is to use
a word tokenization algorithm, in which the words seen during training form the vocabulary.
Nevertheless, this solution leads to a very big vocabulary and, in addition to that, you have
to deal with problem of treating out-of-vocabulary words. Moreover, if you want to use the
language model for text generation purposes, the output is limited to the words seen during
training. Instead, modern language models use tokenization algorithms which try to combine
the advantages of those two approaches. These are called subword tokenization algorithms
because a word can be splitted into several tokens. For example, a subword tokenizer may
split the word transformers into transform and ers. During the training phase of the model,
the tokenizer is first trained to learn the vocabulary from the training corpus. Byte-Pair En-
coding, WordPiece or SentencePiece are examples of subwords tokenizers [MMN+24].

If we are able to calculate the joint probability distribution of a sequence, P(x1,x2, . . . ,xt)

then we could use the conditional probability distribution, P(xt+1|x1,x2, . . .xt) to repeatedly
sample from it and obtain text that, at least on the surface, a human could have written
[ZLLS23]. There exist many sampling strategies to generate text from the probability dis-
tribution, each of which has its tradeoffs [HBD+19]. In fact, some language models are
specifically trained on the task of predicting the next token given some number of previ-
ous tokens. As a consequence, they can be prompted, which means that the model uses a
prompt to generate a text in a left-to-right fashion conditioned on that prompt. These are
called causal language models. These models contrasts with masked language models which
consider the left and right context to try to predict a token which has been masked. Given
the bidirectional nature of these language models, they cannot be prompted, although some
techniques exist which allow text generation. To be useful, they have to be fine tuned on the
specific natural language task you are interested, such as question answering or sentiment
analysis. An example of such model is BERT [MBHN24].

A term very closely related to language modelling is that of Large Language Model (LLM)
[ZLLS23]. The term is usually applied to causal language models which have a lot of para-
meters, which are in the order of billions. These have resulted in outstanding performance
on different NLP tasks. The reason why researchers are adding more and more parameters to
their model is because it has been empirically shown the their performance increases as the
number of parameters also increases [MMN+24].

For someone who is interacting with a LLM, these are the steps which are important. First,
the prompt is splitted into tokens following the tokenization algorithm which was used to
train the model. Then, a lookup table is used to obtain the embeddings which were learnt
during training. An embedding is a vector representation of a token which carry semantic

14

Deep learning

information. These embeddings are then passed to the first layer of the model, which will
refine that representation to take into account the context. These representation are then
passed to the next layer to create new representations which contain more nuances derived
from the relationship between tokens. This process is repeated across all layers in the model.
Finally, the last layer outputs a probability distribution over the vocabulary, which can be
used to sample from it and obtain new tokens 2.

3.1.6 Transfer learning
In the early days of deep learning, you trained a model with randomly initialized paramet-

ers3 to solve the problem at hand by feeding it the training data. However, if we think of
neural networks as models which learn different characteristic from the training data to drive
the loss towards its minimum, we could reuse those learned properties for a similar task. As
a consequence, the performance of those models would improve and less labeled data would
be needed to train it. For example, suppose we have to create a classifier which assigns to a
particular image a class from a finite set of classes. There exist many deep learning libraries
which already implement a lot of classifiers so a solution would be to choose one, randomly
initialize its parameters, adapt the last output layer so that it outputs a probability distribution
over the classes we are considering, feed in the training data and start training. However, it
has been shown that the neural networks used for computer vision tasks, which are convo-
lutional neural networks, use their firsts layers to learn to identify borders or shapes and the
latters ones are used to learn high level features, like a human face. This was discovered
by applying different visualization procedures to the weights learnt for each layer [Mol20].
Since all of this knowledge is encoded in the model weights, it makes sense to, instead of
randomly initialize the parameters, use as the initial parameters those obtained after training
the classifier on another classification task. This process is called fine-tuning. Specifically,
for computer vision, the most commonly used dataset to train from scratch is ImageNet 4.
Fine-tuning is the most common approach for transfer learning, but other techniques also
exist [GSK+19].

Fine-tuning can also be used with models applied to NLP tasks. However, in the past, this
was not the approach taken for transfer learning for these kind of problems. Instead, they
used the token representations learnt by another model as the initial representations for the
task specific model you choose to solve the NLP task you have at hand. The rationale behind
this method is that, these representations, known as embeddings, carry some meaning so, by
reusing them in another model, the model should not struggle that much compared to starting

2https://www.omrimallis.com/posts/understanding-how-llm-inference-works-with-lla
ma-cpp/

3It is not random in the sense that we blindly choose the initial values for the parameters. There are some
initialization techniques which take into account details of the neural network architecture, like the activation
function, order to make it more likely to have a successful training process. On such initialization is Kaiming
initialization.

4https://www.image-net.org/index.php

15

https://www.omrimallis.com/posts/understanding-how-llm-inference-works-with-llama-cpp/
https://www.omrimallis.com/posts/understanding-how-llm-inference-works-with-llama-cpp/
https://www.image-net.org/index.php

3. State of art

with randomly initialized weights. The main disadvantage of this approach is that you need
task specific architecture [DCLT18].

The most common approach for LLMs is fine-tuning. What the companies who have the
resources to carry out the process do, is to train the model on a vast corpus of text data,
extracted mainly from crawling the Internet. This is the most expensive part of training
a LLM and, as a consequence, this training from scratch is not done that often compared
to the following phases. When the training process has finished, you have a model which
is very good at predicting the next likely token. In addition to that, the model has some
knowledge about human language which could be used when specializing it on a task. These
are called foundation models or base models. Therefore, instead of training a model which
acts as an assistant from scratch, they continue training the model on a curated question-
answer pair dataset so that the model learns to follow instructions. This is the phase where
companies also add guardrails to their models so that they don’t answer with harmful or
inappropriate content. Among the techniques used by researchers to align the answers with
human preferences are Reinforcemente Learning from Human Feedback or, more recently,
Direct Preference Optimization or DPO. [MMN+24]

3.2 Web development
The set of protocols and standards which allow anyone with a web browser to visit webpages

is known as the World Wide Web or simply the Web. The word web is used because those
webpages usually contain links or references to other webpages, making it a graph which
users can traverse by clicking on them. A web application is an application which is de-
veloped using the technologies which the Web is comprised of [Hav18].

Creating a web application has become a popular option for everyone who wants to
provide some kind of service to their users. Web applications are attractive for users be-
cause they only need a web browser and an Internet connection in order to use them and, as
a consequence, they do not have to spend time looking for a compatible application installer
for their operating system. Moreover, there exist technologies which bundle the necessary
parts to run a web application (mainly a browser engine and a JavaScript runtime) with its
logic so that they can be run as if they were a native application. A popular framework which
achieves that is Electron 5 and a well known application developed with it is Visual Studio
Code 6.

An advantage of the Web which web applications benefit from is that it is built around
open standards, which allow compatibility between different web browsers. A standard is
comprised of several technical documents, called specifications, which detail how some fea-
ture must be implemented. The fact that standards are open means that no single entity

5https://www.electronjs.org/
6https://code.visualstudio.com/Docs/editor/whyvscode

16

https://www.electronjs.org/
https://code.visualstudio.com/Docs/editor/whyvscode

Web development

controls those which are approved. Instead, they are created by a group of people from dif-
ferent organizations and institutions who must agree on the best way to achieve the standard
objective. They do that by following the motto Don’t break the Web or, in other words, they
create them in a backwards compatible way 7.

When developing a web application, there are two differentiated parts: the frontend and
the backend [Ack23]. The developer who specialices in the former is known as a frontend
developer while the one in charge of the tasks which belong to the latter is known as a
backend developer. Sometimes, a single developer must work on the frontend as well as on
the backend. These developers are referred as fullstack developers.

3.2.1 Frontend development
The frontend developer deals with the user facing elements of a web application, which

mainly include the user interface. The frontend developer does not only need to know how to
lay out in code the different elements which a User Interface (UI) is made of, but they should
also have knowledge about designing it so that the UI does not become a barrier towards the
task the user is trying to fulfill with the web application.

There exist a lot of technologies which help web developers to create web applications
faster but all of them rely on three core tools, which are HypertText Markup Language
(HTML), Cascading Style Sheets (CSS) and JavaScript [CG23].

HTML

HTML is a document format in which the content of your webpage is written 8 [Hav18].
It defines several tags which are used to give structure to the page. For example, in order
to state that a piece of text is a paragraph, you have to wrap it in a h1 tag or, if you want
to add a button, you should use a button. More generally, the tags are used to state the
containers which you user interface is comprised of. These container may group related
elements, which can be other containers.

CSS

The way these containers are styled and laid out is controlled using CSS. CSS and consists
of a set of rules which apply to a set of HTML elements. The type of HTML elements it acts
on depends on the selector being used in the rule. With CSS you can, for example, change
the font size, margin space or border roundness as well as center an element relative to its
parent HTML element or make it fit the remaining space inside of it. The CSS rules are
normally written in a separate file with the extension .css. 9 However, a lot of people do

7 https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/The_
web_and_web_standards

8https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML/Getting
_started

9https://developer.mozilla.org/en-US/docs/Learn/CSS

17

https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/The_web_and_web_standards
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/The_web_and_web_standards
https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML/Getting_started
https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML/Getting_started
https://developer.mozilla.org/en-US/docs/Learn/CSS

3. State of art

not like to use CSS in that way mainly because it is very easy that these file grow out of
control, specially in big projects. Another reason is that some developers think that style,
layout and content are so related that they should be written in the same file. Although it is
possible to write inline CSS, this way of doing it does not support media queries nor pseudo-
classes. Pseudo-classes allow you to apply certain CSSproperties when an HTML element
is in a certain state, like focused or hovered. For that reason, there exists a project called
Tailwind which offer “utility clasess". 10

JavaScript

If you want to add some interactivity to the webpage or, more generally, execute a program
in it, then you have to use JavaScript. JavaScript was created by Brendan Eich in just ten
days for the Netscape browser [Sev12]. Since then, the programming language has been
adopted by other browsers. Even though its name contains the name of the programming
language Java, it has little to do with it.

In order to ensure that all browsers which claim to run JavaScript could actually run the
same piece of code and obtain the same results, an standard is needed. That standard exists
and is called ECMAScript because it was the Ecma International organization the one in
charge of supervising the standardization process [Hav18].

JavaScript has been so successful that it is possible to run it outside a web browser. For
example, MongoDB 11 and CouchDB 12 use it as their query and scripting language. For
those who want to run it in a desktop and server environment, NodeJS 13 and, more recently
Deno 14, are runtimes which can be used precisely for that.

One design decision which has significantly shaped JavaScript was making it easy for
beginners to learn [Hav18]. It was thought that making the language very flexible would
allow people to focus on the task they wanted to solve and they could spend more time
adding functionality to their webpages instead of fighting the language. However, JavaScript
was so liberal in some parts that in non trivial projects, all those features went actually against
the programmer. Although some improvements have been made in subsequent versions of
the language, like the introduction of a strict mode 15, other aspects like its dynamic type
system make it really hard to maintain a medium-size application written in that language.
For that reason, Microsoft developed TypeScript 16. TypeScript is a programming language
which adds a structural type system to JavaScript, among other features. As a consequence,
the code can be statically analyzed to catch bugs before it is executed. Moreover, if the user

10https://tailwindcss.com/docs/utility-first
11https://www.mongodb.com/
12https://couchdb.apache.org/
13https://nodejs.org/en
14https://deno.com/
15https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
16https://www.typescriptlang.org/

18

https://tailwindcss.com/docs/utility-first
https://www.mongodb.com/
https://couchdb.apache.org/
https://nodejs.org/en
https://deno.com/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://www.typescriptlang.org/

Web development

defined types are given appropriate names, they can be useful when trying to understand
what a piece of code is doing. However, TypeScript is not valid JavaScript because it adds
additional syntax and constructs so it is necessary to convert from one to the other in a
process called transpilation.

Types of web applications

The most common types of web application are server side rendered and client side
rendered[CG23].

The approach which was initially employed to implement dynamic web application was
Server Side Rendering (SSR). In this way of architecting a web application, the requested
HTML is dynamically generated on the server and sent as a response to the client, which,
in case of being a web browser, will parse it and show it to the user 17. The reason why
the HTML has to be generated when requested is because it contains data which has to be
fetched from different sources, like a database, whose contents could have changed since the
last time it was queried.

Initially, the component in charge of generating the HTML was not integrated in the web
server but an application running on the server was responsible for that. Both entities com-
municated using the Common Gateway Interface (CGI), which is an interface which defines
how a web server must communicate with a CGI script 18. Even though they are referred as
scripts, the programs could be written in any language as long as it understood CGI. There
exist other interfaces like FastCGI 19 or uwsgi 20 which were developed to address the inef-
ficiencies of CGI. Some popular SSR frameworks are Django 21, in which the code is written
in Python or Ruby on Rails, which uses Ruby. A programming language which was specific-
ally designed for server side scripting is PHP and it is still used in many web applications
22.

The main advantage of SSR is that the initial load time is faster than the other alternative
to architect a web application because the browser does not have to do anything but to render
the received HTML 23 24. For that reason, search engines have no problems understanding
these webpages and, as a consequence, they are not penalized in their rankings. This is very
important for businesses who want to appear in the firsts positions of a search result because
those rankings determine precisely that. Adding the features to a webpage which make
search engines to rank it higher is called Search Engine Optimization (SEO) [AMK21]. This

17https://hygraph.com/blog/difference-spa-ssg-ssr
18https://www.ionos.com/digitalguide/websites/web-development/what-is-a-cgi/
19https://fastcgi-archives.github.io/FastCGI_Specification.html
20https://uwsgi-docs.readthedocs.io/en/latest/
21https://clouddevs.com/django/server-side-rendering/
22https://w3techs.com/technologies/history_overview/programming_language/ms/y
23https://hygraph.com/blog/difference-spa-ssg-ssr
24https://www.joshwcomeau.com/react/server-components/

19

https://hygraph.com/blog/difference-spa-ssg-ssr
https://www.ionos.com/digitalguide/websites/web-development/what-is-a-cgi/
https://fastcgi-archives.github.io/FastCGI_Specification.html
https://uwsgi-docs.readthedocs.io/en/latest/
https://clouddevs.com/django/server-side-rendering/
https://w3techs.com/technologies/history_overview/programming_language/ms/y
https://hygraph.com/blog/difference-spa-ssg-ssr
https://www.joshwcomeau.com/react/server-components/

3. State of art

contrasts with the other way of making web applications, which heavily relies on JavaScript
to properly work. However, SSR has its disadvantages, the main of which is that it is not
suited for interactive web applications, in which the shown information frequently changes.
This is because, in this paradigm, the only way to get up to date data is by requesting a full
HTML from the server, which considerably impacts performance. Moreover, that limitation
makes it really hard to create web applications that feel like native ones. All of that led to
the development of another paradigm known as client side rendering.

In a client side rendered app, also known as a Single Page Application (SPA), the user does
not download the HTML with all the application data contained there. Instead, they down-
load a very simple HTML document whose most important part are references to JavaScript
scripts. These scripts are in charge of adding the UI elements the web application is com-
prised of. When the user carries out some action which triggers some sort state change, the
JavaScript code running on the user’s browser will be in charge of modifying the UI elements
appropriately (technically, JavaScript modifies the Document Object Model (DOM), which
is the interface JavaScript uses to interact with an HTML document). If that change requires
fetching up to date data, JavaScript will perform an HTTP request to a web server whose
response will contain just the requested data, normally serialized in JavaScript Object Nota-
tion (JSON). When the data is received, JavaScript will place it on the HTML by making the
appropriate modifications to the DOM 25.

1 <! DOCTYPE html >

2 <html >

3 <body >

4 <div id="root"></div >

5 <script src="/ static /js/ bundle .js"></ script >

6 </body >

7 </html >

Code listing 3.1: Simple HTML document for a SPA. The head tag has been omitted

Even though it is possible to create an SPA using vanilla JavaScript, there should be a
strong argument to choose that option over a framework. One reason for choosing a JavaS-
cript framework is that the resulting code is less verbose than its counterpart in vanilla JavaS-
cript. This is because in vanilla JavaScript you have to manually keep the UI in sync with
the application internal state 26 and also because you interact with the DOM in a imperative
manner 27. In frameworks like React or Vue, the idea is to declaratively state how the UI

should look like depending on the application state and then update that state in reaction to
25https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_Ja

vaScript_frameworks/Introduction
26https://daverupert.com/2024/02/ui-states/
27https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_Ja

vaScript_frameworks/Introduction

20

https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/Introduction
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/Introduction
https://daverupert.com/2024/02/ui-states/
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/Introduction
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/Introduction

Web development

some event, like a button press or the completion of an HTTP request. These frameworks
also introduce the concept of components, which group related elements and functionality
of a UI so that it can be easily reused in other parts of the application28.

One advantage of SPAs is that it is very similar to interacting with a native application
because every time a link is pressed or data is requested a page reload is not needed, as
opposed to the traditional SSR approach. Moreover, since the HTML is actually created in
the browser, the only task of a web browser is to serve the basic HTML, the JavaScript script
which will load the actual UI, CSS files and static assets like images or favicons.

However, this approach has some drawbacks. One of them is that the initial load time is
not as fast as the SSR alternative. This is because, once the JavaScript has been downloaded,
it needs to be executed, which takes time. On a fast computer, that is not really noticeable but
on a slow one that delay may be perceived. Nevertheless, what actually make SPAs slower
when loading for the first time is the extra time you have to wait until the requested data from
some web service is received. In a SSR web application, when a request is received, the data
source is queried and used to generate the HTML. Since the data source is normally phys-
ically closer to the machine which generates the HTML, the load time is generally faster29.
Additionally, the people interested in SEO should be aware of fact that search engines may
penalize SPAs because the web crawler, which is a software which looks for webpages to
index30, may not run JavaScript and, as a consequence may only see an HTML similar to
3.1.

3.2.2 Backend development

The backend developer focuses on the server-side part of a web application. They develop
and manage the software which exposes the data and functionality which will ultimetely be
consumed by the frontend.

The developer does not build everything from scratch but instead uses standard building
blocks which solve known problems. For example, the problem of storing data so that it
can be retrieved later is the one for which databases were specifically designed. Or the one
consisting of saving the result of an expensive operation so that the next time it is requested
it can be served quickly is where caches excel at. However, this does not make the process
of developing backend software trivial because, for each type of building block, there exist
many alternatives which were developed with a specific use case in mind. For instance, there
exist many databases, some of which follow the relational model while others model their
data in another way. As a consequence, it is important to know the requirements of the system
being developed so that the chosen tools are well aligned with its objectives [Kle17].

28https://react.dev/learn/thinking-in-react
29https://www.joshwcomeau.com/react/server-components/
30https://www.cloudflare.com/learning/bots/what-is-a-web-crawler/

21

https://react.dev/learn/thinking-in-react
https://www.joshwcomeau.com/react/server-components/
https://www.cloudflare.com/learning/bots/what-is-a-web-crawler/

3. State of art

The difficulty of developing these kind of systems does not rely in just choosing the right
building blocks but also in writing the stitching code which allows them to work together. All
the complexity and implementations details of the system are normally hidden from clients,
who only interact through an Application Programming Interface (API).

There exist many ways to allow clients to interact with the services provided by a system.
For example, you can create a custom protocol at the transport layer to achieve exactly that.
However, it is better to rely on protocols which are well known because there exist a lot of
tools which understand them and, as a consequence, allow you to focus on higher level details
rather than on lower level ones, like the wire format of the data. The most common protocol
used for the development of these kind of APIs is HyperText Transfer Protocol (HTTP).

When designing these kind of systems, one should have the objectives of reliability,
scalability and maintainability in mind. It should be noted that there does not exist expli-
cit rules which tell you how to develop systems which satisfy those properties but some
patterns can be followed to achieve that task [Kle17].

Reliability

A system is reliable when it continues working in spite of things going wrong [Els05]. A
concept which is closely related to this one is that of a fault-tolerant system. A fault and a
failure are not equivalent. The former refers to the situation of the system doing something
which the requirements did not state (it deviates from its spec) while the latter is used when
the system completely stops offering its services to clients. If not handled correctly, faults
may lead to failure.

People tend to think that, when a system is fault-tolerant, then it is impossible for the
system to fail. However, the probability of failure cannot be reduced to zero because you
cannot prepare it for absolutely everything but, with the right tools and procedures you can
get close to it. A system has three sources of faults: hardware faults, software bugs and
human errors (i.e misconfigurations which leads to an outage).

Scalability

The concept of scalability describes the ability of a system of still offering its services
in spite of an increase in load [Kle17]. In order to measure this property of a system, you
need to first define some load parameters, which depend on the system. An example of a load
parameter could be the number of requests received per second or the number of players sim-
ultaneously playing a game. When you know the load of the system, you should ask yourself
how the system is affected when a load parameter increases and the resources you have to
add to it to cope with it. The answers, which require you to take some metrics, will tell you
how scalable the system is with respect to the load parameters under consideration.

Therefore, it does not make sense to say that the system is scalable or does not scale well

22

Extended reality

because it depends on the load metric you are considering. It is possible the system can
cope with an increase in load in some part but completely stop offering its services when the
pressure increases in another part.

Maintainability

The maintainability of a system is a measure of how easy it is to apply modifications to
it [VRW+16]. Some examples of those modifications include adding new features, fixing
bugs or adapting it to new platforms. In order to ensure the maintainability of a software sys-
tem, it is recommended to follow the principles of good operability, simplicity and evolvab-
ility.

By good operability we refer to making routine tasks, like monitoring or keeping depend-
encies up to date easy to perform. It is called operability because the operations team is
in charge of that. Moreover, by keeping the system simple, it easier to understand and the
probability of introducing bugs when applying modifications is reduced. This is because
simplicity makes it easier to reason about the system and it is clearer the consequences the
introduced modifications can cause. Finally, the evolvability principle is very important
nowadays because it is unlikely the system requirements will remain fixed. As such, you
need to create a system which is open for extension to quickly adapt to those changes. In
fact, Agile software development methodologies were specifically created to allow developer
teams to deliver the changes at the requested pace [GGI20].

3.3 Extended reality

Extended Reality (XR) is an umbrella term which covers the concepts of Virtual Reality
(VR), Mixed Reality (MR) and Augmented Reality (AR) [PMB22]. All of them have as a
key characteristic the ability of immersing the user into an environment in such a way they
feel they are there. The main difference between them lies in the amount of real world
information they are incorporating into it, being VR the one which does not include any
elements and AR characterized by the opposite. MR is located more or less at the middle of
that spectrum .

XR is a key technology in what is known as the metaverse. The term appeared for the
first time in a novel by Neal Stephenson named Snow Crash. It was envisioned as another
world which users could access by using the appropriate XR devices. Currently, with the
help of other technologies like 5G, blockchain and AI, the existence of that parallel world
is being close to become a reality. Even though the metaverse is a recent concept and its
definition slightly changes as technology advances, big companies like Microsoft, Tencent,
and NVIDIA are starting to show interest in it. This is specially true in the case of Meta,
which was previously called Facebook but decided to change it to reflect their bet on the
metaverse [WSZ+22].

23

3. State of art

3.3.1 XR Hardware
In this section, the different kinds of hardware there exist to achieve the type of experiences

and interactions which characterize the XR are overviewed.

Head Mounted Display (HMD)

In order to achieve an immersive experience, it is not only necessary to view the virtual
environment but also to freely navigate through it. In order to achieve that, HMDs were
designed. Ideally, the user should not wear any device to enter this virtual environment but
unless scientists come up with a way of implementing these kind of systems in space, the
easiest solution is to use those head-worn devices [RH05].

An HMD is a headset that contains one or two screens (one for each eye) which cover the
persons’s eyes. These are used to show computer generated pictures or images captured from
the real world using cameras. An HMD is usually equipped with different kinds of sensors
which allow the user to move around in the virtual environment as they would do in the real
world. Additionally, it is possible to add other elements which increase the interactivity such
as speech recognition systems or gloves [SC03].

(a) Meta Quest 3 (October 2023) (b) Pico G3 (May 2023)

Figure 3.2: Two modern HMDs
The Meta Quest 3 supports AR thanks to its front cameras but the Pico G3 is a headset

exclusively for VR

However, designing an HMD which users can use comfortably is challenging. This is
because the display specifications these kinds of devices must met go against each other
[RH05]. As a consequence of that, health related issues such as dizziness, nausea, vomiting
and cold sweats have been reported. One of the most well known problems with HDM! is
motion sickness, which may cause the aforementioned health problems. In fact, it is estim-
ated that one in third users meet the necessary requirements to suffer from this condition.
As a result, this severely limits the practical application of XR using HMDs for a significant
number of people [CJA+20].

The devices which allow people to immerse in virtual environments have not always been

24

Extended reality

available to the general public. There was a time in which its use outside simulators tailored
to surgeons, military and pilots was rare. However, that changed in 2013 when the company
Oculus released a series of headsets affordable for consumer budgets. This encouraged other
companies to create their own hardware for XR. These new HMDs were not only cheaper but
also incorporated technical advancements such as the increase in the Field Of View (FOV)
range [JK18].

Currently, the headsets available for sale can be consulted on the webpage VRcompare31.
The page breaks down different technical details for each of the headset but one aspects
which is shown immediately after you click to see more details about a specific HMD is
whether it is standalone or it is actually PC powered. The difference lies on the fact that stan-
dalone headsets are self-contained pieces of hardware which contain everything needed to
run an XR application while PC powered headsets require a powerful PC in which expensive
calculations are offloaded 32. The main advantage of standalone headset is that they are port-
able since you do not have to worry about having a PC close to you and, as a consequence,
they are more convenient for some practical applications. However, the graphics quality is
not as high as the one provided by PC powered headset. Moreover, these latter ones are gen-
erally considered to be more robust and accurate in movement tracking at the cost of being
harder to setup and not being portable.

A point which developers interested in creating applications that incorporate elements
from the real world have to pay attention to is the headset support for pass-through. This
feature allows the user to see the real world without having to take off the device. Not all
headsets have support for pass-through, like the Pico G3 33. Others, like the Oculus Quest 2
have a partial support for it by leveraging the hand tracking cameras. However, the captured
images are in greyscale 34. Nevertheless, there exist alternatives which have been designed
with AR applications in mind and, as such, offer full color pass-through. Some examples
include the Meta Quest 3 35 or the Apple Vision Pro 36. The fact that there exist HMDs which
support full color pass-through does not mean that developers creating applications for those
headsets have access to the data captured by the cameras in real time. This is the case of the
Meta Quest 3, which blocks its access for "privacy reasons".

Mobile augmented reality

Even though HMDs are the main way to interact with the possibilities which XR offers,
other approaches exist. Specifically for AR, mobile augmented reality is a very promising

31https://vr-compare.com/
32https://www.vr-wave.store/blogs/virtual-reality-prescription-lenses/which-heads

et-should-you-buy-pcvr-vs-standalone-vs-console
33https://vr-compare.com/headset/picog3
34https://vr-compare.com/headset/oculusquest2
35https://vr-compare.com/headset/metaquest3
36https://vr-compare.com/headset/applevisionpro

25

https://vr-compare.com/
https://www.vr-wave.store/blogs/virtual-reality-prescription-lenses/which-headset-should-you-buy-pcvr-vs-standalone-vs-console
https://www.vr-wave.store/blogs/virtual-reality-prescription-lenses/which-headset-should-you-buy-pcvr-vs-standalone-vs-console
https://vr-compare.com/headset/picog3
https://vr-compare.com/headset/oculusquest2
https://vr-compare.com/headset/metaquest3
https://vr-compare.com/headset/applevisionpro

3. State of art

alternative since it makes use of hardware which you can easily take with you wherever
you go. Some examples of mobile devices in which AR applications can be run include
smartphones and tablets. While this approach has its advantages, like its low cost compared
to other alternatives or the fact that almost everyone can easily experience AR because those
devices are nowadays ubiquitous, other set of challenges arise such us the limited resources
that smartphones and tablets offer to AR developers compared to special purpose hardware
like HMDs or the environment where the user is located when they are executing the AR

application, which may lead to an undesired level of immersiveness [Cra13].

AR glasses

For AR solutions, there exist another kind of device on the market which tries to be more
lightweight and comfortable than HMDs. This is the case of Augmented Reality Smart
Glasses, which are AR devices that are "worn like regular glasses and merge virtual in-
formation with physical information in a user’s view field" [RBR15]. The specialized web
VRcompare also gathers information about different kinds of AR glasses. One of the most
popular AR glasses according to that webpage are the Xreal Air 2 Pro 37 which were released
in 2023 and costs $410. However, they are not standalone because they require a smartphone
to work. A pair of AR glasses which do not need an external device in order to use it are the
Magic Leap 2, released in 2022 38. However, with its price of $3299, they are not affordable
by a typical consumer budget.

(a) Xreal Air 2 Pro (November 2023) (b) Magic Leap 2 (September 2022)

3.3.2 Developing XR applications
Since computer generated images are a key aspect in XR applications, the most appropriate

software to develop them is a real-time 3D engine [AMHH19]. By real-time, we are referring
to images which are rendered almost immediately and, as a consequence, it is possible to
show a series of them with such a small delay that the result of some kind of interaction,
like a button press, is quickly noticeable on the screen. The most common use of a real-time
3D engine is game development, but this kind of software incorporates additional tools to

37https://vr-compare.com/headset/xrealair2pro
38https://vr-compare.com/headset/magicleap2

26

https://vr-compare.com/headset/xrealair2pro
https://vr-compare.com/headset/magicleap2

Extended reality

develop other kinds of applications, such as simulations. 39. Unity 40 and Unreal Engine 41

are examples of real-time 3D engines.

One of the main challenges real-time 3D engine vendors have to face is the support for
a significant number of XR devices. As it usually happens with a new piece of technology,
each company in the XR hardware market designed its own protocols to interact with their
products. As a consequence, this severely limits the number of devices an XR application can
target. Unity tried to solve this problem using a plugin system which allows Unity applic-
ations to use a common interface to communicate with all supported devices. The vendors
only have to implement the interfaces that the plugin system requires 42. However, this is a
good solution if the developer wants to create their application with Unity. If a very prom-
ising game engine like Godot 43 wants to add support to develop VR games, their developers
can opt for the aforementioned plugin system solution to solve the support problem, but XR

device vendors would have to implement another interface.

To avoid those complications vendors and developers could agree on a standard. For XR,
that standard exists and is called OpenXR 44, which is maintained by Khronos group45.
OpenXR is open and royalty-free. This means that anyone can propose changes to it and that
its use is not restricted by licenses fees. From the point of view of the programmer, XR is is
just a set of APIs which they use to, for example, access a controller state or submit rendered
frames. For implementors, OpenXR tells them the functions which controls the XR device as
well as establishing the lifecycle of a XR application. In addition to that, OpenXR has been
designed to be extensible so that newly added features to a device can be supported without
resorting to vendor specific solutions. In fact, companies can submit their extensions so that
they become part of the standard 46.

These APIs are fairly low level so, if you are developing with a real-time 3D engine, the
most common thing is to work with a friendlier API built on top of it provided by the engine.
For the specific case of Unity, since they already have a plugin system, they created a plugin
which makes all OpenXR compliant devices a target for a XR application developed with
it.

39https://learn.unity.com/tutorial/what-can-unity-do
40https://unity.com/
41https://www.unrealengine.com/en-US
42https://docs.unity3d.com/Manual/XRPluginArchitecture.html
43https://godotengine.org/
44https://www.khronos.org/api/index_2017/openxr
45https://www.khronos.org/
46https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html

27

https://learn.unity.com/tutorial/what-can-unity-do
https://unity.com/
https://www.unrealengine.com/en-US
https://docs.unity3d.com/Manual/XRPluginArchitecture.html
https://godotengine.org/
https://www.khronos.org/api/index_2017/openxr
https://www.khronos.org/
https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html

Chapter 4

Methodology

IN this chapter, the methodology which has been followed is explained as well as the reas-
ons for choosing it over other options. Then, the different working packages in which

the project has been divided are detailed. The chapter finishes by detailing the different
hardware and software resources which have been employed over the course of the project
development.

4.1 Development methodology

A software development methodology normally falls under one of two categories. On of
them is the waterfall approach [Jon17], which was the way in which initially software was
developed. Even though for well-defined project a waterfall approach may be a good option,
in settings were continuous feedback should be given to ensure the developed software is
aligned with the desired objectives or the requirements are constantly changing, the model
starts to fall apart. Since this project makes use of tools which are relatively new which I do
not know in advance whether the will work as planned, the rigid planning which characterizes
the waterfall model can only slow me down.

Agile methodologies emerged as an alternative approach to organize the development of
software projects which were not as rigid as the waterfall model [DNBM12]. Although
there exist many Agile methodologies, all of them follow the principles outlined in the Agile
manifesto 1. Popular methodologies which are grounded on those principles include Scrum,
Kanban, and Extreme Programming (XP).

Even though the aforementioned popular methodologies are considered more lightweight
than the traditional way of developing software, I, nevertheless, consider that they still intro-
duce too much overhead in solo developer projects, as this one. For that reason, I opted for
a simpler one which still followed the agile principles. The chosen one has been Adaptive
Software Development (ADS).

1https://agilemanifesto.org/

29

https://agilemanifesto.org/

4. Methodology

4.1.1 Adaptive Software Development
In a software project which involve technologies like LLMs or XR devices, the results are

unpredictable. As a consequence, the determinism which characterizes the act of planning is
not useful in these kinds of settings. ADS proposes the Speculate-Collaborate-Learn cycle to
quickly adapt to the unexpected circumstances which arise as a consequence of that unpre-
dictability [Hig13].

• Speculate. Since planning is associated with a deterministic output given some inputs,
that word is instead replaced by speculate. This word admits that we could be wrong
and that the best strategy is to remediate it is to put the mechanism to adapt.

• Collaborate. In this phase, the predictable parts are identified and the work environ-
ment is accommodated so that the emergence of the final product can happen. For
this project, these guidelines have been followed every time I had to work on the tasks
associated to a work package.

• Learn. In this part of the cycle, the product is shown to the stakeholders to receive
feedback from them so that the next iteration of it is closer to what they want. This
usually leads to a change in the requirements which which brings us to the speculate
phase again.

4.1.2 Work distribution
Given that there does not exist a fixed planning, the project was divided into several work

units which were added after feedback was received from my advisors. These work packages
are detailed below. The period of time I spent on each one is shown in the Gantt diagram of
figure 4.1.

1. Research about the tools used for the development of web applications as well
as those used for creating XR applications. Given my lack of experience develop-
ing web applications and software for the Meta Quest 3, some time had to be spent
researching about them.

2. Development of the protocol editor. After analyzing the different ways in which
protocols could be shown, the frontend for the protocol editor was developed. This
work package also includes the development of the page which allows the user to edit,
delete or create one.

3. Implement backend logic which handles the protocols. This work package includes
the set of tasks related to designing and implementing the part of the protocol service
in charge of managing the protocols.

4. Implement protocol visualizer on the Meta Quest 3. A visualizer to show a protocol
stored in the backend was designed and implemented. This work package also includes
the protocol menu which allow the user to choose one.

30

Development workflow

5. Research about including LLMs to the system and the possibility of self-hosting
one. Given the hard work people have to put into developing the steps which comprise
a protocol from documentation, the possibility of using a LLM which acted as an as-
sistant during the protocol execution was considered. The possibility of self- hosting
one was also analyzed.

6. Implement LLM service. After selecting the proper technologies, the LLM service
was created to interact with the LLM.

7. Interact with LLM service using the web application. Support to interact with the
LLM from the web application was added as well as the ability to upload documents
containing relevant information during the execution of a protocol.

8. Interact with the LLM service from the XR application. They way in which the
Meta Quest 3 user interacts with the LLM was envisioned and implemented.

9. Application deployment. Each component of the system was containerized and the
appropriate software was installed and configured on each server.

A Gantt chart with the aforementioned work packages is shown in figure 4.1

Figure 4.1: Gantt chart of the work packages

4.2 Development workflow
Git2 is the version control system which has been employed for the development of the

project. The source code is hosted on Github3. The commit messages follow the Conven-
tional Commits specification4. By following it, the intention of the commit is clearer because
the ways to express the reasons to perform the change are standardized in the specification.

2https://git-scm.com/
3https://github.com
4https://www.conventionalcommits.org/en/v1.0.0/

31

https://git-scm.com/
https://github.com
https://www.conventionalcommits.org/en/v1.0.0/

4. Methodology

Moreover, since it also describes the format the commit messages which adhere the specific-
ation must follow, they can be processed by automatic tools.

In addition to that, when a new feature had to be implemented, a new branch was created
for it and a pull request was open. The description of the pull request was filled out with
the scope of the feature. The messages of the commits found in those feature branches do
not follow the Conventional Commits specification and, in fact, they are usually not very
descriptive. This is because those commits are necessary for the gradual development of the
feature but I do not consider them important enough to be included in the commit history
of the project. To avoid including them, the squash merge strategy has been utilized. This
strategy merges the commit of one branch into another by creating a single commit with all
the changes which have been made with respect to the target branch. As a consequence, if
the commit history is consulted, it looks like as if the feature was implemented in a single
commit. However, when a branch backed by a pull request is merged with this strategy on
Github, a link to it is added to the commit message. In this way, if more context about the
decisions which lead to the implementation is needed, you click on it to see the pull request
in which it was developed.

4.3 Hardware and software resources
In this section, the different kinds of hardware and software resources which have been

needed to carry out the project are detailed.

4.3.1 Hardware resources
• Meta Quest 3. This is headset for which the XR application was developed. It is suited

for AR applications since it supports full color pass-through. They were released by
Meta in October 2023. The headset that I have used for the development of this project
was lent by the UCLM spinoff Furious Koalas.

• My Personal Computer (PC). This is the computer I normally use to work. I had to
install an additional disk because Unity projects tend to be heavy and I did not have
enough disk space for them. It includes a Intel Core i7-6700 CPU, a NVIDIA GeForce
GTX 1060 6GB GPU and 16 GB of RAM.

• ITSI computer. This computer has been used for testing the LLM service until the
AIR Research Group received its server. It is located in the Instituto de Tecnologías

y Sistemas de la Información building. The computer is owned by UCLM spinoff
Furious Koalas.

• AIR Research Group server (airproy). This was bought by the AIR Research group
to run compute intensive workloads. For that reason, this is where the service used to
interact with the LLM is running. It includes a 13th Gen Intel Core i9-13900K CPU,
a NVIDIA RTX 4000 ADA 20GB GPU and 126 GB of RAM. This machine is also

32

Hardware and software resources

referred as airproy.

• IONOS Virtual Private Server (VPS). A VPS is a server in which the hardware
resources have been virtualized. As a consequence, it can be used by different users
which are isolated from each other. The VPS provider is the company IONOS and the
chosen one from the available ones 5 was VPS Linux M.

4.3.2 Operating systems
• Fedora 39. Fedora is a Linux distribution sponsored by Red Hat and, in fact, it is the

upstream of RHEL 6. It is developed by the Fedora Project and it differentiates itself
from other distributions by including the latest technologies without compromising
very much the stability of the system. This has been the Operating System (OS) used
for developing the frontend and the backend and it is installed on my PC.

• Fedora 39 Server. It is a version of Fedora which only contains useful software for
administering a server. This was installed on the ITSI computer. This OS was chosen
over Ubuntu Server 22.04 because its installer crashed in the middle of the installation
process for unknown reasons.

• Ubuntu Server 22.04. It is a version of Ubuntu 22.04 which only contains useful
software for administering a server. It powers the AIR Research group server as well
as my VPS.

• Windows 10. Windows was needed to develop the application for the Quest 3 with
Unity. Even though Unity is multi-platform, a lot of problems are avoided by choosing
Windows. The same happens with the needed software to connect the Quest 3 to a PC.
It is installed on my PC on a separate disk.

4.3.3 Software resources
For the development of the system, different software tools have been employed. The

tools have been categorized into four distinct classes based on the general problem they
were designed to solve: programming languages, development tools, software libraries and
documentation tools.

Programming languages

• C#. It is the scripting language used by Unity Engine. The language was developed by
Microsoft. Unity allows you to choose how the C# code is transformed when building
the application by using different scripting backends. For this project, the scripting
backend IL2CPP was chosen.

5https://www.ionos.es/servidores/vps
6https://docs.fedoraproject.org/es/quick-docs/fedora-and-red-hat-enterprise-linux

33

https://www.ionos.es/servidores/vps
https://docs.fedoraproject.org/es/quick-docs/fedora-and-red-hat-enterprise-linux

4. Methodology

• Python. Python is a programming language which is characterized by its ease of
use. In the last years, it has received a lot of attention thanks to the software libraries
and frameworks developed to work with machine learning models but it is also a good
choice other the kinds of applications. It has been the chosen language for the backend.

• TypeScript. TypeScript is a programming language developed by Microsoft. Its main
objective is to add a structural type system to JavaScript, among other features, so that
the written code is more maintainable and some kinds of bugs are caught earlier. It has
been used to develop the frontend.

Development tools

• Unity Engine. It is a 3D real-time engine which is well known for its use for game
development. It also allows you to create XR applications and, as a consequence, has
been chosen for developing the XR application.

• NGINX. It is a web server which can also act as a reverse proxy. It has been used for
serving static files but its reverse proxy capabilites have made it an API gateway 7 to
the services which constitute the backend.

• MariaDB. It is a Relational Database Management System (RDBMS). It is a fork of
MySQL. It has been used to store all the data which needed to be persisted except for
static files and the chunks in which documents are divided.

• Qdrant. It is a vector database [HLW23]. These kind of databases are specifically
designed to store vector embeddings in such a way that retrieving the ones which are
the most similar to a given vector according to a similarity measure is done efficiently.
It has been used to store the chunks in which user uploaded documents are partitioned.

• Visual Studio Code. It is a multiplatform source code editor developed by Microsoft.
It is characterized by its ease of use and its support for many programming languages
by means of the installation of the appropriate plugins. This code editor has been the
one used to write Python and TypeScript.

• Visual Studio. It is an Integrated Development Environment (IDE) developed by Mi-
crosoft exclusively for Windows systems. It is mainly targetted for C# and C++ de-
velopers. It has been used to write the C# scripts for the Unity application.

• Git. It is version control system originally developed by Linus Torvalds. It is used to
track the changes made to the files which are part of a software project and supports
different kinds of workflows which allow programmers to remotely collaborate on the
same codebase.

• Github. It is a Git repository hosting service which also includes features which facil-
itate the collaboration between software developers, such as Pull Requests. The whole

7https://www.redhat.com/en/topics/api/what-does-an-api-gateway-do

34

https://www.redhat.com/en/topics/api/what-does-an-api-gateway-do

Hardware and software resources

project is in a single repository comprised of different directories which contain the
different parts of the system.

• Docker. Docker is a software which uses Linux kernel features, like namespaces and
cgroups, to provide virtualization at the OS level in the form software packages known
as containers. These containers have all the necessary dependencies to run a single
application and, as a consequence, a lot of problems which arise when running an
application on an environment different from the one used to develop it disappear.
It is used in the development stage of a software project but it can also be used in
production.

Software libraries and frameworks

• NextJS. It is a React framework developed by Vercel. It adds additional features
needed when developing a web applications, such as a routing system or image op-
timization, which React lacks of. It also allows you to use React Server Components.
This framework has been used to develop the frontend.

• ReactFlow. It is a React library which aims in the development of node-based UI. It
has been used to implement the protocol editor.

• Zustand. It is a state management library for React. It has been needed to manage the
protocol editor state.

• MUI. It is a React component libraries which offer different kinds of UI elements
which adhere to the Material Design style guide.

• llama.cpp. It is a Command Line Interface (CLI) program and library written in C/C++
to run LLMs locally. It supports more models apart from the ones from the LlaMa
family and the list of available ones is still growing.

• python-llama-cpp. These are the Python bindings for llama.cpp.

• LlamaIndex. It is a Python library which contains tools which ease the development
of RAG (see section 5.4.4) applications.

• FastAPI. It is a Python web framework for the development JSON APIs. It keeps the
code simple and readable by making use of Python type hints.

• SQLAlchemy. It is one of the most popular Object Relational Mapping (ORM) for Py-
thon. An ORM reduces the boilerplate code that results from the impedance mismatch

that exists between the relational model and object oriented paradigm [Kle17].

35

4. Methodology

Documentation tools

• Overleaf. It is an online LATEX editor which enables different people to collaborate on
the same document. It has been used to write this technical report and receive feedback
from my advisors about the written text.

• excalidraw.com. It is a web application to create different kinds of diagrams. It has
been used to draw the diagram of own creation.

36

Chapter 5

Architecture

THIS chapter is devoted to explaining the different parts which constitute the system
as well as showing how each one interacts with the others. Firstly, we will give an

overview of the system as a whole. Later, the design of each subsystem will be detailed with
an emphasis on the most relevant techniques and the trade-offs each important decision has
had.

5.1 Overview
The architecture that underpins the system is comprised of three differentiated parts.

i) Web application. It is what the user employs to design their protocols, associate
resources such as images to each step and attach documents containing useful inform-
ation which may be leveraged by a LLM to produce answers based on the knowledge
contained there.

In the context of this work, a protocol is defined as procedure consisting of several
steps. These steps contain information about the actions the user has to carry out. Each
step contains one or more options from which the user chooses one and that decision
determines the next step during the execution of the protocol. This dynamic is repeated
until a final step is reached. A lot of medical procedures, such as some diagnoses, can
be represented in that way, specially if they are in the form of a flowchart.

ii) XR application. This is the application which has been developed for the Meta Quest
3 headset. This application makes use of the capabilities that MR offers to present the
information introduced by the user using the web application in novel ways. Both ap-
plications are actually frontends which expose, in a friendly manner, the functionality
and data provided by the backend

iii) Backend. The main tasks of the backend are to persistently store the data needed by
the system to work, enforce some constraints on it according to the requirements which
define what is considered valid data, and interact with a self- hosted LLM.

Although the backend looks like a single piece of software to the user, from the point of
view of the system designer, it is actually a distributed system composed of two parts. One

37

5. Architecture

of them is a HyperText Transfer Protocol (HTTP) server serving a JSON API running on a
VPS which interacts with a database and saves user uploaded resources, such as images and
documents. The other one is another JSON API which is in charge of querying a self-hosted
LLM and processing and storing the information contained in the user uploaded documents
in a format efficient for retrieval and appropriate to be used by the model. This service is
being executed on a server which has the necessary resources that these kinds of models
demand. For a thorough discussion about the reasons which lead me to split the backend in
such a way, see section 5.6.

A diagram of the whole architecture containing the different components of the system
with its most important functionalities and elements is shown in figure 5.1.

Figure 5.1: Architecture of the system

5.2 Web application
One of the first decisions which had to be made regarding the web application is whether

to use a Server Side Rendering (SSR) approach or instead build a Single Page Application
(SPA) [CG23]. I opted for the SPA solution for several reasons. Firstly, SSR is a good
option for applications whose state can be handled on the server. A subset of those ones
include Create Read Update Delete (CRUD) applications, which mainly consists in querying

38

Web application

a database and returning the results or modifying its contents using the data inserted by the
user in some kind of form.

However, two features of the SSR approach forced me to completely discard it. On one
hand, an SSR application returns HTML. If the device which consumes the data is a web
browser, there is no problem because the data is already in the format that the web browser
employs to show it. However, in my system there is another device which has to have
access to the same data but does not understand HTML out of the box. As a consequence,
a representation for the data decoupled from the format used by the device to show it is
needed. One of the most commonly used nowadays is JavaScript Object Notation (JSON),
which is the one I have chosen. Therefore, the web application has to consume JSON and
that it is something which a SPA, possibly with the help of a framework or library, allows
you to easily perform.

The other reason for choosing a SPA over a SSR application is that the web application
includes a flowchart editor whose state is constantly changing when you use it. For example,
a node has to update its position when you drag it or its border has to change its color
when you select it. It would be extremely inefficient to keep that state only on the server
because every time it needs to be updated a network request has to be made to notify it. It
is better to handle all of that client side and sync the local state with the server periodically.
For more information on how that syncing has been done for this application, the reader is
encouraged to refer to subsection 5.2.1. These kinds of applications, in which there exist a
lot of interactivity which causes many User Interface (UI) elements to change in reaction to
a state update, are the ones for which SPA frameworks like React 1, Vue.js 2 or Svelte 3 were
designed for.

NextJS is the framework in which the web application frontend has been developed. Nex-
tJS is a React framework. This means that it provides tools which solve problems which
frequently appear when developing web applications which React does not offer by default,
like routing 4. It also includes something called React Server Components (RSC), which
allow you to render some part of the HTML on the server while those that require client-side
state are rendered on the browser using JavaScript.

The web application has four views. These can be accessed by clicking on the buttons
located on the left sidebar:

• Welcome page. It is the one which appears when you type the root Uniform Resource
Locator (URL). An explanation of this project and other useful information can be
found there.

1https://react.dev/
2https://vuejs.org/
3https://svelte.dev/
4https://react.dev/learn/start-a-new-react-project

39

https://react.dev/
https://vuejs.org/
https://svelte.dev/
https://react.dev/learn/start-a-new-react-project

5. Architecture

• Protocol list page. This view contains the list of the protocols the user has created.
Each protocol is represented by a card in which the protocol’s name and two buttons to
edit it or update it are found. In the upper right corner of the card, there is a button that,
when pressed, displays a menu with two options. One option opens a dialog which is
used to upload the documents containing the information the LLM incorporates into its
answer when it is queried and the other takes you to the LLM page. This page is shown
in figure 5.2.

• LLM page. This is the page which allows the user to interact with the self-hosted
LLM. There exist two versions of this one. One uses the information contained in
the documents associated to a protocol but, in the other, it does not make use of any
external knowledge. The former version is accessed by clicking on LLM button located
on the sidebar while, for the latter, you have to click on one of the options in the menu
displayed when you press the button located in the upper left corner of a protocol card.

• Protocol editor page. This is where the user creates their protocols. It also makes it
possible to attach images to a step. The dialog which enables the user to do that was
based on the one designed to upload documents. This fact is represented in the global
architecture diagram of figure 5.1.

Figure 5.2: Protocol editor page

From the aforementioned pages, the most challenging ones have been the protocol editor
and the LLM view and, for that reason, both are detailed in the following sections.

5.2.1 Protocol editor
In order to create or modify a protocol, a simplified flowchart editor has been developed.

However, other options were considered to solve that problem. The most appealing one
consisted in developing a custom Domain Specific Language (DSL) which the user could use

40

Web application

to formally state all the elements needed to successfully carry out a protocol. However, I did
not find this solution satisfying because of the target audience of this application. I expect
this application to be used by people who probably do not have any experience working
with a DSL. For that reason, they would have to spend a period of time learning the DSL

before having a working protocol. Similarly, if the user does not frequently design protocols
with the DSL, it is very likely that they forget how to create one after some time of not
using it. As a consequence, they would have to relearn the DSL, turning it into an important
obstacle towards the real objective the user using this application has, which is defining a
protocol. Other approaches were explored but all of them resulted complex UIs which hurt
usability.

The idea of employing a simplified flowchart editor came up after realizing that these tools
have actually been used in medical contexts to specify some kind of procedure. An example
can be seen in figure 5.3, which was uploaded by the National Institutes of Health (NIH) to
its webpage 5. Flowcharts are also a good tool to summarize the information obtained for the
development of an expert system since they simplify the process of obtaining the rules from
it [Rod15].

Figure 5.3: Example of a real medical procedure represented using a flowchart

The reason why I call it simplified flowchart editor and not just flowchart editor is be-
cause it does not make use of the symbols which characterize these kind of diagrams. There

5https://web.archive.org/web/20170502044017/https://www.nhlbi.nih.gov/health-pro
/guidelines/current/obesity-guidelines/e_textbook/txgd/algorthm/algorthm.htm

41

https://web.archive.org/web/20170502044017/https://www.nhlbi.nih.gov/health-pro/guidelines/current/obesity-guidelines/e_textbook/txgd/algorthm/algorthm.htm
https://web.archive.org/web/20170502044017/https://www.nhlbi.nih.gov/health-pro/guidelines/current/obesity-guidelines/e_textbook/txgd/algorthm/algorthm.htm

5. Architecture

even exist standards which state how flowcharts should look like 6. However, this diagram
represent a flow of different steps so I think it is appropriate to keep the word flowchart.

The flowchart editor

The flowchart has been developed with the help of a React library called ReactFlow 7.
Before discovering that library, I thought on using p5.js8, a JavaScript library which provides
an easier API to create graphics and elements with the canvas HTML element. Had I chosen
p5.js , it would have taken more time to develop the flowchart because I would have needed
to code every behaviour from scratch apart from integrating that code with the rest of the
React application.

When you create a new protocol, there is already one node which represents the initial
step. To create another protocol, you have to click on one of the four handles a node has and
drag the mouse to the position where you want to place the new node. When you release the
button, the node is automatically created at that position. To modify the name or description
of the new node, you have to double click on it. That will open a menu on the right part.
From that menu, you can also attach images to the protocol step. Deletion of a node or an
edge is achieved by selecting it and pressing backspace. Finally, to modify the label of an
edge, you must double click on it.

Choosing the tool to build the editor

Since React Flow has been specifically designed to create node-based UIs, it already in-
corporates basic behaviours so the developer can focus on the application logic. Specifically,
React Flow handles the updating of the nodes position when you perform a pan gesture or
when you drag one or several nodes. It also frees you from having to implement the lo-
gic which updates the UI when you zoom in or zoom out. In addition to that, it provides
an easy mechanism to design custom nodes and already integrates the functionality which
allows nodes to be connected by edges, which can be customized and may contain extra in-
formation like a label. Finally, it allows the user to delete nodes and edges by pressing the
backspace key after selecting those which they want to be deleted.

For the most important high level events, such as deleting or dragging nodes, React Flow
allows you to pass a callback which will be called by the library every time it detects it
happens so the task of designing the UI with React Flow mostly reduces to identifying those
event that trigger some change in the editor state and react appropriately them.

Internally, the flowchart is stored as a graph. The graph is represented by two arrays: one
contains the nodes and the other the edges. Each node has an unique id, which is generated

6https://cdn.standards.iteh.ai/samples/11955/1b7dd254a2a54fd7a89d616dc0570e18/ISO
-5807-1985.pdf

7https://reactflow.dev/
8https://p5js.org

42

https://cdn.standards.iteh.ai/samples/11955/1b7dd254a2a54fd7a89d616dc0570e18/ISO-5807-1985.pdf
https://cdn.standards.iteh.ai/samples/11955/1b7dd254a2a54fd7a89d616dc0570e18/ISO-5807-1985.pdf
https://reactflow.dev/
https://p5js.org

Web application

using the library nanoid 9. An edge references its source and target node using that id.
I decided to use that representation instead of other because that is the one React Flow
employs. If I had used a different one, I would have had to convert my representation to
the one React Flow accepts. The described graph representation is shown in figure 5.4

Figure 5.4: Flowchart internal representation

State management solutions

Apart from React Flow, another library which has been very helpful in the development of
the editor has been Zustand 10. Zustand is a state management library for React. The reason
why this kind of library was used is the need of updating the flowchart editor state or reacting
to a change of it from different parts in the component tree which contain the components
which comprise the protocol editor.

React has its own solutions for state management 11, but had I used them, the code would
have been very hard to understand and thus maintain.

The core of the problem is that different parts of the state belong to different components.
Zustand solves this problem by introducing a global store in which the protocol editor state
lives. This store can be accessed from every component. However, a component does not
access all the state but only those parts which it needs. Otherwise, every component which
made use of this store would be re-rendered every time a portion of the state changes and, as
a consequence, performance would be negatively affected.

Zustand was chosen over other third-party state management libraries such Redux 12 be-
cause of its simplicity. Other libraries of these type are known for its complexity and opin-
ionated way of doing things. Moreover, React Flow uses it internally and it is the one which
is recommended in the docs. The main downside is that, being a relatively new library, there

9https://www.npmjs.com/package/nanoid
10https://zustand-demo.pmnd.rs/
11https://react.dev/learn/managing-state
12https://redux.js.org/

43

https://www.npmjs.com/package/nanoid
https://zustand-demo.pmnd.rs/
https://react.dev/learn/managing-state
https://redux.js.org/

5. Architecture

were not that many resources compared to, for example, Redux. However, my use case was
simple enough that the official documentation and some articles on the topic allowed me to
successfully integrate Zustand into the project.

Zustand has only been used in this page. The other pages employ the state management
solutions provided by React.

Rules for a valid protocol

In order for the protocol to look right when displayed by the XR application running on
the Meta Quest 3, I require the protocol to be in a valid state. Specifically, these are the rules
that every protocol must satisfy so that it can be saved in the database:

1. There must exist an initial node.

2. The name of a node must be non-empty.

3. If a node has more than one outgoing edge, then the label of each of those edges must
be non-empty.

4. Two edges which share the same source node cannot have the same label.

The editor checks these rules every time it is modified and when it detects that at least one
them is violated, it informs the user by changing the UI accordingly. Specifically, when rules
3. and 4. are not met, the border of the div which contains the label turns red and when rule
2. is broken, the text Undefined Node appears in a red background. Rule 1. cannot be broken
because the user cannot delete the initial node by pressing backspace. This state can be seen
in figure 5.5.

Figure 5.5: Example of an invalid protocol

Saving local state

One of the hardest parts of this project has been syncing the local protocol state with the
one which is stored on the backend. The main difficulty comes from the fact that I require the
protocol to be in a valid state, but when the user modifies it, it has to necessarily go through
a state which I consider invalid.

44

Web application

There exist many solutions to save the protocol, the simplest of which consists in creating
a button which the user presses when they want to save it. In case the protocol is in a
invalid state, that operation is simply not performed. The main drawback is that the user may
forget to click on the save button and may lose all the steps and options added since the last
time they saved it. To avoid that situation, another solution is to save the state every time
it changes. However, that is happening continuously if the user is modifying the protocol,
specially if they are changing the position of a node by dragging it. As a result, a lot of
requests would have to be sent to the server. Since that aggressive autosaving did not wholly
appeal to me but I did not want the user to lose its progress, I decided to implement an
autosaving functionality which saves the state after a set of changes have been detected for a
period of time.

Specifically, my approach is the following. Every time a node or an edge has one or more
of its properties modified, it is recorded. If more than two seconds have passed since the
last time a change was recorded, then it is saved and, after that, those nodes and edges are
discarded. Only the nodes or edges which have changed and thus have been recorded are
sent to the backend to be saved. In other words, not all the local state is sent to the backend
so that it replaces the old one stored in the database by the received new one but only those
nodes or edges whose properties have been modified. For example, suppose I modify the
state of the protocol by moving a node. This results in the node being recorded. After six
seconds of not detecting any change, the whole node is saved, even though its position was
only changed. A higher level of granularity would have made the code on the frontend and
the backend more complex and the benefits were not clear to me given that I store no more
than six properties for each node or edge. A high level overview of this algorithm is shown
in figure 5.6.

In addition to that, if more than ten seconds have passed since the first node or edge was
recorded and the state has not been saved yet, then it is saved. This is done to avoid long
periods of times in which changes have been made but the user continues modifying the
protocol.

When a node or an edge is deleted, that change is immediately saved, and does not affect
whatsoever the process defined before. This was done mainly because it was simpler to
implement.

There is one problem with this approach and it is that it is likely that, when it is time to
save the protocol, it may be in a invalid state which the backend should not accept. The
easiest solution would have been to abort the saving operation but that would have conflicted
with the objective of the autosave functionality of not having long periods of time in which
changes have been made but are not committed. The solution that I came up with consisted in
saving those parts of the state which have changed but did not make the state which is already
in the backend invalid. For example, consider the protocol in figure 5.5. The node without

45

5. Architecture

Figure 5.6: Flowchart representing the algorithm which determines when to save the protocol
state

a name will not be saved and, as a consequence, neither the edge which joins it the Initial
Node. The edges whose labels contain the text Step will not be stored on the database. If the
edge had not had another saved label, then the whole edge is not saved. As a consequence,
a protocol can be saved or partially saved and this situation is shown in a message located
in lower right corner of the editor. This message changes to inform the user when an update
to the protocol local state has happened and it is shown until the valid changes have been
committed.

Other technical considerations

React Flow is DOM-based13, which basically means that it uses the DOM to draw the
diagrams. The advantage is that you do not have to deal with low level graphics primitives
to show the UI elements on screen but it is not as performant as the canvas API to create
graphics. Unless you are rendering a lot of content in the diagram, this is seldom a problem.
However, it is important to keep this fact in mind because performance could be affected
if you are displaying heavy DOM nodes. I had had performance problems because of the
TextField MUI component. On previous versions of the project, it was shown on every edge
and it contained the edge’s label. However, when five or six of those elements had to be
rendered, the editor started to become laggy. I solved this problem by displaying the label
inside a div and only showing the TextField when the user double clicks on the edge since
that represents their intention of modifying the label text. When the user clicks away, the
TextField disappears and the div is shown again. As a consequence, there is at most one
TextField rendered given at a given time.

13https://github.com/xyflow/xyflow/issues/3044#issuecomment-1541584718

46

https://github.com/xyflow/xyflow/issues/3044#issuecomment-1541584718

Web application

5.2.2 LLM page
The objective of this page is interacting with the self-hosted LLM. Although the UI may

induce the user to think that they could chat with it, this is actually not possible. This is
because previously sent messages are not saved and, as a consequence, the model cannot be
asked about other parts of the conversation. Even though implementing that feature would
no have been extremely hard if the messages are kept client-side and they are sent as context
with the new prompt to the model, it would have deviated the focus from the actual purpose of
the LLM in this application, which is answering questions given only the knowledge gained
during training and fine-tuning or the one contained in the documents uploaded by the user
for a protocol.

There exist two variations of this page. In one variation, the answer to the user’s question
does not employ the knowledge extracted from any document but only the one which is
encoded in the model’s weights. It is accessed by clicking on the LLM button located on
the side bar. The other variation makes use of the knowledge contained in the documents.
Moreover, that view allows the user to choose the generation mode (see section 5.4.2) for
synthesizing the answer. This view is accessed by clicking on the option Chat which appears
in the menu which is displayed when you click on the button located in the upper right corner
of a protocol card, in the protocol list page. The documents consulted during the generation
of the answer are the ones associated to that protocol.

Receiving LLM responses

One of the most challenging parts that I have faced when coding this page has been show-
ing the LLM response in a streaming fashion. That basically means showing the different
chunks an answer is comprised of as soon as they are received by the browser so that it is
incrementally displayed to the user. I could have opted for buffering the answer and just
display it when the LLM had finished generating it but that would have affected User Ex-
perience (UX) because the user would have had to wait a considerable amount of time until
the full response had been fully synthesized. Moreover, after the release of LLM powered
chatbots, such as ChatGPT or Gemini, people expect to see the model response gradually
displayed when interacting with these kinds of models.

In order to support this streaming functionality, I considered using Server Side Events
(SSE)14. This feature allows clients to receive real time updates from a server without having
to request them previously. This is achieved by first establishing a connection with the server
and keeping it alive. This option seemed attractive because JavaScript offers an API to work
with these kinds of events , which allows you to attach a callback every time an event of
some kind is received. Regarding my problem, an event would have been the generation of

14https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_serve
r-sent_events

47

https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events

5. Architecture

a part of the model’s answer (i.e., the generation of a token).

However, there were two details which deterred me from carrying out the implementation
of this approach. Firstly, as it has been said, this method requires a persistent connection.
Therefore, when a prompt had to be submitted, a request had to be made to the server so
the LLM starts generating a response. But the different chunks in which the LLM response is
divided would not come from the connection created for that request but from the persistent
one opened to support SSE. This makes the code on both the frontend and the backend more
complex and difficult to reason about.

The solution which I finally implemented makes use of the Stream API. This is a JavaS-
cript API which allows the developer to start processing chunks of media such as video,
image or text before the content has been fully downloaded 15. Additionally, this API sup-
ports transforming one type of stream into another one. This is needed in my case because
the response is being received as a stream of bytes which represent text. Specifically, the text
is UTF-8 encoded so the first step is to convert the stream of bytes into a stream of text. This
is done by using an implementation of a TransformStream. JavaScript already provides this
implementation, called TextDecoderStream. Since the format of the responses is in nd-json
(see section 5.4) the text stream has to be split on the newline character (\n). That results on
pieces of text which are valid JSON which are then deserialized into a custom object called
LLMResponse. LLMResponse has a single string property called text which contains a
chunk of the answer. The TransformStreams which are in charge of that transformation
were inspired by a snippet of code hosted in a Github gist16. A graphical explanation of this
process can be seen in figure 5.7.

Figure 5.7: Byte stream to object stream representation

Therefore, instead of reading from the byte stream, I read from the LLMResponse stream,
whose content is then concatenated with the one which was previously read from it.

5.3 The protocol service
The aim of this service is to persistently store the data which comprise a protocol, the

images attached to a protocol step and the documents associated to a protocol.

15https://web.dev/articles/streams
16https://gist.github.com/nestarz/1fa7ae93fb83f1eafb1b88c3a84f2e02

48

https://web.dev/articles/streams
https://gist.github.com/nestarz/1fa7ae93fb83f1eafb1b88c3a84f2e02

The protocol service

Since all of those elements need to be retrieved by two devices so distinct such as a web
browser and the Meta Quest 3, a JSON API was created to interface with the storage software.
In this way, the functionality offered by this service can be consumed by both of them by
performing HTTP requests. The frameworks which have been used to develop the application
for each device contain an HTTP client capable of performing those operations as well as
mechanism for serializing or deserializing the content of the messages which are sent or
received.

The endpoints this service exposes are mostly CRUD, because they create, read, update or
delete one or many of the aforementioned elements.

The framework which has been used for the creation of the JSON API is FastAPI17. It is
written in Python and integrates tools which make the incorporation of recurring elements
in a JSON API very easy, such as data validation. Moreover, it automatically supports the
generation of documentation in a standardized format known as OpenAPI18. FastAPI is built
on top of Starlette, an HTTP server implementing the Asynchronous Server Gateway Inter-
face (ASGI) 19. As a consequence, the handlers for an HTTP request can be co-routines so the
whole server can run on a single thread and still concurrently serve multiple requests. The
main drawback of writing asynchronous code is that the used libraries must have support for
it. Otherwise, the event loop can get blocked and performance is affected. Although there
exist versions or alternatives to the libraries I have used which are async-aware, for some of
them there were not as much documentation compared to the version or alternative employ-
ing blocking calls. As a consequence, I opted for writing the handlers as normal functions.
In that case, FastAPI runs them in a thread pool, so blocking calls are not a concern.

Other frameworks were considered but I finally opted FastAPI because I had used in the
past and I have experience programming in Python.

5.3.1 Saving a protocol
The data which is necessary to show a protocol in the flowchart editor or in the visualizer

developed for the XR application is stored in a relational database called MariaDB. MariaDB
is a fork of MySQL. Initially, MySQL was chosen because I had worked with it before
and, therefore, was already familiarized with it. However, it lacks an SQL extension which
I needed for some queries. Specifically, I was interested in the RETURNING option in a
INSERT statement 20, which returns the records which have been added. This is very useful
if the table contains an auto-increment column because you are able to get the value assigned
to them after they are inserted. As a consequence, I opted for the most similar relational
database which included that extension, which was MariaDB.

17https://fastapi.tiangolo.com/
18https://swagger.io/specification/
19https://asgi.readthedocs.io/en/latest/
20https://mariadb.com/kb/en/insertreturning/

49

https://fastapi.tiangolo.com/
https://swagger.io/specification/
https://asgi.readthedocs.io/en/latest/
https://mariadb.com/kb/en/insertreturning/

5. Architecture

I also considered PostgreSQL but, since I was going to use an ORM, I would not have used
its distinguishing features because part of the objective of an ORM is to provide an uniform
interface over all relational databases so that you can easily retrieve objects from it. I would
have needed to step outside of the functionality offered by the ORM. However, none of those
features were of interest for me for this project. Therefore, I decided to stick to a Relational
Database Management System (RDBMS) I had used in the past.

The Entity–Relationship (ER) diagram is shown in figure 5.8.

Figure 5.8: ER diagram
ER diagram of the entities stored in the relational database.

Considering a document oriented database

Before choosing a relational database, I analyzed whether a NoSQL database would be a
good fit for my use case. Specifically, I focused on document oriented databases, such as
MongoDB or CouchDB. Documented oriented databases are a good option if the relation-
ship between the entities which form part of the domain follow a tree like structure (tree of
one-to-many relationships) and there do not exist many many-to-many relationship . As a
consequence, related data is kept close to each other and not spread across different tables,
as it occurs in the relational model [Kle17]. Moreover, these kind of databases are more
flexible in the sense that you do not need to define a schema which determine the structure
of the data. Therefore, a change of the schema is easily manageable, at least by the database.
This is because inserting data is reduced to just dumping a JSON string.

Even though there do not exist many-to-many relationships in the ER diagram shown
in 5.8, I did not know that at the beginning of the project. Moreover, I also had to take into

50

The protocol service

account the time spent learning a new piece of technology with which I had no experience
such as a document oriented database. Regarding schema flexibility, MariaDB supports
saving JSON which can even be queried 21.

The ORM

The ORM I have used is SQLAlchemy because it is the most popular for Python and,
therefore, there exist a lot of information about it on the Internet. An ORM tries to reduce
the impedance mismatch which exist between the relational model and the object oriented
paradigm. However, an ORM is leaky abstractions because you need to know how the rela-
tional model and SQL works to effectively use it. In fact, given the low complexity of the
queries which had to be performed, they could have been written in raw SQL. However, since
I opted for the ORM, time had to be spent translating the raw SQL queries into the format
which accepts SQLAlchemy.

5.3.2 Storing documents and protocol step resources

The document associated to a protocol and the images attached to a protocol state are
stored on the VPS file system. I initially thought on saving them in the relational database
but after some research, I found out that saving a lot of them could affect performance.
Moreover, I wanted those static resources to be served by web server specialized in that task,
such as NGINX. For that, the best option was to save them in the file system.

Before storing a file to the file system, it will check that is of the correct type. Specifically,
only png and jpeg images are allowed because those are the formats which Unity supports by
default. For documents, pdf and UTF-8 encoded txt files are supported because those were
the most straightforward formats to process. The modules in the global architecture diagram
in figure 5.1 in charge of that task are Image file validator and Document file validator.

When an image is uploaded to a protocol step, its name is substituted by a unique identifier
and stored in one directory in the file system. The file extension must be kept so that the web
server associates a correct Multipurpose Internet Mail Extensions (MIME) type to the content
which is serving. All images are stored in the same directory, even though they may belong to
different protocol steps or even to different protocols. The data which links back an image to
a protocol step is stored in the relational database. Additionally, its name, size and extension
is saved along it. That is the purpose of the tables nodes_resources and documents in the
ER diagram of figure 5.8.

The same strategy is followed for a document. The only difference is that the LLM service
is contacted so that that it is processed and stored in a format which is quickly retrievable for
the generation of an answer. This can be seen in the diagram shown in figure 5.9.

21https://mariadb.com/es/resources/blog/using-json-in-mariadb/

51

https://mariadb.com/es/resources/blog/using-json-in-mariadb/

5. Architecture

Figure 5.9: Sequence of steps performed when a document is uploaded

5.4 LLM service
This service is in charge of querying the self-hosted LLM for an answer to a specific

question as well as processing the user uploaded documents in such a way that they can be
stored in a manner such as their content can be quickly retrieved for the generation of the
LLM response. Since the functionality of this service is meant to be consumed by processes
running on another machine, a JSON API has been created. FastAPI was chosen for that task
for the same reasons as it was selected for the protocol service (see section 5.3)

This JSON API exposes four endpoints but three of them are designed to be called only by
the service running on the VPS. Those three are the ones in charge of creating or deleting
a document or all the ones associated to a protocol. This is because the responsibility of
processing a document is divided between the LLM service and the one running on the VPS.
While the former stores some metadata of it in the relational database and saves the actual
file in the VPS file system, the latter splits it into chunks, calculates for each of them an
embedding vector and store each embedding-chunk pair on a vector database

The other one, which is /llm/generate, is meant to be contacted directly and it is in
charge of generating a response given a prompt. It supports synthetizing an answer from the
knowledge encoded in the weights as well as using the information contained in the chunks
of texts stored in the vector database to provide more accurate responses. This is controlled
with two query parameters. Specifically, the query parameter protocol specifies the id of
the protocol whose documents are going to be used and mode establishes the generation
which is going to be employed. The response to a request to that endpoint is in a format
called nd-json. nd-json consist of JSON objects separated by line breaks (\n). It is thought
for streaming JSON objects over a TCP connection 22. This format was chosen because the
partial responses (i.e., the tokens) generated by the model are serialized into JSON and then
streamed to the client using the connection which was opened when the HTTP request was
made. Other formats could have been used but this was the simplest one.

The reason why the vector database is not running on the VPS is that the model which
generates the embeddings needs to be executed on a system with a decent GPU in order to
obtain the results in a reasonable amount of time, which is something the VPS lacks. I could

22https://github.com/ndjson/ndjson-spec

52

https://github.com/ndjson/ndjson-spec

LLM service

have offloaded the computation of the embeddings to a more powerful machine, such as the
AIR research group server, but this solution would have been non-trivial because that would
have lead to the implementation of the RAG process from scratch, apart from implementing
that offloading functionality. This is because I could not find a way of correctly fitting the
library which facilitates incorporating knowledge into the answers into that setup. Either
way, hosting the vector database on the VPS would remove the inconsistencies that may
appear for having to keep different kinds of information for a document synced between two
machines whose communication can fail at any moment.

5.4.1 Running the self-hosted LLM

As its name implies, an LLM is a large model which requires demanding hardware re-
sources to run, specially an important amount RAM and VRAM. There exists a technique
which has helped enormously in the objective of executing a LLM on consumer hardware,
known as quantization [FAHA22].

In the context of LLMs, quantization refers to the process of reducing the precision of
the weights so that the memory footprint during inference is not that big. As a result, the
weights are not stored using 32 bit floating point numbers, which is the data type normally
used for training, but other lower precision types such as 16 bit floating point or even 8 bit
integers. The quantization process also speeds up inference since the time required by the
GPU to perform the operations on lower precision types is smaller than that required for the
ones employing more bits. The challenge of quantizing a model lies on reducing the weights
precision without sacrificing too much the LLM text generation quality.

There exist many quantization algorithms but each one falls under one of two categor-
ies [FAHA22]. The first one refers the quantization techniques which are applied after the
model has been trained with full precision. These are the easiest to apply but model perform-
ance may be affected because the posterior reduction in precision is not taken into account
during training. This contrasts with methods which consider the quantization process since
model training. As a consequence, they usually perform better but training them becomes
more difficult. In my case case, I have chosen a model which has been quantized using a
technique which belongs to the former category because it is more convenient to apply.

In order to run a quantized model, the implementation has to be aware of the quantization
techniques employed. A popular software for running quantized models is llama.cpp23. Its
main goal is to execute a model on CPU but it supports offloading part of the layers to the
GPU. It is written C/C++ and it uses a tensor library called ggml developed by the same
author. This is where the actual support for quantization is implemented. Although it is
called llama.cpp, it supports other LLMs outside of the LLaMA family of models and the
list available models is continuously growing. llama.cpp also includes a C API so that it can

23https://github.com/ggerganov/llama.cpp

53

https://github.com/ggerganov/llama.cpp

5. Architecture

be included in other software or bindings for other programming languages can be created.
Since the model needs to be called from Python, the Python bindings were needed. Those
which have been used are the ones provided by the Github user abetlen 24.

Since airproy has more than enough VRAM to completely hold the model, all the layers
have been offloaded to the GPU. The model is loaded once and it is kept in VRAM as long
as the service is running.

The Python llama.cpp bindings can only generate one response at a time. For that reason,
if the Python method from the bindings which triggers the generation is called from another
thread when llama.cpp is in the middle of the process of answering a query, the program will
crash. Although there exist techniques which support the concurrent generation of responses,
this is done by reducing the context window size for each one and I was not interested in that.
This is because that would lead to a decrease in the amount of information the LLM considers
to generate the answer. Since the system was designed to be used by a single person at a given
time, I opted for protecting the call to the generating method with a lock. As a consequence,
every time the endpoint /llm/generate is contacted, the lock is acquired. If it is already
acquired, a Service Unavailable error is returned to the client. The lock is only released when
the generation finishes or an error occurs during that process.

Choosing the model

The chosen LLM has been Mistral 7B-v0.2 with the llama.cpp quantization method Q5_-
K_S. The downloaded weights corresponds to the fine tuned version and were obtained from
a HuggingFace repository, whose owner is known by the name TheBloke, which specializes
on quantizing the weights of different models using different methods and formats. The
quantized weights have a size of 5.00 GB and the maximum RAM the quantized model
could use is 7.50 GB. This contrasts with the 16 GB of RAM needed to run the full precision
model 25.

These weights were initially chosen because enough RAM was available in my computer
for that model to fit, so all development could be made locally. I thought on running a
larger model like Mixtral 8x22 on airproy because larger models tend to perform better than
smaller ones but, even though it can run the quantized method, it was not as fast the first
option. Since I obtained decent results with Mistral 7B, that was the one which was finally
deployed.

Even though llama.cpp contains scripts which allow you to quantize the full-precision
weights, I found more convenient to download the weights already prepared for the infer-
ence.

Mistral 7B was chosen over models of comparable size such as LLaMA 2 7B or LLaMA
24https://github.com/abetlen/llama-cpp-python
25https://docs.mistral.ai/getting-started/open_weight_models/

54

https://github.com/abetlen/llama-cpp-python
https://docs.mistral.ai/getting-started/open_weight_models/

LLM service

2 13B because the one developed by Mistral is truly open source since its use is governed by
the Apache 2 license. Other open-weight models put restrictions in the way you can use the
generated text. Moreover, Mistral 7B has been trained on content under the public domain
or with licenses which allow that type of use 26. The main drawback of this election is that
Mistral 7B does perform poorly when it is asked in a language other than English.

5.4.2 Retrival Augmented Generation
Retrival Augmented Generation (RAG) is a methodology used for incorporating informa-

tion from an external knowledge source into the responses of a LLM. RAG defines three steps
[GXG+23] to achieve that:

1. Indexing. The first step consists in extracting the text from the different documents
and possibly clean it. The text is then divided into chunks because the LLM context
window limits the size of the prompt so passing all the documents would not work.
These chunks are normally overlapping. Finally, an embedding vector (see section
5.4.3) is calculated for each chunk and the pair embedding-chunk is stored in a vector
database. Embeddings are used because they allow the retrieval of text chunks based
on their semantics.

2. Retrieval. The query is transformed into an embedding vector using the same proced-
ure used to obtain the embeddings for each chunk. Then, a specified number of chunks
whose embeddings vectors are similar to the ones obtained from the query according
to a similarity metric (normally the cosine similarity) are retrieved. These chunks will
be used as expanded context to the prompt.

3. Generation. The final step consists in creating a prompt using the query and the
retrieved chunks which is passed to the model for the generation of the responses. For
the process of synthetizing a prompt, a template is normally used.

A diagram of that procedure can be seen in figure 5.10.

RAG is not the ultimate solution for incorporating knowledge into an LLM. There exist
problems which may affect the output quality of the model. One challenge is the difficulty
of selecting the relevant chunks for some kinds of queries. A careless implementation of
this phase may lead to selecting irrelevant chunks. Additionally, it is not guaranteed that the
model will not make up some facts, a phenomenon known as hallucination. However, the
probability of hallucination is lower compared to to not using the RAG methodology.

To avoid implementing this methodology completely from scratch, I decided to use a
library which already provides building blocks to create RAG based LLM agents called Lla-
maIndex27. I was specially interested for its tools for transforming text into chunks which

26https://mistral.ai/news/announcing-mistral-7b/
27https://www.llamaindex.ai/

55

https://mistral.ai/news/announcing-mistral-7b/
https://www.llamaindex.ai/

5. Architecture

Figure 5.10: Depiction of the RAG process
Diagram obtained from [GXG+23]

can be stored in the vector database. However, it was also used for the retrieval and gener-
ation phases since it is very difficult to only use the tools for one phase without employing
the ones for the others because of the dependencies LlamaIndex creates between the three of
them.

Generation modes

LlamaIndex supports several generation modes, but two have been used. One concatenates
all the chunks and passes them to the model. For that reason, it is known as concatenate
mode. The other is thought for questions which require multiple steps to be answered. For
example, the question Who is the president of the country where the 2024 Olympics are held?
requires to first now the country to be able give the president’s name. In this generation mode,
LlamaIndex retrieves the relevant chunks and pass each one individually to the model, with
the information which has been obtained from the model in a previous response also included
in the prompt. As a consequence, this multi-step mode requires more calls to the LLM but
the answers may be more accurate.

The templates used by LlamaIndex to generate the prompts from the chunks of text ex-
tracted from the vector database are shown below.

56

LLM service

The original query is as follows:
QUERY
We have provided an existing answer:
EXISTING_ANSWER
We have the opportunity to refine the
existing answer (only if needed) with
some more context below.

CONTEXT_MSG
Given the new context, refine the
original answer to better answer the
query. If the context isn’t useful, return
the original answer
Refined Answer:

Multistep mode prompt template

Context information is below.
CONTEXT_MSG

Given the context information and not
prior knowledge, answer the query.
Query: QUERY
Answer:

Concatenate mode prompt template

5.4.3 The sentence embedding model
Vector embeddings are not only obtained from words but they can also be generated from

sentences. In order to obtain sentence embeddings, models designed for that task are used.
These embedding vectors can be used in downstream tasks but they can also be compared
to obtain a similarity score. One metric which is very popular is cosine similarity [SEK24].
That score reflects the semantic similarity that exist between the two compared sentences.
Since calculating the similarity score between two vectors is a fast operation, embeddings
are a good option to quickly retrieve chunks of information related to a question since one
expects a question is somehow related to its answer and that fact should be reflected in the
similarity score.

The chosen embedding model is bge-large-en-v1.5 28 and it is also self-hosted. The main
reason why I chose it over other options is because it is one of the best performing ones in
retrieval tasks compared to other of similar size29. The embedding dimension is 1024 and
the maximum sequence length is 512. That last number determines the maximum size of the
sentence which can be given to the model and, as a consequence, determines the size of the
chunks in which documents are splitted. The model weights 1.4 GB.

5.4.4 The vector database
In order to efficiently retrieve the chunks whose embedding vectors are similar to another

one according to a similarity metric, vector databases are used. Vector databases are a not
a new piece of technology but have recently become more popular as a consequence of

28https://huggingface.co/BAAI/bge-large-en
29https://huggingface.co/spaces/mteb/leaderboard

57

https://huggingface.co/BAAI/bge-large-en
https://huggingface.co/spaces/mteb/leaderboard

5. Architecture

RAG.

There exist many options but the one I decided to use was Qdrant30. This was because
Qdrant is supported by LlamaIndex and provides a Docker image which makes it easy to
self-host it.

Qdrant has been configured to efficiently process the types of queries it receives. All of
them ask for the top K most relevant chunks from a specific protocol. The configuration
allows the database to be faster at carrying out the filtering of the chunks by the protocol.
This has been possible by enabling a feature called multi-tenancy. 31

5.5 XR application
This is the application which is running on the Meta Quest 3. It is in charge of showing the

different steps a protocol is comprised of as well as displaying helpful images associated to
each of them. All of that information has had to be previously introduced by the user using
the web application. Moreover, it makes use of a speech-to-text model which transcribes an
user’s question into a piece of text which can be sent to the LLM service. In order to improve
the UX, the generated answer is sent to a text-to-speech model to be read out loud.

The application supports medical staff by telling them the steps they should follow to per-
form a correct diagnosis and recommends an appropriate treatment. That extra help will
be given to the professional without limiting the range of movement they can do with their
hands because the only device needed is the Meta Quest 3. The Quest 3 controllers are
not needed for interacting with the application because the headset performs hand tracking.
As a consequence, other type of medical equipment, such as sphygmomanometers or oxi-
meters, can be handled without leaving the environment in which the user are receiving the
information.

5.5.1 Developing for the Meta Quest 3
For the development of the application, the 3D real time engine Unity 32 was used. Even

though other engines like Unreal Engine support developing XR applications, it has a steeper
learning curve than Unity. Additionally, Unity has a big community and, as a consequence,
there exist a lot of information on the Internet about it. Finally, I already knew the basics of
working with it, so I could start creating working results faster than with another alternat-
ive.

Unity is a multi-platform program because it can run on Windows, GNU/Linux and Mac
OS. In spite of being my favorite Operating System (OS) for developing software because of
the large amount of available tooling to customize you workflow, GNU/Linux was discarded

30https://qdrant.tech/
31https://qdrant.tech/documentation/guides/multiple-partitions
32https://unity.com/es

58

https://qdrant.tech/
https://qdrant.tech/documentation/guides/multiple-partitions
https://unity.com/es

XR application

and instead Windows was chosen. The rationale behind this decision is that the GNU/Linux
Unity version is not as polished as the Windows one. Additionally, the software which
allows you to connect the headset to a computer without any problems only has a Windows
version.

Specifically, that software is called Meta Quest Link and it is a requirement 33 if changes
to the Unity application want to quickly be tested on the headset without having to wait
until it is recompiled and uploaded to the device. Instead, with Quest Link, feedback is
received in a few seconds after the Play button is pressed in the Unity editor. The main
drawback of this way of testing the application is that the headset pass-through functionality,
which allows the user to see the images captured by the Meta Quest 3 cameras as their
environment, does not work. The only solution is to build the application and run it on
the headset. However, since the cameras were not used for any purpose other than adding
pass-through to the application, that limitation was only a minor inconvenience. Another
consideration the person developing for the Meta Quest 3 should keep in mind is that the
headset should be connected to the computer using an USB 3.0 type C. Using an USB 2.0
may lead to unexpected behaviours.

Choosing an AR library for Unity

There exist libraries for Unity which provide building blocks to create MR applications in
Unity. They save the developer the time they would have spent creating different UI elements
using the primitives Unity makes available by already implementing them. They also support
attaching an action when specific gestures are detected. Some libraries are only targeted to
a specific headset like the Meta XR Core SDK, which is focused on Meta Quest devices.
Others, like Mixed Reality Tool Kit (MRTK), can be used with a wide variety of headsets.

I was recommended to use MRTK 3 34 because, given that the library supports several
headsets, the code could be ported to other devices with possibly minor changes. However,
although I managed to setup a MRTK 3 project which could be loaded to the Meta Quest 3,
the pass-through could not be enabled. The reason why I think it is the case is because MRTK

3 is able to target different devices because they implement the OpenXR standard, which is
the case for the Meta Quest 3. However, the standard does not include pass-through as part of
its supported features. As a consequence, there does not exist a defined way of accessing that
functionality in OpenXR compliant devices. There exist, nevertheless, a vendor extension to
the standard proposed by Meta to allow that. However, at the time of writing this document,
it is only implemented by Quest and PICO headsets 35. I suspect that MRTK 3 is ignoring
that extension.

33https://www.meta.com/es-es/help/quest/articles/headsets-and-accessories/oculus-l
ink/set-up-link/

34https://github.com/MixedRealityToolkit/MixedRealityToolkit-Unity
35https://docs.godotengine.org/en/stable/tutorials/xr/openxr_passthrough.html

59

https://www.meta.com/es-es/help/quest/articles/headsets-and-accessories/oculus-link/set-up-link/
https://www.meta.com/es-es/help/quest/articles/headsets-and-accessories/oculus-link/set-up-link/
https://github.com/MixedRealityToolkit/MixedRealityToolkit-Unity
https://docs.godotengine.org/en/stable/tutorials/xr/openxr_passthrough.html

5. Architecture

The possibility of using MRTK 2 was analyzed. MRTK 2 supports Quest devices by means
of the the Oculus integration SDK, which was developed specifically for Quest devices.
Since MRTK 2 is interacting with the Quest device using building blocks specifically de-
veloped for it, adding pass-through was as easier as adding the pass-through building block

to the application. However, the Oculus integration SDK was deprecated in favour of Meta
XR Core SDK. Since starting a new project with deprecated libraries was not appealing to
me, I discarded it. I also considered using the building blocks provided by the Meta XR Core
SDK. However, I also rejected this option because code would not be portable. Moreover,
there were not as much documentation compared to the one which exist for library I finally
decided to use.

In the end, I settled for the XR Interaction Toolkit, developed by Unity. As it occurs
with MRTK 3, XR Interaction Toolkit targets OpenXR compliant devices. XR Interaction
Toolkit works with the plugin management system Unity has (see section 3.3.2). I decided
to use OpenXR plugin, thinking that, in that way, the application could run on another head-
set. However, since it was necessary to enable OpenXR vendor specific features, such as
the one which makes pass-through available, the code will not work on another device un-
less it implements those extension features. Although it does not include as many features
for developing AR applications like MRTK, I considered it to be enough for my use case.
Moreover, it integrates very well with the tools Unity has for developing UIs. As a con-
sequence, all the documentation there exist for those tools can be useful for the development
of the application.

Instead of creating a new project from scratch and then adding the XR Interaction Toolkit,
I opted for starting off from an official Unity template project which is already configured to
start developing XR application with that library.

5.5.2 Development
The information is displayed in floating canvases (see figure 6.6). The functionality of

each canvas is contained in a Unity script, which are all attached to an empty game object
located at the root. A script references other scripts when they contain functionality which
may result in the appearance of another canvas. When a canvas appears, a method defined
on the script in charge of its functionality is called. This is the way in which information on
one canvas is shared with another. This tree of script references is shown in figure 5.11.

The UIManager script has been used to place the functionality that did not exactly belong
to ProtocolManager but neither to ProtocolListManager. NodeResourcesManager is
the script which manages the canvas which shows the images associated to a step. It was
named in that way because I thought other types resources were going to be attached.

For example, in figure 5.11, the code which handles the event of pressing the button which
shows the images associated to a step is found in ProtocolManager. That code calls the

60

Deployment

Figure 5.11: Tree of Unity script references

method OnVisualizerShown() defined in NodeResourcesManger which receives a col-
lection of the URLs which point to the images.

When a protocol is launched, the graph which represents the flowchart is received as a
response to a JSON API call in the format outlined in figure 5.4 However, working with that
representation in this application was very inconvenient because, for every node, I want to
quickly access its adjacent edges. For that reason, the class ProtocolFlow was created.
This class is initialized with the inconvenient representation and defines methods to make it
easier to handle them for this use case. It is also in charge of keeping the state of the protocol
execution (i.e., the current step and the previous ones) although it would have been probably
better to separate those two functionalities.

The user is able to speak to the model and the model speaks back to them thanks to the
NLP models provided by wit.ai 36, which is a company owned by Meta. It is specialized
in creating the building blocks NLP powered applications. The Voice SDK Unity package
allows you to easily integrate the services provided by the company into an Unity application
and it is the one which has been used. Specifically, the company’s speech-to-text and text-to-
speech models have been employed. A problem with the latter one is that you cannot send
a piece of text with more than 140 characters all at once. For that reason, the LLM response
had to be splitted on pieces with at most that number, with the extra difficulty of having to
perform that division at word boundaries.

Furthermore, the application performs hand tracking so that the Quest controllers are not
necessary. It is done by a module provided by XR Interaction Toolkit. Apart from enabling
the user to interact with the application by using the appropriate gestures, it also allows
the developer to set some elements relative the position where a hand is located. For this
application, the menu showing the list of protocols appears next to the user’s left hand when
the palm is in front of their face. This feature appears in the global architecture diagram
under the name of Left hand tracking.

5.6 Deployment
Some services have been deployed on a VPS rented from the company IONOS and others

on the server acquired by the AIR research group for compute intensive workloads, which
is referred as airproy. Specifically, on the former, the NextJS server, the MariaDB database

36https://wit.ai/

61

https://wit.ai/

5. Architecture

and protocol service are running and the latter hosts the LLM and the vector database. A
layout of the system architecture is given in figure 5.12

Figure 5.12: System architecture diagram

Even though the AIR research group server is completely capable of running the whole
system, the application was designed to be executed on two separate machines because I
doubted I was going to have at my disposal a server with the needed requirements to run the
self-hosted LLM and with a public routable IP address. There were some computers which
I could have used for that task, but all of them were behind NAT. Therefore, I thought on
hosting the most lightweight components of the system on a VPS and forward the requests
to the non-routable machine via some kind of tunnel which connects both of them. For
that reason, it was very surprising to me to find out there exist plans for assigning airproy a
public routable IP address and a domain name. However, at the time of deploying the system,
the server has been assigned a public IP but traffic other than the one generated inside the
university network is rejected. As a consequence of that, the system has been deployed as it
was initially envisioned.

The main drawback of using a VPS or a bare metal server such as airproy is that I have
to worry about a lot of technical details so that the deployment and posterior execution is
successful. Nevertheless, there exist companies which offer platforms which abstract all of
those details and make the deployment process more pleasant. They are also capable of
abstracting the hardware resources, so that only the necessary ones are used to deal with
the load experienced by the system at a given moment. Examples of companies which offer
these kinds of platforms, known as cloud computing platforms, include Amazon (AWS),
Microsoft (Azure) and Google (Google Cloud).

There are many reasons why I decided not to choose any of them. One them, which has
been very important in my decision, is that it is very hard to predict its cost at the end of the

62

Deployment

month because that mainly depends on the load their services have experienced. It is true
that you can set a limit on the monthly cost or trigger some kind of alert when the expenses
go beyond a certain threshold but, even with those features enabled, it is very hard to beat
the VPS flat fee. Moreover, a system has to be designed from the beginning in a certain
way to leverage all the services those companies provide. That way of designing software
systems is knowledge which I do not possess yet, so I would not have been able to fully
utilize their platform. On other hand, it is important not to forget that what has been done
is closer to a research project than an enterprise-grade one so the availability and scalability
these platforms provide were not something I paid to much attention to.

Apart from all of that, I wanted to have as much control as possible over the infrastructure
to actually learn what those cloud-computing platform hide for convenience.

5.6.1 Getting a domain name

IONOS is not only a VPS provider but also a domain registrar. Since this was the first time
I hired one of their services, I was given the option of having one domain for one euro the
first year and ten euros per each extra year I wanted to have control over it. For this fee to
apply, the domain had to be considered "non-premium". A chose a rather long one so that I
did not fall under that category.

The web application is not hosted on the root domain but on a subdomain of it. In order
to create it, a DNS record had to be added to the zone file. Specifically, I created a CNAME
record which points to the apex domain. All of this can be easily done with the dashboard
IONOS provides.

5.6.2 Dockerizing the services

Since airproy was not available during the first months, the ITSI computer was used to
test different configurations for the deployment. In order to reduce number of problems
which usually arise when you run software on a different environment where it was tested
or developed, the different services have been containerized using Docker. Docker allows
you to package a piece of software with all the dependencies it needs to run. By using Linux
kernel features like namespaces and cgroups, each container is isolated from each other but
they all share the same underlying kernel. As a consequence, a lot of developers usually
view containers as some sort lightweight virtual machine.

Three Dockerfiles were written. Specifically, the services which needed one were the Nex-
tJS server, the protocol service and the LLM service. There already existed official images
for MariaDB and Qdrant, whose environments can be modified via environment variables
or by the action of another container so I considered that a Dockerfile was not needed for
any them. The hardest Dockerfile to create has been the one which containerizes the LLM

service. This is because it requires access to the GPU and for that, two packages have to

63

5. Architecture

be installed on the system. Additionally, you have to use the Docker images provided by
NVIDIA37. If you use another one, the application will ignore the NVIDIA GPU.

Another difficulty I have faced is synchronizing the startup of containers defined in a single
compose.yml. This is necessary because there exist circumstances in which a container must
be running before another starts. For example, a database must be fully initilized before it
can receive requests from another container. Even though Docker Compose allows you to
specify the order in which containers start, it does not know if it has been loaded completely
so it is possible that a container starts before another one which it depends on has been fully
initialized. The proper way to deal with this is to implement a health check mechanism
which monitors the status of the application and starts the container when it detects it is
ready. This can get quite complex so I opted for the most simple solution which is to wait a
fixed number of seconds to leave time for the dependant systems to get ready. This approach
has been implemented for the LLM service because the container which serves the JSON API

to interact with the model makes a request to the vector database as soon as it starts. That is
something LlamaIndex does. Unfortunately, I have not been able been able to suppress that
behaviour from it.

The images are self-contained, because they include all the needed dependencies and files
to run. This is also true for the LLM service, since the image already includes the LLM

weights as well as the embedding model.

5.6.3 Connecting the two machines
A requirement which arises as a consequence of splitting the system between two servers

is the need of both being able to communicate between themselves. The difficulty relies on
the fact that the VPS is always the one who initiates the request to airproy. Since airproy is
behind NAT, that is not possible by default.

Two options were considered to bypass this restriction. Firstly, Wireguard 38 was pro-
posed. Wireguard is a Virtual Private Network (VPN) protocol which is characterized for
being very easy to setup compared to other alternatives. It would have been used for the
creation of a VPN tunnel between airproy and the VPS. The contents which traverse it are
encrypted. In addition to that, a message would have to be sent at a fixed interval through
it to ensure the tunnel is not dropped by the router or routers performing NAT. This keep
alive mechanism is supported out of the box by Wireguard and only needs be enabled in
the configuration file. However, this solution was rejected by the airproy sysadmin because
it was deemed very "intrusive". This is because Wireguard is a L3 VPN protocol, so it re-
quires superuser privileges to setup the tunnel since the server network configuration has to
be modified and he was not willing to give to my user account more privileges. Moreover,

37https://hub.docker.com/r/nvidia/cuda
38https://www.wireguard.com/

64

https://hub.docker.com/r/nvidia/cuda
https://www.wireguard.com/

Deployment

the sysadmin would have had to add firewall rules which applied to the VPN IP associated to
my VPS so that the same rules are enforced as if I were connecting to airproy in the normal
way.

The approach which has been implemented involves opening a reverse SSH tunnel. It
works by creating an SSH connection from airproy to the VPS and keeping it open. On the
VPS, a port is bound so that the data sent to it is automatically sent through the encrypted
tunnel to a port which has been specified in the command which creates the tunnel. The
command which is executed on airproy is the following:

ssh -fNTq -R 8001:127.0.0.1:8000 vps

Therefore, when data is sent to port 8001 in the VPS, the SSH server forwards it to port 8000
on airproy, which is the one the LLM is listening for incoming requests. To keep the connec-
tion open, the options -o ServerAliveCountMax=5 and -o ServerAliveInterval=90
are used. The former establishes the maximum number of requests which has not received
response before dropping the connection, which are five in my case, and the latter specifies
the frequency at which a message is sent to tunnel. In my setup, that happens every ninety
seconds is sent through the tunnel.

Running the aforementioned command does not require any privileges, so it has been run
without the intervention of the sysadmin. The main drawback is that, in case airproy is
restarted, I would need to type the command again. I could have created a cron job which
creates the SSH reverse tunnel when airproy starts, but that would have required me to leave
the access credentials to the VPS in it, which I did not want to.

5.6.4 Use of a reverse proxy
A reverse proxy is a server which sits in front of a web server and forwards client requests

to those web servers after possibly some processing 39. There exists many reverse proxies
but I opted for NGINX because I already knew the basics of configuring it. Moreover, it is a
very popular option so there exist a lot of information about different kinds of setups on the
Internet.

NGINX is running directly on the VPS and not on a Docker container. This is because the
VPS was meant to host unrelated applications and NGINX would act as a single entry point
to all of them. Moreover, configuring HTTPS is easier if NGINX is installed directly in the
system.

A reverse proxy can be used for many things, but for this project it has served three pur-
poses. On one hand, NGINX is the component of the system which hides the implementation
of the backend by providing a uniform interface to all the services. This is done by analyzing

39https://www.cloudflare.com/learning/cdn/glossary/reverse-proxy/

65

https://www.cloudflare.com/learning/cdn/glossary/reverse-proxy/

5. Architecture

the request URL prefix and sending it to the appropriate service. For example, when NGINX
detects the URL starts with /api/, it is sent to the protocol service after removing that part
from it but when it intercepts one which begins with /api/llm/, it is forwarded to the LLM

service via the SSH tunnel (see section 5.6.4). Moreover, this makes some internal endpoints
on the LLM service unreachable externally.

In addition to that, the reverse proxy is the one in charge of decrypting the requests before
they are forwarded to the internal services and encrypting their responses before they are
sent to the client using the TLS protocol. In order to do that, the server needs to present
the client a certificate signed by a Certificate Authority (CA). The CA I have chosen is Let’s
Encrypt because the certificate issuance process is almost automatic and it is free. By using a
protocol designed by that CA called ACME, a program called certbot handles all the details
to prove that you actually have control over the domain which will appear on the certificate
and changes your NGINX configuration so that it encrypts and decrypt traffic with it.

Finally, since the application is going to be publicly available on the Internet, some sort of
access control mechanism is necessary. Since this feature was not in the initial requirements,
the system was not designed with that goal in mind. However, as a workaround, we can
leveraged the fact that all traffic must go first through NGINX and implement rules which
reject the requests which do not fulfill a certain condition. Specifically, NGINX includes a
module which implements HTTP basic authentication scheme 40. Simply put, this schema
requires that every HTTP request contains an Authorization header with the access creden-
tials encoded in base64. Therefore, when this module is enabled, NGINX only allows those
requests which contain the correct credentials in the aforementioned header. The credentials
are stored encrypted (i.e., hashed with a salt) on a file which is referenced in the NGINX
configuration file.

In a browser, when a user tries to connect to the web application, a prompt is open which
asks them for their credentials. Once entered, the browser sends them in every request which
targets the web application origin, including the ones made by JavaScript using fetch().
The credentials are cached until the user closes the browser. In the XR application, the
Authorization header has to be explicitly included in every call to the backend.

Serving static files

NGINX also specializes in serving static files and that is the reason why it is used for that
task instead of FastAPI. The hardest part is getting the permissions of the static resources and
upper directories right. NGINX requires that every file which is going to serve to be owned
by the user nginx or belong to the group nginx. The problem is that the images are saved to
the file system by a container, and as a consequence, the are owned by my user and belong
to the group with the same name. A solution could have been changing the image so that

40https://datatracker.ietf.org/doc/html/rfc7617

66

https://datatracker.ietf.org/doc/html/rfc7617

Design patterns

the saved files belong to the nginx group. However, in my opinion, this is very convoluted
to achieve. A simpler approach is to change the group of the directory where the static
resources are saved to nginx and set its setgid bit. This causes every file created inside the
directory to belong to the same group as the directory which contains that bit. Therefore, all
files created by the container belong to the group nginx.

5.7 Design patterns
A design pattern is a general and reusable solution to a common problem in software

design. It is a template or guideline that can be applied to solve a specific design issue
in a particular context. Design patterns provide a proven approach to designing software
systems, making it easier for developers to tackle recurring design challenges efficiently
and effectively. A very influential book on this topic was the one written by the Gang of
Four [GHJV94].

The most relevant design patterns which have appeared throughout this project are de-
scribed below.

5.7.1 Python decorators with arguments
Python has a language feature called decorators 41. Although it is called in the same way,

it has little to do with the design pattern described in the Gang of Four book [GHJV94]. A
decorator is actually syntactic sugar for wrapping a function to augment its functionality.
Specifically, it provides new syntax for the following operation:

func = decorator(func)

where func is a function and decorator is another function which takes in a function and
returns another function which accepts the same arguments as func. The syntax for decor-
ators also support specifying arguments so that the function which wraps depends of those
one. This is how it would look like if decorators were not used:

func = decorator_args(arg1, arg2)(func)

but with decorators, the relationship between decorator_args and func is stated on top of
func definition by writing @decorator_args(arg1, arg2)

Decorators are the way in which handlers for a specific route in FastAPI are specified. The
main advantage is that all the properties to configure the route are next to the definition of
the function which is called when a request to that route is received.

41https://realpython.com/primer-on-python-decorators

67

https://realpython.com/primer-on-python-decorators

5. Architecture

5.7.2 Object pool
The object pool pattern is a creational design pattern that manages a pool of reusable

objects to optimize performance and resource usage, especially when creating and destroying
objects is costly in terms of time and system resources [GHJV94].

This pattern is used by SQLAlchemy. The library makes use of a pool of active con-
nections to the database so that every time a query is needed to be sent, an old connection
is reused instead of opening a new one. This is done primarily for performance reasons.
However, in the case of MariaDB, if the connection has not been used to transmit data for
more than eight hours, it is dropped without notifying SQLAlchemy. As a consequence,
a stale connection could be retrieved to send the query, resulting in an error. The solution
lies on configuring the connection pool to reset the connection after some period of time of
inactivity lower than the maximum limit imposed by this database.

5.7.3 Iterator
The iterator pattern is a behavioral design pattern that provides a way to access the ele-

ments of a collection sequentially without exposing its underlying representation. This pat-
tern allows a client to traverse a collection, element by element, without needing to know the
details of how the collection is implemented [GHJV94].

This pattern is embedded at the language level in Python, TypeScript and C#. This is be-
cause the three have a foreach statement which allow the traversal of different structures
without knowing lower level details about them by requiring them to adhere to a certain in-
terface. Every time a foreach statement has been used, this pattern was implicitly used.

5.7.4 Adapter
The adapter pattern is a structural design pattern that allows objects with incompatible

interfaces to work together. It acts as a bridge between two incompatible interfaces by con-
verting the interface of a class into another interface that a client expects [GHJV94].

This pattern is heavily used by LlamaIndex. This is because one of the objectives of
LlamaIndex is to provide a uniform interface to several vector database so that the library is
not coupled to a single one. However, each vector database vendor defines its own way of
interacting with it so LlamaIndex employs this pattern to make each one compatible with the
interface they have defined.

68

Chapter 6

Results

IN this chapter, it will be proven that the designed protocol editor is expressive enough for
the practical case by specifying a real medical protocol. Additionally, the protocol will

be augmented with images and documents containing relevant information about it. Then, it
will be executed on the Meta Quest 3 headset using the developed MR application, where the
attached images will be shown and the LLM will be queried to receive answers based on the
uploaded documents.

The chapter finishes by giving some statistics about the written code. The source code is
available under the MIT licence and is hosted on Github. The link to the repository is the
following:

https://github.com/AIR-Research-Group-UCLM/primARy.

6.1 Real world example
In this part, the protocol is implemented and additional information is uploaded. Moreover,

it is executed on the Meta Quest 3 headset.

6.1.1 Uploading information
The medical protocol which is going to be implemented is based on the one shown in figure

5.3, which was uploaded by the NIH to its webpage. It depicts the process of diagnosing and
treating overweight.

The protocol is divided into two parts: one is the diagnosis, in which different steps are
performed to determine if the patient has overweight and the other is the treatment.

The protocol starts by asking the patient whether they had ever a had a Body Mass Index
(BMI) 1 greater than 25. If that has never happened, the last time the BMI was measured is
asked. If it has been two years since that happened or, directly, the patient had a BMI greater
than 25 in the past, the BMI is calculated. Additionally, measurements about the patient
waist are also taken. Once it has been measured, the next steps are determined by the range
in which that number falls. These are detailed below.

1BMI is a number calculated as a function of person’s weight and height. The range in which that number
falls determines whether they are underweight, overweight, obese or have an acceptable weight

69

https://github.com/AIR-Research-Group-UCLM/primARy

6. Results

• BMI < 25. In this situation, the previously measured circumference is compared with
a number determined by the sex of the patient. If it is greater than that number, then
overweight risk factors are assesed. If more than two risk factors are found, the patient
is considered overweight. In case there are not enough risk factors, the patient can
choose between starting a weight loss treatment or do nothing.

• 25≤ BMI < 30. Risk factors are directly assesed. The criteria for determining whether
the patient has overweight given the number of risk factors is the same as the one
described when BMI < 25.

• BMI ≥ 30. In this case, the patient is directly considered overweight.

The main protocol steps associated to the process described previously are shown in fig-
ure 6.1.

Figure 6.1: Overweight diagnosis and treatment protocol in the protocol editor

In case the patient has been diagnosed with overweight, the next steps describe the treat-
ment. It basically consists in setting some goals regarding diet and exercise. If goals have
previously been devised but the person is still considered overweight, the reasons for that
failure are evaluated and new goals are set. The protocol always finishes by reminding the
patient to schedule another appointment.

Moreover, some images have been attached to some steps. This is the case for the pro-
tocol step named BMI range. An image of the dialog containing the image is shown in
figure 6.2

Finally, extra information has been gathered from the WHO website2, the NHS website3

and an article from Harvard4 to provide context to the LLM. Since the system cannot extract

2https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
3https://www.nhs.uk/conditions/obesity/
4https://www.health.harvard.edu/staying-healthy/why-people-become-overweight

70

https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
https://www.nhs.uk/conditions/obesity/
https://www.health.harvard.edu/staying-healthy/why-people-become-overweight

Real world example

information from an HTML file, the content of each webpage has been copy-pasted into a
.txt file and associated to the protocol. These can be seen in figure 6.3.

Figure 6.2: Image associated to protocol step MBI range

Figure 6.3: Dialog showing documents containing information about overweight

6.1.2 Asking questions to the LLM

In order to test whether the LLM is using the information provided in the three documents
uploaded previously, questions whose answer is unlikely to be known by it are going to be
asked. The model has been configured with a context window of 8192 tokens. Moreover, the
number of chunks which are retrieved from vector database are six.

One question is How many genes are thought to be related to overweight?. The answer
is 400 and it is found in the Harvard article. Another question which has been asked is
What daily problems a person with obesity might experience?. Its answer is located on

71

6. Results

the document extracted from the NHS. Some problems include breathlessness, increased
sweating or low confidence and self-esteem.

The question using the concatenate generation mode are shown in figure 6.4. As it can be
seen, it has responded correctly.

Figure 6.4: Answers by the LLM using concatenate mode (six chunks)

In multi-step mode, which is supposed to be more accurate, the model gets the answer
right in the first paragraph. However, it includes much more superfluous information. So
much, that the given answer consists of four paragraphs. In fact, the last one finishes with
the economic impact of obesity, which is not relevant in this case. For the other question,
the model also gives the correct information but among irrelevant facts about obesity. Addi-
tionally, it has hallucinated the reasons which cause the problems because that information
is not found in the provided documents.

Since in multi-step generation mode the model does not seem capable of knowing whether
a previous response contains relevant information, the number of retrieved chunks was re-
duced from six to three. The quality of the results improved considerably. The model did not
hallucinate this time and its responses were more aligned with the posed questions.

6.1.3 Executing a protocol on the Meta Quest 3
When the user puts on the Meta Quest 3, they can see their environment thanks to the

pass-through feature. When they turn their left hand so that their palm is in front of them, a
list of the protocols created with web application appear. This list is shown in figure 6.5. The
application performs hand tracking, so it is enough to make the gesture of pressing a button
in order to launch it.

After it is launched, a floating canvas containing the title and description of the initial
step appears. At the bottom of the canvas, there are as many buttons as outgoing edges the
initial step in the flowchart has. These represent the possible options the user can choose. In

72

Code statistics

case there is just one outgoing edge, a single button with the text Continue is shown. After
the user presses a button, the canvas will be updated to show the information corresponding
to the next step and the interactions with it will be the same. In case it is a final step, the
available options are retrying the protocol or closing it. The user can, at every moment, go to
a previous state by pressing the button located in the upper left corner of the canvas, except
for the initial step.

Figure 6.5: List of protocols as displayed by the XR application

For every step, there is a button that, when pressed, shows a canvas which allows you to
ask questions about the protocol it is being executed. The questions are asked out loud and
the model responds using a text-to-speech model. This canvas has a dropdown menu for
choosing the generation mode. For every step which have images attached, an additional
button appears which shows a third canvas with those images when it is pressed. The three
canvases are shown in figure 6.6 for the protocol step named BMI range in the protocol
depicted in figure 6.1.

All those canvases can be freely moved by grabbing them. However, they will always be
looking at the user so that their content is easily visible.

6.2 Code statistics
The lines of code of each component of the system is given in table 6.1. The tools which

has been used is cloc5.

System component Lines of code Percentage
LLM service 362 7%
Protocol service 815 15.6%
Web application 3337 63.8%
Quest 3 application 713 13.6%

5227 100 %

Table 6.1: Lines of code of each system component

5https://github.com/AlDanial/cloc

73

https://github.com/AlDanial/cloc

6. Results

Figure 6.6: Step named BMI range shown on the XR application

When looking at data in table 6.1, one has to be aware of the fact that not all the com-
ponents of the system have been written in the same programming languages. There exist
some which are more verbose because they require more code to express the same equivalent
behaviour.

I personally think that it is important to have an idea of the lines of code a codebase has
because it is an indicative of its complexity. Nevertheless, it is important not to get obsessed
with the quantity because some people, in effort to make code shorter, tend to write it in such
a way that is harder to read than its most straightforward alternative.

6.3 Project cost and resources

In order to estimate the cost of this project, the time it has taken to be developed has to
be taken into account. Considering that I have worked part-time on it while completing the
fourth year , it has been estimated that 270 hours have been dedicated exclusively to the
development of the system. If the time spent writing this document is also considered, then
the total time amounts to 325 hours.

74

Project cost and resources

The hourly salary for a programmer is 14.62C6, so the total gross salary I have received
is 270× 14.62 = 3,947.3C. However, this is not the total personnel costs of the company
because it has to pay the social security contribution which correspond to it. This amounts
to, approximately, 30% of the gross salary. Thus, the total personnel costs for the company
has been 5,131.49C.

I am being charged 9.68C per month for the IONOS VPS Linux M7 because it was hired
more than six months ago. The project lasted four months so the VPS has cost 38.72C in
total. Additionally, one does not have to forget the cost of the domain name. Since it was a
non-premium domain and it was the first time I rent a domain from IONOS, I had to pay 1
C only once. If I want keep it, I will have to pay 10C per year.

Other hardware resources which have been employed for the development of the project
include the Meta Quest 3 and my PC. The former cost 549C and the latter was bought with
a price of 1,300C. Additionally, the amortized cost of the server where the LLM is running
has been estimated, resulting in 266.66C.

Therefore, the total cost of the project amounts to 5,131.49C + 38.72C + 1C + 549C +
1,300C + 266.6C = 7,286.87C.

6https://es.talent.com/salary?job=programador
7https://www.ionos.es/servidores/vps

75

https://es.talent.com/salary?job=programador
https://www.ionos.es/servidores/vps

Chapter 7

Conclusions

IN this chapter, the reached objectives will be discussed. Following that, the addressed
competencies are detailed and justified in the context of this project. Then, a personal

opinion of the project is given. Finally, future work and possible improvements to the de-
veloped system are outlined.

7.1 Reached objectives

The general objective has been successfully fulfilled. This is because the developed sys-
tem enhances the diagnostic and treatment capabilities of primary care medical stuff using
MR and AI by enabling them to specify the medical protocols they usually follow in the form
of a flowchart and executing them on a MR headset like the Meta Quest 3. The AI compon-
ent is provided by the LLM, which synthetizes a response considering previously uploaded
documentation by the protocol designer.

Below, the subgoals in which the project was decomposed are detailed with an explanation
justifying their degree of achievement.

• Detailed study of Mixed Reality devices. In order to develop the MR application,
these kind of devices were researched as well as the tools used to create applications.
Part of the acquired knowledge has been reflected on section 3.3.1 and section 5.5.1.
An exhaustive comparison between MR devices was not performed because the ap-
plication was targeted since the beginning to the Meta Quest 3 and it is not compatible
with headsets from other companies because vendor specific OpenXR extensions were
used.

• Detailed study of Large Language Models. A study of the field of deep learning
in general and LLMs in particular was performed to see how they could be used to
enhance the diagnosis capabilities of primary care staff. That resulted in the incor-
poration of a RAG process to include the information contained in documents into the
answers of the model. Additionally, the study of the techniques used to run a LLM on
consumer hardware lead to the appropriate software tools which enabled self-hosting
one. All of that information appears in subsections 3.1.1 and 5.4.4.

77

7. Conclusions

• Design and development of a web application that allows the definition of medical
protocols and the association of information which serve as a basis for the infer-
ence process. This specific objective has been fulfilled since a flowchart editor was
developed with the necessary features to easily specify a medical protocol. Moreover,
it includes functionality which allows the user to attach documents to a protocol.

• Design and development of a MR application that allows the execution of medical
protocols by primary care staff. An application for the Meta Quest 3 which executes
the protocols specified in the web application has been successfully developed. It also
enables the medical staff to interact with the LLM by talking to it and the model will
read the generated response out loud.

• Deployment of a real medical protocol which allows the diagnosis and treatment
of a disease. The medical protocol for overweight diagnosis uploaded by the NIH to
its webpage (see figure 5.3) was specified using the web application and successfully
executed on the application designed for the Meta Quest 3. Additionally, the responses
given by the LLM to the posed questions were decent considering that it is a small LLM.

7.2 Addressed competences

In this section, the addressed competencies will be outlined.

• [CM4] Ability to understand the fundamentals, paradigms and techniques of in-
telligent systems and to analyze, design and build systems, services and computer
applications that use these techniques in any field of application. The developed
system makes use of a LLM which acts as an assistant which helps answering the
questions of the professional when they are executing a protocol. Additionally, the
protocol itself could be considered an agent which guides the professional towards the
right diagnosis or treatment given the information provided by them while executing
it. In order to develop each intelligent part of the system and combine their function-
ality, deep knowledge about the techniques which make intelligent system possible is
required.

• [CM6] Ability to develop and evaluate interactive and complex information present-
ation systems and their application to the resolution of human-computer inter-
action design problems. One of the core parts of the developed system is the MR

application in which protocols are executed. Presenting that type of information using
the kinds of interactions which characterizes the MR requires a deep knowledge of the
paradigm so that the resulting system is usable. On the other hand, the UI developed to
create the protocols is non-trivial since all the relationships between steps in a protocol
have to be specified in a easy way to ensure the usability of the application.

78

Personal conclusion

7.3 Personal conclusion
This project is the culmination of my Computer Engineering degree and it would not have

been possible without the skills and knowledge acquired during the four years it lasted.

The development of this undergraduate project has been a great opportunity to dive deeper
into the fields of XR, LLMs and web development. Specifically, before starting this project
I have never tried an XR headset and, as a consequence, I did not know much about the
technology. However, working with the Meta Quest 3 made me realize that this paradigm of
interaction has a lot of potential in areas such as medicine or e-commerce. Although it is still
a niche field, I suspect that when wearing a device is as easy as wearing a pair of glasses, the
technology will be a total game-changer in a lot of economic activities and in the way we
interact with each other.

On the other hand, including a LLM into the developed system has been one of the best
incentives to better understand the kinds of models which power systems such as ChatGPT.
Even though I personally think that LLMs are not the path which will lead us to Artificial
General Intelligence (AGI), I believe, nevertheless, that they will be a core component in
advanced intelligent systems which will help us in ways that we are just starting to glimpse.
Moreover, it has been really satisfying to be able to run a LLM locally. I strongly believe that
in order for people to fully benefit from the capabilities offered by LLMs, the will have to be
able to execute them privately and without the intervention of big companies.

Additionally, this project has given me the necessary confidence to tackle other software
systems involving web application. Frontend development has been specially harder than
I initially thought and the great amount of tools there exist to architect a frontend as well
as the fast-pacing nature of this field does not make it any easier. Nevertheless, the initial
confusion gradually started to disappear as I learnt more concepts and applied them to the
web application.

Overall, although there is room for improvement, I am happy with the results.

7.4 Future work
In this section, improvements and future work is discussed.

• Test the system on a real setting. Once a functional prototype is built, the next phase
consists in validating it with the people for whom it is targeted: primary care medical
staff. A lot of feedback could be received from them which would help improve the
system.

• Support for multiple users. The system is designed to be used just for a person.
If other professionals used the system, their protocol will be intermingled with those
specified by others. Moreover, I would like to scale the LLM service so that it handles
multiple concurrent queries instead of responding with a server-side error.

79

• Support for attaching other media files to a protocol step. It is only possible to
attach images to a specific protocol step. However, it would be a good idea to also be
able to link videos or even 3D models. The difficulty of the former lies on the fact that,
in order to provide a good UX, the video should be streamed and, with the other, is that
dynamically loading 3D in Unity is not as straightforward as one might think initially.

• Save statistics about an executed protocol. Different kinds of statistics could be
saved about the execution of a protocol so that they can be analyzed to provide insight
about one or a group of them.

• Explore alternatives to LlamaIndex. LlamaIndex is a good library for fast proto-
typing. However, it abstracts too much details and it has been very hard to figure out
how it was processing several things. Moreover, its inflexibility has determined part
of the system architecture, as explained in section 5.6. Given that LlamaIndex was not
doing anything very sophisticated to preprocess the data, I think that the advantages of
implementing a RAG process from scratch outweigh the disadvantages.

• Explore the possibility of using more kinds of interactions offered by Meta Quest
3. The headset which has been used for the development of the application provides
more MR functionalities apart from the ones which has been used, such as eye tracking,
face tracking or support for audio spatialization. Exploring them in more depth could
improve the application UX.

• Remove the need of creating repeated steps to remember the chosen option. Sup-
pose that you have a step which tells the professional to ask whether the patient suffers
from a specific condition. If you want to remember that decision in another step, the
technique is to ensure that to reach it, all possible paths from the initial step to that
one includes the edge containing that option. However, that may lead to two steps
containing exactly the same information with the only difference being that one could
have only be reached if the user chose one option and the other if they did the same
with the other. The flowchart editor could be adapted to avoid that duplicated node.

80

Appendices

81

Appendix A

Appendix A

A.1 Instructions for running the system
This section explains how to configure the system in order to execute it. The configura-

tion files have been designed for the setup outlined in section 5.6, where some services are
running on a machine and the others in a different one. However, the procedure to adapt it
for other setups is explained.

A.2 Requirements
Docker needs to be installed on the system. Rootless Docker is recommended if you do

not want to type sudo every time you invoke a Docker command. Although I thought that it
could be very difficult to get it working, it turned out to be as simple as working without it,
at least for this case.

Additionally, since the LLM service make use of GPU, two packages have to be installed
on the system. In order for a container to use a NVIDIA GPU, the packages nvidia-cuda-
toolkit 1 and nvidia-container-toolkit 2 have to be installed on the Docker host.
There are additional instructions in case you have opted for rootless Docker.

A.2.1 Configuring the services
For my specific setup, there exist two compose.yml files because a set of services are

running on the VPS and the rest are being executed on airproy. One is located at the root
directory of the project and the other is found inside the llm directory. However, if you want
to run all the services on a single machine you can copy and paste the services defined in
the compose.yml found in llm to the other one. The only detail that needs to be changed is
the build context for the LLM service. You do that by replacing context:. with context:
./llm.

The services are configured using environment variables whose values are specified in the
compose.yml file where the service is defined. A list of those environment variables can be
seen in section A.3. Moreover, Docker port forwarding should be configured appropriately

1nvidia-cuda-toolkit
2https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/instal

l-guide.html

83

nvidia-cuda-toolkit
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html

depending on whether the services are required to be directly accessed from outside the
Docker network created by Docker Compose.

To run all the services defined in a compose.yml file, make the directory where it is found
your working directory (i.e., cd into it) and type docker compose up -d. To stop them,
type docker compose down.

A.3 Environment variables
Here the environment variables of each service are listed. Each one has sensible defaults,

except for API_BASE and LLM_SERVICE. Those have to be explicitly set by the user.
Additionally, for a production setup, I recommend serving the static content using a web
server designed for that task, such as NGINX. In that case, STATIC_BASE must be set
appropriately.

A.3.1 LLM service
• CONTEXT_WINDOW. Context length configured for the model.

• N_GPU_LAYERS. Number of layers which are offloaded to the GPU

• MAX_TOKENS. Maximum number of tokens the model generates, including the
ones from the prompt.

• QDRANT_HOST. Vector database origin. For example, http://192.168.0.10:3000.
You should not need to assign a value unless you are running the vector database out-
side the Docker network created by Docker Compose.

• MODEL_PATH. Path to the file containing the model files. You should not need to
assign this value unless you want to use a version of the weights than the one contained
in the Docker image.

• DEFAULT_TOP_K. Default number of chunks which are retrieved from the vector
database.

• IS_DEV. It can be 0 or 1. When it equals 1, CORS headers are added which allow the
service to be contacted from all origins.

A.3.2 Protocol service
• LLM_SERVICE_HOST. Host in which the LLM service is running.

• DB_HOST. Host where MariaDB is running. You should not need to assign a value
unless you are running the vector database outside the Docker network created by
Docker Compose.

• DB_USERNAME. User which is going to be used to connect to the database.

• DB_PASSWORD. Password of the user connecting to the database.

84

• DB_PORT. The port MariaDB is listening to.

• STATIC_PATH. The route where all static files live. By default, it is set to /static.

• IS_DEV. It can be 0 or 1. When it equals 1, When it equals 1, CORS headers are added
which allow the service to be contacted from all origins and static files are served using
FastAPI. This is very useful for development purposes.

A.3.3 NextJS service
• API_BASE. URL prefix of all the protocol service API endpoints without the trailing

slash. For example, https://example.es/api.

• LLM_BASE. URL prefix of all LLM service API endpoints without the trailing slash.
For example, https://example.es/api/llm.

• STATIC_BASE. Prefix of all the URLs which point to static resources. For example,
https://example.es/static

85

References

[Ack23] Philip Ackermann. Full Stack Web Development: The Comprehensive Guide.
Rheinwerk Computing, 2023.

[AMHH19] Tomas Akenine-Moller, Eric Haines, y Naty Hoffman. Real-time rendering.
AK Peters/crc Press, 2019.

[AMK21] Firas Almukhtar, Nawzad Mahmoodd, y Shahab Kareem. Search engine op-
timization: a review. Applied computer science, 17(1):70–80, 2021.

[BPRS18] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, y
Jeffrey Mark Siskind. Automatic differentiation in machine learning: a survey,
2018.

[CG23] Deniz Akşimşek Carson Gross, Adam Stipenski. Hypermedia Systems. Inde-
pendently published, 2023. https://hypermedia.systems/.

[Cha21] Stanley H. Chan. Introduction to Probability for Data Science. Michigan
Publishing Services, 2021. https://probability4datascience.com/.

[CJA+20] Umer Asghar Chattha, Uzair Iqbal Janjua, Fozia Anwar, Tahir Mustafa Madni,
Muhammad Faisal Cheema, y Sana Iqbal Janjua. Motion sickness in virtual
reality: An empirical evaluation. IEEE Access, 8:130486–130499, 2020.

[Cra13] Alan B. Craig. Chapter 7 - Mobile Augmented Reality. En Alan B. Craig, ed-
itor, Understanding Augmented Reality, páginas 209–220. Morgan Kaufmann,
Boston, 2013. url: https://www.sciencedirect.com/science/article/
pii/B9780240824086000072.

[DCLT18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, y Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805, 2018.

[DNBM12] Torgeir Dingsøyr, Sridhar Nerur, VenuGopal Balijepally, y Nils Brede Moe.
A decade of agile methodologies: Towards explaining agile software develop-
ment, 2012.

87

https://hypermedia.systems/
https://probability4datascience.com/
https://www.sciencedirect.com/science/article/pii/B9780240824086000072
https://www.sciencedirect.com/science/article/pii/B9780240824086000072

[DR15] Joydip Dhar y Ashok Ranganathan. Machine learning capabilities in med-
ical diagnosis applications: Computational results for hepatitis disease. Inter-

national Journal of Biomedical Engineering and Technology, 17(4):330–340,
2015.

[Els05] Amy Elser. Reliable distributed systems: technologies, web services, and ap-

plications. Springer Science & Business Media, 2005.

[FAHA22] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, y Dan Alistarh. Gptq: Accur-
ate post-training quantization for generative pre-trained transformers. arXiv

preprint arXiv:2210.17323, 2022.

[GBC16] Ian Goodfellow, Yoshua Bengio, y Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[GGI20] Alina-Mădălina Gheorghe, Ileana Daniela Gheorghe, y Ioana Laura Iatan.
Agile Software Development. Informatica Economica, 24(2), 2020.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, y John M. Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, edición 1, 1994. url: http://www.amazon.com/Design-Pat
terns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=nt
t_at_ep_dpi_1.

[GSK+19] Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grauman, Tajana Ros-
ing, y Rogerio Feris. Spottune: transfer learning through adaptive fine-tuning.
En Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, páginas 4805–4814, 2019.

[GXG+23] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi,
Yi Dai, Jiawei Sun, y Haofen Wang. Retrieval-augmented generation for large
language models: A survey. arXiv preprint arXiv:2312.10997, 2023.

[Hav18] Marijn Haverbeke. Eloquent javascript: A modern introduction to program-

ming. No Starch Press, 2018.

[HBD+19] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, y Yejin Choi. The curious
case of neural text degeneration. arXiv preprint arXiv:1904.09751, 2019.

[HFS+19] Hong-zhi Hu, Xiao-bo Feng, Zeng-wu Shao, Mao Xie, Song Xu, Xing-huo
Wu, y Zhe-wei Ye. Application and prospect of mixed reality technology in
medical field. Current medical science, 39:1–6, 2019.

[Hig13] Jim Highsmith. Adaptive software development: a collaborative approach to

managing complex systems. Addison-Wesley, 2013.

88

http://www.deeplearningbook.org
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1

[HLW23] Yikun Han, Chunjiang Liu, y Pengfei Wang. A comprehensive survey on
vector database: Storage and retrieval technique, challenge. arXiv preprint

arXiv:2310.11703, 2023.

[HM08] Allen L Hixon y Gregory G Maskarinec. The Declaration of Alma Ata on its
30th anniversary: relevance for family medicine today. Fam Med, 40(8):585–8,
2008.

[HNM16] Samuel Heuts, Peyman Sardari Nia, y Jos G Maessen. Preoperative planning
of thoracic surgery with use of three-dimensional reconstruction, rapid proto-
typing, simulation and virtual navigation. Journal of Visualized Surgery, 2,
2016.

[HQS+23] Muhammad Usman Hadi, Rizwan Qureshi, Abbas Shah, Muhammad Irfan,
Anas Zafar, Muhammad Bilal Shaikh, Naveed Akhtar, Jia Wu, Seyedali Mirja-
lili, et al. Large language models: a comprehensive survey of its applications,
challenges, limitations, and future prospects. Authorea Preprints, 2023.

[HTFF09] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, y Jerome H Friedman.
The elements of statistical learning: data mining, inference, and prediction,
volume 2. Springer, 2009.

[JK18] Lasse Jensen y Flemming Konradsen. A review of the use of virtual reality
head-mounted displays in education and training. Education and Information

Technologies, 23:1515–1529, 2018.

[Jon17] Capers Jones. Software methodologies: a quantitative guide. Auerbach Pub-
lications, 2017.

[Kar16] Andrej Karpathy. Connecting images and natural language. Phd thesis, August
2016. Available at https://cs.stanford.edu/people/karpathy/main.p
df.

[KBH+15] Dionne S Kringos, Wienke GW Boerma, Allen Hutchinson, Richard B Salt-
man, World Health Organization, et al. Building primary care in a changing

Europe. World Health Organization. Regional Office for Europe, 2015.

[Kle17] Martin Kleppmann. Designing data-intensive applications: The big ideas be-

hind reliable, scalable, and maintainable systems. " O’Reilly Media, Inc.",
2017.

[LC17] Fernando Lamata Cotanda. Atención Primaria en España: Logros y Desafíos.
Revista Clínica de Medicina Familiar, 10:164 – 167, 10 2017. url: http:

89

https://cs.stanford.edu/people/karpathy/main.pdf
https://cs.stanford.edu/people/karpathy/main.pdf
http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1699-695X2017000300164&nrm=iso
http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1699-695X2017000300164&nrm=iso

//scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1699-6
95X2017000300164&nrm=iso.

[MBHN24] Nicolo Micheletti, Samuel Belkadi, Lifeng Han, y Goran Nenadic. Exploration
of Masked and Causal Language Modelling for Text Generation. arXiv preprint

arXiv:2405.12630, 2024.

[MMN+24] Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard
Socher, Xavier Amatriain, y Jianfeng Gao. Large language models: A survey.
arXiv preprint arXiv:2402.06196, 2024.

[Mol20] Christoph Molnar. Interpretable machine learning. Lulu. com, 2020.

[Org23] World Health Organization. Primary health care, 2023. https://www.who.in
t/news-room/fact-sheets/detail/primary-health-care [Accessed:
25 June 2024].

[PH22] Mary Phuong y Marcus Hutter. Formal algorithms for transformers. arXiv

preprint arXiv:2207.09238, 2022.

[PMB22] Adéla Plechatá, Guido Makransky, y Robert Böhm. Can extended reality in
the metaverse revolutionise health communication? NPJ digital medicine,
5(1):132, 2022.

[RBR15] Philipp A Rauschnabel, Alexander Brem, y Young Ro. Augmented reality
smart glasses: definition, conceptual insights, and managerial importance. Un-

published Working Paper, The University of Michigan-Dearborn, College of

Business, 2015.

[RH05] Jannick P Rolland y Hong Hua. Head-mounted display systems. Encyclopedia

of optical engineering, 2:1–14, 2005.

[Rod15] Carlos Cuadros Rodríguez. Modelo de Ayuda al Diagnóstico de Infecciones
del Tracto Urinario en la Atención Primaria de Salud, July 2015.

[SC03] William R Sherman y Alan B Craig. Understanding virtual reality. San Fran-

cisco, CA: Morgan Kauffman, 2003.

[SEK24] Harald Steck, Chaitanya Ekanadham, y Nathan Kallus. Is Cosine-Similarity
of Embeddings Really About Similarity? En Companion Proceedings of the

ACM on Web Conference 2024, WWW ’24. ACM, Mayo 2024. url: http:
//dx.doi.org/10.1145/3589335.3651526.

[Sev12] Charles Severance. JavaScript: Designing a language in 10 days. Computer,
45(2):7–8, 2012.

90

http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1699-695X2017000300164&nrm=iso
http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1699-695X2017000300164&nrm=iso
http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1699-695X2017000300164&nrm=iso
https://www.who.int/news-room/fact-sheets/detail/primary-health-care
https://www.who.int/news-room/fact-sheets/detail/primary-health-care
http://dx.doi.org/10.1145/3589335.3651526
http://dx.doi.org/10.1145/3589335.3651526

[SSC+18] Joshua Warren Sappenfield, William Brit Smith, Lou Ann Cooper, David Liz-
das, Drew B Gonsalves, Nikolaus Gravenstein, Samsun Lampotang, y Albert R
Robinson III. Visualization improves supraclavicular access to the subclavian
vein in a mixed reality simulator. Anesthesia & Analgesia, 127(1):83–89, 2018.

[TSK+20] Amirsina Torfi, Rouzbeh A Shirvani, Yaser Keneshloo, Nader Tavaf, y Ed-
ward A Fox. Natural language processing advancements by deep learning: A
survey. arXiv preprint arXiv:2003.01200, 2020.

[TYLG+19] Shuo Tian, Wenbo Yang, Jehane Michael Le Grange, Peng Wang, Wei Huang,
y Zhewei Ye. Smart healthcare: making medical care more intelligent. Global

Health Journal, 3(3):62–65, 2019.

[VRW+16] Joost Visser, Sylvan Rigal, Gijs Wijnholds, Pascal Van Eck, y Rob van der
Leek. Building Maintainable Software, C# Edition: Ten Guidelines for Future-

Proof Code. " O’Reilly Media, Inc.", 2016.

[WS12] Shijun Wang y Ronald M Summers. Machine learning and radiology. Medical

image analysis, 16(5):933–951, 2012.

[WSZ+22] Yuntao Wang, Zhou Su, Ning Zhang, Rui Xing, Dongxiao Liu, Tom H Luan,
y Xuemin Shen. A survey on metaverse: Fundamentals, security, and privacy.
IEEE Communications Surveys & Tutorials, 25(1):319–352, 2022.

[ZLLS23] Aston Zhang, Zachary C. Lipton, Mu Li, y Alexander J. Smola. Dive into Deep

Learning. Cambridge University Press, 2023. https://D2L.ai.

91

https://D2L.ai

Este documento fue editado y tipografiado con LATEX empleando
la clase esi-tfg (versión 0.20181017) que se puede encontrar en:

https://bitbucket.org/esi_atc/esi-tfg

93

https://bitbucket.org/esi_atc/esi-tfg

