
UNIVERSIDAD DE CASTILLA-LA MANCHA

ESCUELA SUPERIOR DE INFORMÁTICA

DEGREE IN COMPUTER SCIENCE

SPECIFIC TECHNOLOGY OF COMPUTATION

UNDERGRADUATE FINAL DISSERTATION

Scalable platform to support automatic
number-plate recognition in urban environments

Alberto Aranda García

December, 2020

UNIVERSIDAD DE CASTILLA-LA MANCHA

ESCUELA SUPERIOR DE INFORMÁTICA

Technologies and Information Systems Department

SPECIFIC TECHNOLOGY OF COMPUTATION

UNDERGRADUATE FINAL DISSERTATION

Scalable platform to support automatic
number-plate recognition in urban environments

Author: Alberto Aranda García

Supervisor: David Vallejo Fernández

Supervisor: Carlos González Morcillo

December, 2020

Alberto Aranda García

Ciudad Real – Spain

E-mail: Alberto.Aranda3@alu.uclm.es

c© 2020 Alberto Aranda García

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is included in the section entitled "GNU Free Documentation License".
Se permite la copia, distribución y/o modificación de este documento bajo los términos de la
Licencia de Documentación Libre GNU, versión 1.3 o cualquier versión posterior publicada por
la Free Software Foundation; sin secciones invariantes. Una copia de esta licencia esta incluida
en el apéndice titulado «GNU Free Documentation License».
Muchos de los nombres usados por las compañías para diferenciar sus productos y servicios son
reclamados como marcas registradas. Allí donde estos nombres aparezcan en este documento, y
cuando el autor haya sido informado de esas marcas registradas, los nombres estarán escritos en
mayúsculas o como nombres propios.

i

TRIBUNAL:

Presidente:

Vocal:

Secretario:

FECHA DE DEFENSA:

CALIFICACIÓN:

PRESIDENTE VOCAL SECRETARIO

Fdo.: Fdo.: Fdo.:

iii

Resumen

El presente trabajo surge de la necesidad de investigadores de la Escuela de Canales,
Caminos y Puertos de Ciudad Real de realizar despliegues masivos de cámaras de tráfico
que, gracias a la aplicación del reconocimiento automático de matrículas (ANPR), propor-
cionen datos sobre los que llevar a cabo análisis de tráfico urbano. En el seno de Furious
Koalas Interactive, una spin-off de la Universidad de Castilla-La Mancha, se ha diseñado
e implementado una plataforma escalable que facilita la configuración y despliegue de es-
tos dispositivos. Con una interfaz web responsive, la plataforma permite tanto a operadores
de cámaras de tráfico como a supervisores definir experimentos de monitorización de trá-
fico y seguir su estado en tiempo real, permitiendo modificaciones en los parámetros de
las cámaras durante el transcurso de los experimentos. Una capa de integración gestiona la
orquestación del proceso ANPR y la comunicación con las cámaras de tráfico, siendo estas
últimas también gestionadas por la plataforma. Por último, la arquitectura de la plataforma
se ha diseñado sobre servicios gestionados de Google Cloud Platform, con especial énfasis
en el servicio AppEngine, dotando al sistema de capacidad para escalar a medida que se
incorporan usuarios y/o dispositivos de captura.

v

Abstract

This work is born from the need of researchers at the School of Civil Engineering (Ciu-
dad Real) to massively deploy traffic cameras which, thanks to the application of automatic
number plate recognition (ANPR), provide data allowing to perform urban traffic analysis.
Within Furious Koalas Interactive, a University of Castilla-La Mancha spin-off, a scalable
platform allowing the configuration and deployment of these devices was designed and im-
plemented. With a responsive web interface, the platform allows both traffic camera oper-
ators and supervisors to define traffic monitoring experiments and follow their state in real-
time, allowing modifications in camera parameters during the course of the experiments. An
integration layer manages the ANPR process orchestration and communication with traffic
cameras, which are managed by the platform as well. Finally, the platform architecture has
been designed over Google Cloud Platform managed services, with an emphasis on the Ap-
pEngine service, giving the system a capacity to scale as new users and/or capture devices
join the platform.

vii

Agradecimientos

Este trabajo representa el esperado final de una etapa crucial en mi vida, de la que guardo
un gran recuerdo gracias a las personas con las que he tenido la suerte de compartirla.

En primer lugar, me gustaría agradecer a mis directores toda la ayuda prestada: a Carlos,
por todos sus consejos durante el desarrollo del proyecto, y a David, porque sin su paciencia
y guía no habría podido sacar adelante este trabajo.

A mis compañeros de Furious Koalas, por haberme hecho sentir tan acogido en todo mo-
mento y por todo lo que hemos compartido, en especial a Carlos, con quien desarrollar este
proyecto ha sido una experiencia sumamente enriquecedora y amena.

A todos los profesores que he tenido, porque cada una de las cosas que me han enseñado
forman parte de quien soy, y porque sin ellos no podría haber llegado aquí.

A mis amigos, por su buen humor, por su buen corazón, y por poder contar siempre con
ellos.

A Lisa, por haber sabido entenderme, aguantarme, apoyarme, y no haber cesado nunca de
darme ánimos cuando más falta hacían.

Y, por supuesto, a mi hermana Virginia, a mis padres, y a toda mi familia por enseñarme a
no rendirme, por haberme educado, amado y acompañado en todas mis decisiones, buenas o
malas.

A todos vosotros, gracias de corazón.

Alberto Aranda García

ix

The woods are lovely, dark and deep,
But I have promises to keep,

And miles to go before I sleep,
And miles to go before I sleep.

xi

Contents

1 Introduction 1

1.1 Motivation and problematic . 1

1.2 Document structure . 3

2 Objectives 5

2.1 General objective . 5

2.2 Specific objectives . 5

3 Background 7

3.1 Automatic Number Plate Recognition . 7

3.1.1 ANPR steps . 8

3.1.2 ANPR solutions overview . 14

3.2 Cloud Computing . 17

3.2.1 Introduction . 17

3.2.2 Advantages of the Public Cloud 19

3.2.3 Cloud provider review . 20

4 Method and work phases 31

4.1 Work methodology . 31

4.2 Resources . 32

4.2.1 Hardware resources . 32

4.2.2 Software resources . 32

4.2.3 Cloud resources . 34

5 Architecture 37

5.1 Systematic requirements . 37

5.2 Architecture overview . 38

5.3 Perceptual layer . 38

5.3.1 Experiment Retrieval Module . 40

xiii

0. Contents

5.3.2 Capture Module . 42

5.3.3 ControlPacket Communication Module 44

5.4 Smart Management Layer . 46

5.4.1 Experiment Definition Module . 47

5.4.2 ALPR Intelligent Processing Module 51

5.4.3 Management and Storage Module 54

5.5 Online Monitoring Layer . 56

5.5.1 Authentication Module . 57

5.5.2 Experiment Visualization Dashboard 58

5.5.3 Experiment Definition Interface 59

5.5.4 ControlPacket History Visualizer 60

5.6 Design patterns . 60

5.6.1 Singleton pattern . 60

5.6.2 Observer pattern . 61

6 Results 63

6.1 Project Prototype . 63

6.1.1 Capture devices . 63

6.1.2 Login and dashboard . 64

6.1.3 Experiment Definition . 65

6.1.4 ControlPacket History . 66

6.2 Practical Example . 66

6.3 Project Evolution . 67

6.4 Development Cost . 71

6.5 Project Statistics . 71

7 Conclusions 75

7.1 Achieved Objectives . 75

7.2 Future Work . 76

7.3 Fulfilled Competences . 78

7.4 Personal Opinion . 78

A Instructions for the setup of the platform 83

A.1 Instructions . 83

A.1.1 Requirements for the deployment 83

A.1.2 Setup of the clients . 83

xiv

A.1.3 Server setup . 84

A.1.4 Usage of the platform . 84

B Testing the platform in real-world environments 85

Bibliography 87

xv

List of Figures

3.1 Left: Picture taken with an IR-capable camera. Right: Picture taken under
poor lighting. Source: OpenANPR Documentation1 8

3.2 Affected output pixel being influenced by its neighbours according to the
convolution matrix . 10

3.3 Example of application of the Sobel operator. From left to right: Original
image, Gx, Gy. Source: OpenCV library documentation2 11

3.4 Character segmentation using the vertical and horizontal projections[AALK06]
. 12

3.5 Piece extraction from a horizontal segment [Mar07] 13

3.6 Separation of concerns between the user and cloud provider in the On Premises,
IaaS, PaaS and SaaS models, according to Alibaba Cloud. 3 18

3.7 AWS Snowmobile presentation at RE:Invent 2016 24

3.8 A Snowball device . 24

3.9 Google’s global network4 . 27

5.1 General diagram of the architecture . 39

5.2 Images compressed with different JPG compression levels, with filesize data.
Compression levels below 60 significantly compromise the ANPR success
rate. The first three digits of the license plate are blurred for data protection
[ÁBSCV+20] . 44

5.3 Mockup of the Experiment Visualization Dashboard 59

6.1 Interior of an image capture device . 64

6.2 Login page of the platform . 64

6.3 The Experiment Visualization Dashboard 65

6.4 Close up view of the representation of a capture device in the dashboard . . 65

6.5 Form used in the Experiment Definition Interface 66

6.6 The modal window opened for the ControlPacket History Visualizer 66

6.7 Set of capture devices to be deployed, along with the prototype of their en-
closure [ÁBSCV+20] . 67

6.8 Capture devices deployed at several locations [ÁBSCV+20] 67

6.9 Evolution of Lines of Code (Perceptual Layer repository) 72

xvii

0. List of Figures

6.10 Evolution of Lines of Code (Smart Management and Real-Time Monitoring
Layers repository) . 73

B.1 Result of a plate detection in ideal conditions. 85

B.2 Blurred car image in low-light conditions 86

xviii

List of Tables

3.1 Worldwide cloud infrastructure spending and annual growth (Canalys esti-
mates, full-year 2019) . 21

6.1 Total cost calculation (including taxes) . 72

7.1 Justification of the specific competences addressed in the final dissertation . 78

xix

Listings

5.1 JSON Experiment Definition example . 40

5.2 Camara parameter setup process . 42

5.3 Camera capture setup process . 43

5.4 ControlPacketThread definition . 45

5.5 send_controlPacket method definition . 46

5.6 ClientConfig class definition . 48

5.7 ClientConfigManager class definition . 48

5.8 /update_config endpoint handler . 49

5.9 /get_config endpoint handler . 51

5.10 Controlpacket model definition . 52

5.11 ControlPacketManager definiton . 53

5.12 Singleton Pattern implementation . 61

A.1 Camara image cloning process . 83

xxi

Chapter 1

Introduction

A S Information Technology continues advancing as a fundamental part of modern soci-
ety, we are becoming more and more used to the changes it is bringing to the ways we

work, learn, discover, consume, and entertain ourselves. However, the popularization of IT
does not stop there: as Computer Science advances, especially in the field of Artificial Intel-
ligence (AI), the ways in which it can contribute to research fields of all sorts are becoming
more and more apparent. Urban Traffic Analysis is one of them, with multiple techniques
from fields such as Computer Vision being applied to it [BVO11].

This project was born from the collaboration between the Escuela de Ingenieros de
Caminos, Canales y Puertos de Ciudad Real (School of Civil Engineering) and Furi-
ous Koalas Interactive, a University of Castilla-La Mancha spin-off, with the objective of
addressing the need to obtain data about the traffic network of Ciudad Real. The previous
process to obtain it consisted of manually analyzing traffic video to extract the visible ve-
hicle license plates and annotate them. The work put into this project will turn it into an
improved, scalable, automatic process, that will help researchers and can be applied in other
contexts.

1.1 Motivation and problematic

The consolidation of the automobile as the main mean of transportation in developed coun-
tries is easily explained: it provides both a point-to-point, temporal flexibility and overall
comfort that is very appealing to travelers. However, urban transportation problems are evi-
dent in countries regardless of their development level, with issues such as traffic congestion
seeming intractable both to policymakers and researchers. The monitoring of urban traffic
is a starting point to tackle this and other related issues, from the management of the daily
traffic flow in a defined area to the design of urban mobility plans.

Despite today’s renewed interest in traffic flows and congestion, there is evidence of pol-
icy being implemented to address these issues since ancient civilizations. Going back to
the Roman Empire, one of its most notorious features is its well-developed road system.
There is, however, evidence that this infrastructure has evolved over time: while older and
smaller cities such as Pompeii have narrower streets, which was in many cases not suitable

1

1. Introduction

for wheeled traffic, later coloniae as found in Western Europe show streets wide enough to
accommodate wheeled two-way traffic [vT11]. Another evidence of the way policy against
traffic congestion was implemented through infrastructure improvement is the fact that the
width of city gates found in ancient archaeological sites has been found to be positively cor-
related not only to their estimated population, but to their estimated traffic flow [Han20].

Nowadays, traffic congestion is one of the main challenges of modern society. The time,
monetary and environmental costs of this worldwide issue are notorious, but still difficult to
assess. Traffic jams deteriorate the quality of urban life and lead to economic loss. Research
has tried to quantify the costs of congestion: a 1994 study conducted in the United States
gives an estimated figure of $640 per driver and year [AS94]. Other studies such as the
Urban Mobility Report [SLE19] give a total estimated cost of $166 billion in 2017, based
on fuel consumption and hours spent on traffic. These figures, however, do not take into
account the costs of accidents, air pollution and its effects on health and the environment,
nor the negative economic effect of the unpredictability of traffic delays.

From a policy-making perspective, the importance of understanding traffic patterns and
behaviors is essential, as decision-making in infrastructure build and maintenance depends
on knowledge about the needs of road users. While the analysis of these needs is complex,
as they depend on socio-economic and environmental factors (see [KDDT13]) and tend to
vary over time, a good understanding of the current situation through a traffic model is an
excellent starting point.

Traffic monitoring is the first step towards the building of a traffic model. For decades,
different techniques and tools have emerged in order to perform urban traffic data gathering,
with a transition from traditional manual recording to more sophisticated, automated tech-
niques, which are proving to have not only lowered costs, but also increased performance
and accuracy. Essentially, the latter techniques consist on the placement of sensors in the
traffic network. The work in [PSK+10] gives a summary of the different kinds of available
sensors, classifying them in intrusive and non-intrusive sensors. Intrusive sensors need to
be installed "under the road pavement, in saw-cuts or holes on the roads". They stand out
in accuracy for vehicle detection; however, their installation and maintenance cost is higher.
Examples of intrusive sensors include inductive loops, piezoelectric cables, and magnetome-
ters. On the other hand, non-intrusive sensors are located above ground, above the road or
on its side. Examples of such sensors are microwave and laser radar, infrared, ultrasonic,
or sensors video image processing (VIP) methods. This project will be focused on the lat-
ter kind of methods. Overall, non-invasive sensors overcome the disadvantages of invasive
sensors, but as a downside, they have a larger size and are generally more power-hungry.

In the field of video image processing methods, much effort has been put to detect vehicles
in urban traffic footage. For instance, the work in [GMMP02] describes some algorithms
for the detection and classification of vehicles based on images captured from traffic. As

2

Document structure

these classification methods add information about the kind of vehicles that traverse the net-
work, they suppose a step forward compared to sensors which only provide vehicle counts.
However, a bigger degree of observability can be reached with methods based on automatic
number plate recognition (ANPR), with some studies in the field of urban traffic modeling
([CMJ08], [SCJRG17]) showing how the additional license plate data provided by ANPR
can be used.

While the implementation of ANPR systems for traffic surveillance is on the rise, its costs
remain elevated: for example, in [E+08], the hardware is estimated to cost $20,000 per
camera, while the installation and maintenance costs are estimated to cost $4,000. This
raises the need to research alternative architectures and platforms for the deployment of
ANPR systems for traffic monitoring.

1.2 Document structure
The undergraduate final dissertation regulations from the Escuela Superior de Informática

of the Universidad de Castilla-La Mancha proposes a structure which, adapted to the project
content, is the following:

Chapter 2: Objectives
General description of the project and specific objectives or sub-objectives of the plat-
form.

Chapter 3: Background
This chapter provides an overview of the research fields involved in any way in the
system development, and makes a comparative study of the existing technologies to
choose the most viable one in every case.

Chapter 4: Method and work phases
This chapter describes the work methodology to be followed, detailing each work
phase. The used resources, both software and hardware, will be described, along with
the project limitations.

Chapter 5: Architecture
The different modules composing the platform will be described, following a top-down

perspective, which shows a broad view of the system, continuing with the subsystem
analysis in an increasingly exhaustive way.

Chapter 6: Results
The evolution that the project has undergone will be described, detailing the iterations
and experimental tests of the system.

Chapter 7 : Conclusions
This chapter describes the conclusions reached after the execution of the project, ad-
dressing possible improvements and new applications as well.

3

Chapter 2

Objectives

Given the approach and the ideas developed in the introduction, this chapter describes
the work to be done, describing first the general objective, which is then derived into a set
of detailed sub-objectives. This way, a set of milestones guiding the work towards its final
objective is explained.

2.1 General objective
The project’s general objective is the development of a cloud platform managing the de-

ployment of urban traffic analysis experiments using low-cost capture devices and the ALPR
technique. The platform must provide the means to deploy, control and monitor capture
devices over a wide urban area, orchestrate the ALPR process and store the results.

The development has been carried by the company Furious Koalas, S.L., the final client
being the Escuela de Ingenieros de Caminos, Canales y Puertos de Ciudad Real, which
plans to use the platform in real-world experiments used to conduct research in the area of
urban traffic analysis.

2.2 Specific objectives
Below, the specific sub-objectives of the project are presented.

• Support for the definition of experiments: Development of a module allowing the
users to define an experiment and its characteristics, which will include its starting
and ending date and hour, and the number and identification of capture devices. The
configuration of each capture device will be defined through this module as well. It will
include the frequency of delivery of images to the server, regions where it is expected to
retrieve plates, and optional camera configuration parameters (for example, recording
frames per second, ISO sensitivity or exposure time).

• Retrieval of data from the capture devices: The capture devices must be able to send
images to the platform, via an authenticated endpoint. Reliability must be taken into
account, as in the event of the platform suffering from downtime, data from the capture
devices may be lost.

5

2. Objectives

• Support for the ALPR process orchestration: The platform must support the delivery of
images to an ALPR service or model, and collect the result. It is necessary to prepro-
cess the images, authenticate with the ALPR service if necessary, and send the images
periodically, in order not to saturate the service or model. Besides, network errors or
other kinds of failure must be taken into account, retrying whenever necessary.

• Portability between devices: The interface must be accessible and usable by both desk-
top and mobile devices, as it will be used both by in-field camera operators and by
supervisors of the whole process, who will use it from their offices. Therefore, respon-
siveness criteria must be taken into account.

• Real-time monitoring and configuration changes: As one of the features of the plat-
form is the monitoring of experiments, it is necessary that the interface is updated in
real-time with the latest image sent by each capture device. As the platform will be
used by several users concurrently, and in order to keep the load in the server low, a so-
lution where the server pushes changes to each client when updates arrive is preferred
to a long polling approach.

Real-time configuration changes related to capture devices must be sent to them as
well. The objective is that the user gets feedback as soon as possible on the effect of
these changes.

• Detection of errors at the capture devices: The platform should warn the user when a
capture device is not working as expected (for example, the device is not communi-
cating, the image seems invalid, or no plates have been recognized), so that corrective
actions may be taken.

• History of captures: The user interface should offer the possibility to query the history
of captures of each capture device, showing the image, timestamp of the capture and
recognized plates. The history should load more and more items on demand, whenever
the user scrolls down. The objective is to allow the user to have a perspective of the
evolution of the experiment for each capture device.

• Ease of use: The platform is meant to ease, as much as possible, the deployment and
monitoring of ALPR experiments at a big scale; therefore, it should respect usability
criteria. The nature of the experiments should be taken into account, as they may have
high costs associated and there may be only one opportunity to perform them, making
the users of the platform subject to stress.

• Deployment of the system to the cloud: Considering the projected use case, as well
as the possibility of a future commercial version, the platform should be ready to be
deployed, as easily as possible, to the chosen Cloud service for its exploitation, with a
minimal amount of configuration.

6

Chapter 3

Background

This chapter will focus on the foundations of this project. First, a brief state-of-the-art of
Automatic Number Plate Recognition will be exposed. A general description of the differ-
ent stages of this process will be given, among the different algorithms available and their
different implementations through an analysis of the current literature. Some fundamental
concepts of Computer Vision will be reviewed, focusing on their application on ANPR and
how they are used to overcome its main challenges. Next, an overview of some of the avail-
able commercial and open-source ANPR will be given, on which we will base the decision
for the solution to use in the project. Second, there will be a review of the Public Cloud, with
an introduction to it and its different models and their advantages, followed by a review of
the main Cloud providers, exposing their service offerings, how they evolved, and the value
they provide to customers.

3.1 Automatic Number Plate Recognition

ANPR (Automatic number plate recognition) or Automate license plate recognition (ALPR)
consists in the extraction of the information of the license plate of a vehicle from an image
or a sequence of images [DISB12]. Historically, it has been applied, for instance, in security
systems, vehicle access control, and parking lots. Today, it is used as well, for example, in
electronic toll services and automatic traffic fining systems, motivated by the vast integration
of Information Technologies (IT) into all areas of modern life. ANPR is, therefore, a prac-
tical application of Artificial Intelligence (AI) that is widely deployed. Concrete examples
of everyday scenarios that involve ANPR systems are automated border crossing of vehicles
in certain countries and access control of vehicles of authorized personnel to the premises of
many companies.

The design and implementation of ANPR systems is an ongoing field of research in com-
puter vision, which relates to areas such as neural networks, machine learning, and pattern
recognition. Similarly, many commercial and open-source ANPR tools and platforms are
available in the market. This section will explain the different stages of the ANPR process,
exposing the algorithms and mathematical principles behind each one of them. Following
that, an overview of some commercial ANPR systems will be given.

7

3. Background

3.1.1 ANPR steps
According to [PSP13], the general process of the automatic plate number recognition pro-

cess may be summarized in several well-defined steps. Each step involves a different set of
algorithms and/or considerations, the steps being (1) vehicle image capture, (2) number plate
detection, (3) character segmentation, and (4) character recognition. In addition, a last step
that consists in error detection in the recognized plates can be considered.

Vehicle image capture

The first step in the ANPR process is the capture of images from the vehicles whose plates
we want to recognize. The capture step, which can seem straightforward at first, has a critical
impact in the successive stages of the process, the final result being highly dependant on the
quality of the captured images. The task of correctly capturing images of moving vehicles
in real-time is complex and subject to many variables of the environment, such as lighting,
vehicle speed, and angle of capture. Depending on the capture device, it is possible to adjust
camera settings, such as shutter speed and sensitivity, in order to adapt to the environment
and produce captures with better quality. One kind of equipment that is very commonly
used for ANPR captures is infrared-sensitive cameras, in combination with an infrared light
source. The reason behind this is that vehicle number plates of most countries are made with
materials that are infrared-reflective, which makes them highlighted in images taken by IR
cameras, making those captures very good candidates for ANPR.

Figure 3.1: Left: Picture taken with an IR-capable camera. Right: Picture taken under poor
lighting. Source: OpenANPR Documentation2

Number plate detection

Following the image capture, the next step in the ANPR process is the detection of the area
in which a number plate is expected to be located. Images are stored in digital computers as
matrices, each number representing the intensity of light of an individual pixel. An image
can also be modelled as a discrete function f (x, y), where x and y are spatial coordinates,

2http://doc.openalpr.com/camera_placement.html#lighting

8

Automatic Number Plate Recognition

and f returns the value for the intensity of light at that point. This modeling will prove to be
useful in order to define transformations on function f.

Therefore, the challenge of number plate detection is detecting a rectangular area that
corresponds to the number plate in an original image. Humans trivially solve this problem
since very young ages, which remains an unsolved mystery because of both the complexities
of biological vision and our limited understanding of visual perception in a dynamically and
varied physical world. Thus, while humans might define a number plate in natural language
as something such as "a plastic plate attached to the front and back of a vehicle in order to

identify it", it is necessary to find a different definition that is understandable by machines.
Different techniques and algorithms give different definitions of a number plate: for example,
in the case of edge detection algorithms, the definition could be that a number plate is a
"rectangular area with an increased density of vertical and horizontal edges". This high
occurrence of edges is normally caused by the border plates, as well as the limits between
the characters and the background of the plate.

Edge detection is based on a set of convolution operations; the result of this series of
convolutions give us the area of the plate. For instance, a periodical convolution of the
function f (defining an image) with a matrix m can be used in order to detect a specific type
of edge in an image [Mar07]:

f ′(x, y) = f(x, y)⊗m[x, y] =
w−1∑
i=0

h−1∑
j=0

f(x, y) ∗m[modw(x− i),modh(y − j)]

Where h and w are the height and width of the image represented by f, and the expression
m[x, y] represents the element in xth column and yth row of matrix m.

Different kinds of convolution matrices m, also known as kernels, will result in different
kinds of detected edges. A kernel describes how each pixel of the input image is affected
by its neighboring pixels during the convolution operation. Intuitively, a kernel acts as as a
matrix of weights that "slides" over the original image (defined by f), performing an element-
wise multiplication with the part of the image that it is on at each moment, and then summing
the partial results into a single output pixel. Therefore, the formula to obtain each output
value is the following linear combination, assuming a 3x3 kernel:

y = x0 ∗m0+x1 ∗m1+x2 ∗m2+x3 ∗m3+x4 ∗m4+x5 ∗m5+x6 ∗m6+x7 ∗x7+x8 ∗m8

One of the most widely used filters for edge detection is the Sobel operator. It consists
of two 3x3 kernels, one for vertical edges, and the second of horizontal edges, whose goal

9

3. Background

Figure 3.2: Affected output pixel being influenced by its neighbours according to the convo-
lution matrix

is computing approximations of the gradient, taking into account that digital images are
represented with discrete points. The kernels Gx and Gy are defined as:

Gx =

−1 −2 −1
0 0 0

1 2 1

Gy =

−1 0 1

−2 0 2

−1 0 1

With this information, the approximation for the magnitude of the gradient at each point

can be computed combining the approximations to the horizontal and vertical gradients:

G =
√
G2

x +G2
y

Alternatively, as a less computationally expensive option, the following approximate cal-
culation can be performed:

|G| = |Gx|+ |Gy|

Besides, the gradient’s direction can be calculated as well, obtaining information about an
edge’s orientation:

θ = atan(
Gx

Gy

)

10

Automatic Number Plate Recognition

Figure 3.3: Example of application of the Sobel operator. From left to right: Original image,
Gx, Gy. Source: OpenCV library documentation4

Once the Sobel operator has been applied, it is necessary to perform an analysis of the
result to detect the plate area. There are many possibilities for this analysis; one of them is
a statistical analysis of the projections of the image into the x and y axes. We define these
vertical and horizontal projections as:

px(x) =
h−1∑
j=0

f(x, j)

py(y) =
w−1∑
i=0

f(i, y)

Where h and w are the width and the height of the image, respectively.

Therefore, the horizontal projection px of function f at point x is the summation of all
pixels in the xth column. The same reasoning applies for the vertical projection py. Then,
the problem of finding the plate becomes an analytical problem about finding the peaks of
the projection functions. Normally, this analysis is performed in two steps: first, the vertical
projection is analyzed in order to detect the vertical area of the number plate (also known
as "band"). This phase is known as "band clipping". With the result of the "band clipping"
process, a second peak analysis is performed on the horizontal projection in order to detect
the plate boundaries on the X-axis; this is known as "plate clipping".

Because of the nature of the described analysis, it might be possible that we end up with
several candidates to plate boundaries; in this case, it is possible to perform a heuristic anal-
ysis on the candidates. This analysis may include elements that are dependant on the plate
regulations of the geographical region where ANPR takes place, such as the plate width or
the width/height ratio. Regulation-independent heuristics may also be considered, such as
the height of the peak (higher peaks mean a higher concentration of edges, which are more
likely in plate regions).

4https://docs.opencv.org/3.4/d5/d0f/tutorial_py_gradients.html

11

3. Background

It is worth mentioning that the Sobel operator is one of the most performant techniques
for number plate detection [MBRP10], but it is not the only one. Other techniques dis-
cussed in literature, and widely used in commercial solutions, include other edge detection
approaches such as the Canny operator [Can86], neural network approaches [ÖÖ12], and
custom techniques for ANPR such as the Sliding Concentric Window (SCW) [AAP+08],
among others.

Amid all the reviewed literature about number plate detection, it has been noted that most
algorithms perform best in restricted environmental conditions such as a determined distance
from the vehicle, angle, number plate shape, and illumination, for example.

Character segmentation

Once the plate region has been detected, it is necessary to divide it into pieces, each one
containing a different character. This is, along with the plate detection phase, one of the most
important steps of ANPR, as all subsequent phases depend on it. Another similarity with the
plate detection process is that there is a wide range of techniques available, ranging from the
analysis of the horizontal projection of a plate to more sophisticated approaches such as the
use of neural networks.

Vertical and horizontal projection-based techniques are the most simple, computationally
cheap, and common ones. Similarly to the analysis previously explained in the Plate De-
tection section, an analysis of the projection’s peaks and minimum values can allow us to
segment characters; minimum values, in this case, represent separations between charac-
ters.

Figure 3.4: Character segmentation using the vertical and horizontal projections[AALK06]

Even though histogram analysis is one of the simplest, most common and straightforward

12

Automatic Number Plate Recognition

techniques for character segmentation, it has proven to reach very satisfactory results: for
instance, [SMX04] achieves and accuracy result of 99.2% on a dataset of over 30.000 images
of Chinese number plates.

Connected Component Analysis (CCA), also known as Connected Component Labelling
(CCL), is a technique that can be used both for character segmentation and as a later step
known as piece extraction, in which, once segmentation has been performed, several pieces
of neighboring, same-color pixels are extracted; for each segment, one of those pieces rep-
resents the character.

Figure 3.5: Piece extraction from a horizontal segment [Mar07]

CCA is one of the most vital techniques in computer vision, as it has a wide number of
use cases. It can be classified as a clustering algorithm which labels elements based on their
connectivity; for this purpose, either a 4-connectivity or, more usually, an 8-connectivity can
be considered. In the case of computer vision, CCA operates on an already binarized image,
labeling connected groups of same-colour pixels. There are two main implementations of
CCA. The first one is based on graph theory, and it consists in performing the equivalent of
a graph traversal. Briefly explained, this technique locates the first foreground pixel in the
image, gives it a label, and then assigns the same label to all its neighbors with the chosen
connectivity; the process is repeated for all unlabeled foreground pixels in the image. This
technique requires only one pass on the image and has multiple implementations, such as
[AQIS07], which optimizes previous one-scan implementations. The second kind of CCA
algorithms perform two passes on the input data: the first one assigns temporary labels and

13

3. Background

records equivalences between them, and the second one applies those recorded equivalences.
The Hoshel-Kopelman algorithm, originally described in [HK76], is a widely known exam-
ple of the two-pass technique.

Mathematical morphology is another remarkable technique in character segmentation; it is
based on set theory, random functions, topology, and lattice theory. It defines basic operators
such as dilation, erosion, closing, and opening. This technique shows very good results in
degraded plate images, with works such as [NYK+05] showing an 84% accuracy rate among
a set of degraded plate images.

While, so far, only image-based have been analyzed, we may also mention video-based ap-
proaches, which add temporal and context information to the analysis of each frame. [CH98]
is an example of such approach. In this work, character extraction is modeled as a Markov
Random Field (MRF), where randomness is used to describe the uncertainty in pixel la-
bel assignment. This allows us to add previous contextual information or constraints in a
quantitative way. With this modeling assumption, a genetic algorithm with a local greedy
mutation operator is used in order to optimize the objective function. Better performance
than single-frame based approaches has been shown, along with the possibility of parallel
hardware implementations.

To conclude, it can be affirmed that character segmentation is, along with plate detection,
one of the most important steps in the ANPR pipeline, as incorrectly segmented characters
are very unlikely to be correctly recognized in the next step; indeed, most recognition errors
in ANPR systems are caused by detection and segmentation failures, instead of recognition
shortcomings. In line with the other steps in the ANPR process, the quality of the captured
picture is critical, although some of the analyzed literature focuses on the segmentation of
degraded plates, often by taking advantage of previous knowledge.

Character recognition

The next step in the ANPR process consists in recognizing each of the previously seg-
mented characters. At this point, several already existing techniques for character recogni-
tion can be employed, ranging from Artificial Neural Networks (ANN) [KC11] and template
matching [CLCW09], to the use of already existing OCR solutions such as the open-source
TesseractOCR 5 tool [Smi07].

3.1.2 ANPR solutions overview
This section details the different ANPR solutions available on the market, both as commer-

cial products and as open-source software. The different available services will be presented,
with an emphasis on the chosen solution. For the latter, an overview of the techniques and
algorithms it uses for each step of the ANPR process will be given.

5www.github.com/tesseract-ocr/tesseract

14

Automatic Number Plate Recognition

Plate Recogniser

Plate Recogniser 6 is a company offering a cloud-based number plate recognition service.
It is marketed as being trained to work with non-ideal capture conditions such as "sun glare,
blurry images, fast vehicles, night time, and many more". It offers an SDK to be installed in
the capture devices that processes both images and video, and apart from the cloud service,
the possibility of an on-promise installation is possible, although the application remains
closed-source. It proposes several pricing plans depending on the volume of requested im-
ages to be processed. In terms of cost per picture, the most economic one costs $250 for
500.000 lookups over the course of a month 7, or $0.0005 per lookup.

Anyline

Anyline is a software company offering an ANPR solution 8 as one of its products, mostly
focused on European license plates. Concretely, it offers an SDK compatible with Android,
iOS and UWP, with additional integration with some common frontend frameworks, which
suggests it is mainly designed for integration with mobile and/or web applications. The
ANPR process is carried locally in the device where the SDK is installed, which Anyline
markets as one of its advantages as no data is sent to third parties. However, among its
disadvantages are the fact that the product is closed-source, and that there exists no publicly
available pricing information about the system.

Eocortex

Eocortex is a company focused on video analytics solutions for IP (Internet Protocol)
cameras 9. One of the solutions it offers is an ANPR service 10 with a per-camera licensing
mode. Among the features of the service, it is mentioned that it can recognize the plates
of vehicles "moving at a speed of up to 150 kph", which can have the standards of any of
the 196 countries it supports. Overall, its tight requirements about the characteristics of the
image capture devices and the lack of a publicly available pricing are characteristics that
discarded this option as an ALPR service to use.

OpenALPR

The chosen ALPR service is OpenALPR. OpenALPR is both an open-source library 11

written in C++ for the recognition of license plates in images and video, and a company that
offers different solutions based on it. The latter offers an API, called CarCheck, that allows

6www.platerecognizer.com
7www.platerecognizer.com/pricing
8www.anyline.com/products/scan-license-plates (Accessed November 2020
9www.eocortex.com

10www.eocortex.com/products/video-management-software-vms/license-plate-recognition
11www.github.com/openalpr/openalpr

15

3. Background

querying an already trained and improved model. According to a benchmark 12 performed by
the company, this API identifies correctly 99.02% of license plates on the first estimate, while
the open-source library correctly identified a 42.16% of license plates. As well as previously
analyzed providers, the cost of the API depends on the volume of performed requests. The
cheapest cost per request corresponds to a AC395 plan for 125.000 requests, or AC0.00316 per
lookup.

The OpenALPR library documentation contains a section 13 detailing the steps taken dur-
ing the recognition process and the algorithms used in them. Below, these steps will be
analyzed, in order to understand how the process is implemented, and to analyze whether or
not they vary with respect to the ANPR steps exposed in the section before.

The first step corresponds to the detection phase. In this phase, the Local Binary Pat-
terns algorithm (generally used for face recognition) [AHP06] is used to find possible plate
regions. Each of these regions is passed to the consecutive steps for its processing. As the
OpenALPR documentation details, the detection phase is, generally, the one with the biggest
computational cost. As a matter of fact, the library offers support for hardware acceleration
in order to improve its performance.

The images go then through a binarization step, which is executed several times, one per
each possible plate region detected in the last phase. The binarization phase creates several
binary (black and white) images for each possible plate region. Multiple binary images,
with different binarization thresholds, are generated. A single binarized image may lose
characters if the image is either too dark or too bright. In this phase, both the Wolf-Jolion
[WJ04] and Sauvola [SP00] methods are used with different parameters. Each of these binary
images is processed in the consecutive steps.

In the character analysis phase, Connected Component Analysis (CCA) is performed
in order to find blobs that are candidates to characters. Some of the found blobs can be
discarded depending on whether they have approximately the specified width and height
expected for a plate character. Besides, the blobs have to be aligned between them and have
a similar width and height. This analysis is performed several times on each image. If an
image contains valid blobs, it is passed to the next step.

The following phase is border plate detection. First, all the lines of the image are ana-
lyzed with the Hough transform[Hou62] algorithm. Then, this list of lines, along with the
character height (computed in the last phase) is used to find the most likely borders. A num-
ber of configurable weights are used to determine which borders are the most likely, using a
default border based on the height and weight of the plate.

Then, given the plate borders, a deskew phase assigns the plate region a standard size and

12www.openalpr.com/benchmarks
13www.doc.openalpr.com/opensource.html#openalpr-design

16

Cloud Computing

orientation. This will give us a plate image that is correctly oriented (eliminating rotation
and skew).

The character segmentation phase is then carried. A vertical histogram is used to find
gaps between the plate characters. This phase will, as well, clean up the character boxes by
eliminating small, unconnected spots and filter character regions that are not high enough.

The OCR (Optical Character Recognition) phase is then applied. For each character
image, it computes all possible characters and their confidence level. For this phase, the
TesseractOCR free software tool, previously trained, is used.

Finally, given a list of all possible characters and their confidence levels, the postprocess-
ing phase determines the best letter and number combinations in the potential plate.

As a conclusion of the analysis of the ANPR implementation in this library it can be
observed that, although some phases and algorithms vary slightly with the ANPR process
as it was explained in the section before, others did not, giving evidence of the variety of
techniques that are employed in real-world ANPR systems.

3.2 Cloud Computing
3.2.1 Introduction

Cloud Computing is the delivery of computing resources and storage via the internet. It
usually refers to a model where IT resources and applications are delivered on an on-demand,
pay-as-you-go basis.

The term, which was coined after the symbol used in network diagrams, had its first known
mention in a Compaq internal document dated November 14, 1996, and titled “Internet So-
lutions Divison Strategy for Cloud Computing”. It was popularized by Amazon in 2006
when releasing its Elastic Compute Cloud (EC2) service, now part of Amazon Web Services
(AWS), and has since then become widespread in the IT industry.

The provided resources are usually pulled from a shared pool. The facilities supporting
that pool can range from a dedicated server to entire data centers, often replicated between
different geographical locations for disaster recovery. Multitenancy is achieved by means of
virtualization and, more recently, containerization.

Cloud typology

The ownership of the aforementioned shared pool determines a classification between
Public Clouds and Private Clouds. Private Clouds (also known as ’on-premises’ clouds) are
internal to an organization, which manages the physical premises they are based on. Public
Clouds, on the other hand, are managed by a cloud provider, which is responsible for the
management, maintenance, and updating of the physical appliances. In the model known
as Infrastructure as a Service (IaaS), the cloud provider manages the networking, storage,

17

3. Background

servers, and virtualization, and the client is responsible for all the environment running over
the Hypervisor: OS, Middleware, Runtime, Data, and Applications. In the Platform as a
Service (PaaS) model, the cloud vendor takes the responsibility for the OS, Middleware,
and Runtime, offering the client a platform to deploy its applications on.

Figure 3.6: Separation of concerns between the user and cloud provider in the On Premises,
IaaS, PaaS and SaaS models, according to Alibaba Cloud. 15

Function as a Service (FaaS), also known as Serverless, is a novel cloud execution model,
introduced by AWS in 2014 with its "AWS Lambda" service, and replicated by all major
cloud providers. FaaS goes one step beyond PaaS, as it allows customers to completely
abstract from the provisioned compute resources that execute their code; instead, customers
can submit their code in independent units of execution ("functions") and are billed by the
number of executions, the total execution time, and the employed memory. This allows
for a pay-as-you-go model in which customers only pay for the resources they use, in a
fine-grained fashion, instead of paying for a server even when it’s on standby waiting for
requests. Scalability is, as well as in the PaaS model, the responsibility of the cloud provider,
so developers and operators don’t need to set up scaling policies. In addition to the cost and
scalability advantages, productivity is an added benefit to the FaaS model, as developers and
systems administrators stop being concerned about various issues such as multithreading or
resource allocation optimization, simplifying the process of software development. Among
the disadvantages of this model, there is the added latency when cold-starting FaaS code

15https://www.alibabacloud.com/knowledge/difference-between-iaas-paas-saas

18

Cloud Computing

(executing it for the first time after it has been inactive), resource limits that might make
it unsuitable for certain use cases, added difficulty for debugging deployed code, privacy
(resources are shared, and third party employees could have access to the deployed code),
lack of open standards, and vendor lock-in.

Cloud Security and the Shared Responsibility Model

As it has been exposed, services offered by public cloud providers allow customers to
abstract at will from different layers. From a security perspective, the Shared Responsibility
Model, as described by Amazon Web Services [TO13] and other cloud providers, applies: as
different parties (the Cloud Provider and the Consumer) are involved in the operative of cloud
architecture, responsibilities must be clearly defined and understood. In general, the cloud
provider will assume responsibility for the underlying physical infrastructure of the system
and networking. Depending on the cloud service, the Cloud Provider assumes different
levels of responsibility: for example, in PaaS-based services, the Provider takes actions such
as OS-level security patches, while in IaaS-based services, this is the responsibility of the
customer. This separation of responsibilities must be well described and understood by the
customer, as it’s critical for the security operative.

3.2.2 Advantages of the Public Cloud
Since its creation, Cloud Services have been widely used both by individual developers

and organizations to sustain their needed IT infrastructure. The reasons for its remarkable
success are varied; some of them are explained below.

Economies of Scale

Since compute and storage resources are pulled from a shared pool, it is possible for
the Cloud Provider to reduce expenses proportionally to the number of existing customers.
The role of economies of scale in cloud computing has been widely discussed [JW11], and,
indeed, the use of the sum of computing resources is optimized with the Cloud model, with
better efficiency in the utilization of the shared infrastructure, translating into lower prices
for the end customer.

Less upfront investment

Cloud Computing allows individuals and organizations to move from a model based on
Capital Expenditures (Capex) to a model based on Operational Expenses (Opex), thanks to
the pay-as-you-go billing model. Therefore, the upfront investment in computing resources
for new projects is substantially reduced. However, in some cloud providers, it is possible to
access discounted rates in exchange for an upfront payment. This option is commonly used in
production projects with a steady number of requests. It conforms to a Capex model, which
can be an advantage for organizations in which the Opex model has not been introduced.

19

3. Background

Geographical scalability

Major cloud providers have premises in many regions across the globe, which proves to be
an advantage when scaling a platform or application globally. This gives the cloud customer
the potential to reach end-users at a lower latency, thus, providing a better experience for
them. For application developers, the environment they deploy their code on tends to be very
similar among all geographical locations, making it easy to scale globally.

Managed services

Cloud services allow the customer to abstract, at will, from different layers. This relieves
the customer from the burden of having to consider some aspects of IT operations, such as
network security, OS updates, backups, scalability and stability, or compliance. Depending
on the service, some of these aspects may be exposed to the customer to different degrees;
however, managed services offer the possibility of less expenditure on infrastructure main-
tenance and systems operations. Smaller teams can be responsible for larger parts of the
infrastructure, allowing organizations to move and innovate quicker, and dramatically reduc-
ing downtime.

Quick deployment

In a cloud computing environment, new resources are quickly available, and they are taken
from a seemingly unlimited pool of computing power and storage. This capability to use new
resources on demand allows organizations to reduce deployment times to minutes, while, at
the same time, having to stop guessing the future capability needs.

3.2.3 Cloud provider review
The worldwide cloud services market is in continuous growth, as organizations from all

industries are driving digital transformation initiatives. Expenditure in storage, compute, and
other on-demand cloud services are therefore growing: a report 16 made by the Canalys mar-
ket analysis firm in January 2020 estimated a total expenditure in 2019 of $107 billion, up
from $78 billion in 2018. Competition between the leading cloud providers is intensifying,
and each one of them is continuously trying to innovate with new services and offerings in
order to attract customers. The same analysis by Canalys draws the picture of a cloud mar-
ket dominated by four major providers, namely, Amazon Web Services (AWS), Microsoft
Azure, Google Cloud Platform, and Alibaba Cloud. The following table shows the world-
wide expenditure on each cloud provider, along with their market share and annual growth,
in the years 2018 and 2019, according to the aforementioned analysis from Canalys.

As can be observed, all major providers have experienced a positive annual growth; on
the other hand, the market remains dominated by AWS, followed by Azure and GCP. Below,

16https://www.canalys.com/newsroom/canalys-worldwide-cloud-infrastructure-Q4-2019-and-full-year-
2019

20

Cloud Computing

Cloud service provider Full-year 2019
(US$ billion)

Full-year 2019
market share

Full-year 2018
(US$ billion)

Full-year 2018
market share

Annual
growth

AWS 34.6 32.3% 25.4 32.7% 36.0%
Microsoft Azure 18.1 16.9% 11.0 14.2% 63.9%
Google Cloud 6.2 5.8% 3.3 4.2% 87.8%
Alibaba Cloud 5.2 4.9% 3.2 4.1% 63.8%
Others 43.0 40.1% 34.9 44.8% 23.3%
Total 107.1 100.0% 77.8 100.0% 37.6%

Note: percentages may not add up to 100% due to rounding

Table 3.1: Worldwide cloud infrastructure spending and annual growth (Canalys estimates,
full-year 2019)

these top three major cloud providers will be analyzed, along with their fundamental service
offerings and their applications.

Amazon Web Services

With presence in over 20 regions around the world in 2020 and an estimated 32.3% market
share, AWS is, undoubtedly, the leader in the cloud market. The AWS platform was launched
internally in July 2002, and at its origins, it consisted of a disparate collection of tools and
services. In late 2003, Chris Pinkham and Benjamin Black presented an internal paper de-
scribing an efficient way to scale up Amazon’s retail website, applying different abstractions
to decouple applications from infrastructure, and standardizing and fully automating the lat-
ter. Near the end of the paper, they mentioned the potential to generate revenue from the
standardized infrastructure, proposing to "sell it (the infrastructure) as a service"17. In 2006,
AWS was officially launched with an initial offer of three products: a storage service (S3),
a message queuing service (SQS), and a virtual machine lease service (EC2). All of these
services form a central part of AWS, providing the foundations on which many other services
are based on.

Today, AWS offers a catalog of more than 200 services, with new ones being announced
every month; they are grouped into areas, ranging from generalist ones such as "Compute",
"Storage" or "Database", to more specialized areas like "Machine Learning", "Internet of
Things" or "Blockchain". Many of those services and their improvements are made based on
customer’s feedback, some of them being the first offering of their kind in the cloud market,
and replicated later by other cloud providers. Therefore, most of the services that will be ex-
plained below are available too under other Cloud Providers, under different denominations,
and sometimes, with slightly different terms and sets of features. As summarizing such a vast
catalog is out of the scope of this document, this section will explore some of the main areas
of the AWS platform briefly describing the most important services in each of them.

In the "Compute" area, the main component is the aforementioned "EC2" service, which
17https://www.networkworld.com/article/2891297/the-myth-about-how-amazon-s-web-service-started-just-

won-t-die.html

21

3. Background

allows us to rent virtual machines ("instances") on the cloud, billed on a per-second basis.
This is, therefore, an IaaS service, on which the cloud provider (Amazon) offers a Hypervi-
sor over which the customer can run the Operating System of their choice. There are several
instance types available18, fit for different use cases: general-purpose, compute optimized,
memory-optimized, accelerated computing, and storage optimized. Besides, there are dif-
ferent pricing models meant for different use cases: the "on-demand" model has the highest
price per second, the "reserved instances" model allows a discount over the "on-demand"
model in exchange for a use commitment (typically 1 or 3 years), and the "spot instances"
model gives a varying discount in function of the current instance demand. Spot instances

may be terminated at any moment by the cloud provider with short notice if the instance
demand from cloud users grows. The different combinations between instance types and
pricing models give application developers a lot of flexibility to adapt to different use cases,
and most cloud providers offer similar options. Along with "EC2", "Lambda", the first FaaS
service, are the pillars of the "Compute" area offering.

Regarding the "Storage" area, the most important service is S3, an object storage ser-
vice with eventual consistency designed for a 99,999999999% (11 nines) durability over the
period of a year. S3 organizes data within buckets, which contain a set of stored objects.
Objects are stored as key-value pairs, the key being the path of the object, and the value
being the binary data. Each bucket operates in a geographical region, and the storage price
per GB varies per region; in order to replicate buckets between regions, the "cross-region

replication" feature is offered. Some other features that are remarkable in S3 are automated
encryption, object versioning, and access control based on different policies. Another core
feature of S3 is its tight integration with other managed services: for instance, it may be used
to host static websites in conjunction with CloudFront, a Content Distribution Network ser-
vice. With hundreds of Points of Presence (PoP) around the globe, static websites are served
with low latency. Lambda may be used as well to execute ad-hoc code, both in conjunction
with CloudFront, or directly in response to S3 events, allowing, for example, to execute spe-
cific code whenever an object is updated. The Athena service may be used to query files in
tabular format (CSV or Apache Parquet, for example) stored in S3 using the SQL language;
therefore, analytics can be performed over objects stored in S3. As a matter of fact, AWS
encourages the creation of Data Lakes using S3 as its primary storage platform 19, creating
a central repository to store the entire set of an organization’s structured and unstructured
data, with virtually unlimited scalability, ensuring the decoupling within data storage and
data processing, and offering many possibilities of integration with other AWS services.

Concerning the pricing scheme, S3 offers several storage classes meant for different use

18https://aws.amazon.com/ec2/instance-types
19https://docs.aws.amazon.com/whitepapers/latest/building-data-lakes/amazon-s3-data-lake-storage-

platform.html

22

Cloud Computing

cases 20. Within a bucket, storage classes can be configured at the object level. S3 Standard

is the default storage class, meant for frequently accessed data, and offering the minimum
retrieval latency and highest throughput performance. S3 Standard - Infrequent Access offers
the same performance with a lower storage cost in exchange for a retrieval fee, and S3 One

Zone - Infrequent Access doesn’t replicate the data between zones (the former options repli-
cate data between three zones), offering a 20% discount over the Infrequent Access option.
Finally, there are two storage classes meant for archival purposes: Glacier and Glacier Deep

Archive. Both classes offer substantial discounts over the Standard class, in exchange for
longer recovery times and a higher retrieval fee: there are three retrieval options, with times
ranging from some minutes to several hours. The targeted use cases for these storage classes
are, for instance, an alternative to magnetic tape devices, backup and disaster recovery, and
long term data retention for regulatory compliance. In addition to the storage cost of all the
described classes, networking transfer fees when retrieving objects apply as well.

It is worth noting that it is possible to define lifecycle policies, which allow us to de-
fine transition actions specifying the moment at which the storage class of an object should
change: for example, it is possible to define a policy moving an object from the S3 Standard

class to S3 Standard - Infrequent Access 30 days after they are created. On the other hand,
for long-lived objects with unknown access patterns the S3 Intelligent - Tiering class auto-
matically moves objects between frequent access and infrequent access tiers depending on
their usage.

Finally, for uploading big volumes of data to S3 in a performant way, several options
exist. First, it is possible to establish a dedicated wired connection between the customer
premises to AWS datacenters with the DirectConnect service. The dedicated connection
can have a bandwidth of either 1 Gbps or 10 Gbps, providing a more consistent network
performance than Internet-based solutions. Another option is the Snowball service, which
consists in a physical device sent to the customer’s premises that, once loaded with the data
to be uploaded to S3, is sent back to AWS. The storage capabilities of the device range from
42TB to 80TB 21. Snowball devices are fitted with Edge Computing capabilities as well,
which allow us to preprocess data before storing it to the Hard Disk Drive; some of them
are fitted with dedicated GPUs meant to accelerate Machine Learning processes. Finally, for
massive transfers of up to 100 Petabytes, the Snowmobile service 22 allows to, after an initial
assessment, receive a ruggedized shipping container, fit with Hard Disk Drives and pulled by
a semi-trailer truck, at the customer’s premises. The Snowmobile can then be connected to
the customer’s internal network with the help of AWS personnel, and start the data transfer,
which will be loaded to S3 once the Snowmobile is back at AWS’ premises. This allows us
to complete a 100PB data migration in a few weeks, which could otherwise take more than

20https://aws.amazon.com/s3/storage-classes
21https://aws.amazon.com/snowball/features
22https://aws.amazon.com/snowmobile

23

3. Background

Figure 3.7: AWS Snowmobile presentation at RE:Invent 2016

Figure 3.8: A Snowball device

20 years under a 1Gbps Direct Connect line.

Moving forward to the "Database" area, the most remarkable services are RDS and Dy-

namoDB. RDS is a managed relational database service 23, currently supporting the Re-
lational Database Management Systems (RDMS) PostgreSQL, MySQL, MariaDB, Oracle
Database and Microsoft SQL Server, as well as Aurora, which is a database engine devel-
oped by Amazon and compatible with PostgreSQL and MySQL. RDS can be considered as
a PaaS service, and therefore, typically time-consuming database administration activities
such as provisioning, backups, security updates, monitoring, and scaling are provided by
AWS. The user only has access to the database application, and not to the operating system
that the database runs on. Similarly to EC2, several instance types are available depending
on the intended use case, and pricing schemes such as reserved instances are available as
well. In addition, for the Aurora engine, it is possible to opt for the Aurora Serverless model,

23https://aws.amazon.com/rds

24

Cloud Computing

in which, instead of provisioning database instances, the customer specifies an amount of ca-
pacity units, which are a combination of compute and storage capabilities. The database then
starts, scales up or down, and shuts down automatically in function of the demand and needs
of the application, which proves to be a simple and cost-efficient solution for intermittent,
unpredictable, or sporadic workloads. Finally, DynamoDB is a fully managed NoSQL key-
value and document database that is scalable and offers single-digit millisecond response
times. Like Aurora Serverless, it is not necessary to provision database instances; instead,
customers can either pay on a per-request basis or, in case of workloads with predictable
demand, pay for a determined amount of provisioned read and write capacity. As can be
noted, AWS (among other cloud providers) is pushing to expand the serverless framework,
allowing FaaS services (Lambda) to interact with other services where it’s not necessary to
provision and maintain any server. Thus, it becomes possible to create applications whose
usage is billed merely on a per-request basis, scalable, and with low maintenance costs.

Azure

Azure is the platform under which Microsoft offers its cloud services. Formely known as
Windows Azure, it was released on February 1, 2010, and renamed to Azure on March 25,
2014 24. As of November 2020, Azure offers a total of 270 services 25 in 43 different regions
worldwide. 26

A brief analysis of the core services provided by Azure enables to establish multiple paral-
lels between those offered by Amazon Web Services. For example, the object storage service
Azure Data Lake Storage can be considered as the equivalent of S3 in AWS, Azure Functions

would be the equivalent of Lambda, and database services such as Azure SQL Database can
be compared to RDS. The equivalent of EC2, called Azure Virtual Machines, constitutes one
of the main value propositions from Azure, as Microsoft claims that running Windows Server
instance on its cloud is up to 5 times cheaper than doing so in AWS. 27

The Hybrid Cloud is another core value addition that Azure proposes when compared
to other cloud providers; as a matter of fact, support for the migration to the cloud from
on-premises environments can be easier when an organization is already heavily invested
in the Microsoft Technology Stack, with integration with services such as Active Directory

being an added value in this context. This, added to some unique services such as Azure

Policy, which verifies and enforces compliance with a defined set of policies across a cloud
environment, make Azure an option to take into account by large organizations.

24www.azure.microsoft.com/en-us/blog/upcoming-name-change-for-windows-azure
25www.azure.microsoft.com/en-us/services/
26www.azure.microsoft.com/en-us/global-infrastructure/geographies
27www.azure.microsoft.com/en-us/overview/azure-vs-aws/

25

3. Background

Google Cloud Computing Platform

Google launched its cloud offering, "Google Cloud Platform" (or GCP) on April 7, 2008.
The infrastructure behind GCP is the same as the one Google uses for its internal and end-
user products, providing customers with the ability to deploy cloud resources in 22 geo-
graphical regions (locations) divided into 67 zones, as of the beginning of 2020. Each zone
is an isolated set of physical resources on which cloud resources can be deployed; zones can
consist of one or more data centers. This decoupling between regions, zones, and physi-
cal data centers allows customers to design robust, highly available systems that are able to
recover from physical failures by spanning multiple zones and regions.

One unique feature about the infrastructure behind Google Cloud Platform is its backbone
fiber network: with thousands of kilometers of fiber optic cable around the globe, including
submarine cables across the Atlantic and Pacific oceans, Google operates one of the largest
and most modern computer networks. In order to provide end-users access to this network,
more than 100 Points of Presence (PoPs) are available around the globe. GCP customers can
benefit from this infrastructure with the "Premium Network Tier" service: once this feature is
activated for a group of serving virtual machines (instances), the customer gets a single, any-
cast IPv4 or IPv6 Virtual IP (VIP). When end-users connect to this address, they are routed
through the closest PoP to their location; from this point to the region where the serving
instances are located, the connection will be routed through GCP’s dedicated fiber network,
reducing the number of hops the connection runs through, and, thus, improving latency, per-
formance and reliability. This feature dramatically simplifies architecture designs, as it is
possible to develop applications with a unique, global IP address; global load balancing is
automatically provided, and it is possible to overflow or fail-over into other regions keeping
relatively good performance.

Google App Engine

Google App Engine (or GAE) is a PaaS solution, integrated within GCP, offering hosting
for web-based applications. Google announces it as a "fully managed, serverless platform"
29. It was released on the 7th April, 2008, as a preview version, and got out of preview on
September 2011. Since then, it has been continuously updated. GAE offers runtimes for
the languages Go, PHP, Java, Python, Javascript, Ruby, and the .NET framework. It is also
possible to use custom runtimes, including any additional component that developers may
need, such as application servers or language interpreters. This flexibility, and the options
for scaling, monitoring and debugging, makes GAE a good candidate to run a microservices
architecture [LLH16].

28https://www.blog.google/products/google-cloud/expanding-our-global-infrastructure-new-regions-and-
subsea-cables

29https://cloud.google.com/appengine/docs

26

Cloud Computing

Figure 3.9: Google’s global network28

GAE offers two kinds of environments to run applications on 30: the standard environment
and the flexible environment. Both environments are meant to be complementary, and are
meant for different use cases; however, depending on the environment, different GAE fea-
tures will apply. One of the main differences between them is that the standard environment
is more restrictive in the sense that applications run in a sandbox, using provided runtimes
with specific versions of languages and frameworks. Operating System access, both from the
application and from the developer, is restricted: for example, the application cannot use the
file system or custom binaries, and the developer cannot connect to the running environment
with tools such as SSH. Communication with other GCP services is possible with a provided
API. On the flip side, these restrictions allow a much quicker scaling of the application, as
a custom-designed scaling algorithm is used for the standard environment. A typical use
case for the standard environment is a stateless web application (for example, a REST API)
intended to have low response times, and running no other background processes. Regarding
resource allocation, standard environment applications can run on different instance classes
31, each one comprising different amounts of CPU and memory. Instance classes can be
divided into backend instances and frontend instances.

The flexible environment, on the other hand, allows us to execute any custom Docker
container 32 provided by the user. These containers can include any language interpreter
and/or execution runtime specified by the developer, including any required dependency

30https://cloud.google.com/appengine/docs/flexible/go/flexible-for-standard-users
31https://cloud.google.com/appengine/docs/standard#instance_classes
32https://www.docker.com

27

3. Background

and custom binary. Running multiple processes is allowed as well. Unlike the standard
environment, it’s not possible to call other GCP services using the build-in provided API;
instead, it’s necessary to install the Google Cloud client libraries as a dependency in the
provided container. This allows the application to be more portable among other services.
Finally, it is possible to choose different instance types for the flexible environment, each
with different CPU and memory. This is unlike the standard environment, which limits the
CPU and memory resources available to applications. On the other hand, when it comes to
scaling, the flexible environment has more limitations: unlike the standard environment,
which scales in a matter of seconds, flexible environment instances can take minutes to
provision. This causes that a minimum of one flexible instance must be up at all times in
order to serve traffic uninterruptedly, causing additional costs in applications where traffic is
not continuous.

It is worth mentioning that, in order to ease the development and testing of applications,
a "free tier" 33 is offered. In the case of GCP, this "free tier" is comprised of both an initial
credit offering of $300 for new accounts, expiring after a year, and an "always free" program
providing free access to some GCP services. AppEngine is included in the "always free"
program only for the standard environment, offering 28 hours of free "frontend" instance
hours per day, and 9 hours of free "backend" instance hours per day. The "always free"
program is, therefore, another point in favor of the standard environment when developing
and testing small, stateless applications.

In order to access applications hosted on AppEngine, a domain name, with the format
appname.appspot.com, is provided. It is possible to use custom domain names with the
Cloud DNS service. As mentioned, similar integrations with other Google Cloud services
exist: for example, the NoSQL database Google Cloud Datastore 34, or Google Cloud SQL
35 for applications requiring a MySQL, PostgreSQL or Microsoft SQL Server database.

One of the main concerns when developing applications to be deployed to PaaS services
such as AppEngine is the risk of vendor lock-in. Vendor lock-in is a situation where cus-
tomers are dependent ("locked-in") on a Cloud Provider, because of a tight coupling between
their applications and the cloud services of the provider they’re deployed on. In the case of
AppEngine, this risk becomes especially evident for standard environment applications be-
cause of the restrictions this environment imposes, which forces the application architecture
to conform to them, and encourages the use of other Google Cloud services; in the case of
the flexible environment, it is possible, in theory, to build containers that can run indistin-
guishably both on AppEngine and on other environments, but, in practice, programmers are
still encouraged to use other GCP services to develop their applications.

33https://cloud.google.com/free/docs/gcp-free-tier
34https://cloud.google.com/datastore
35https://cloud.google.com/sql/docs

28

Cloud Computing

One of Google’s main responses to these concerns is Kubernetes (commonly written as
k8s)36, an open-source portable and extensible platform allowing the deployment of contain-
ers (which can contain applications or other workloads), developed by Google and main-
tained by the Cloud Native Computing Foundation, a Linux Foundation project. Kubernetes

abstracts away many aspects of proprietary cloud infrastructure, allowing applications to run
on different cloud providers, or on-premises, with minor changes. Many features commonly
found in PaaS, such as load balancing, health checks, horizontal scaling, deployments, au-
tomated rollbacks, and monitoring, are also present in Kubernetes; however, Kubernetes is
not monolithic. It is a collection of independent, optional solutions that can be used depend-
ing on the use case and needs, giving developers the flexibility to use it to the extent they
need. This can be compared to the possibility of using different features and cloud services
in a PaaS environment. GCP’s offering to run Kubernetes workloads is the Google Kuber-

netes Engine (GKE) service, and other cloud services have similar offerings for Kubernetes

loads.

36https://kubernetes.io/docs/concepts/overview/what-is-kubernetes

29

Chapter 4

Method and work phases

This chapter will discuss the methodology that will be used to tackle all the objectives of
the project in the most efficient possible way, as well as the needed resources.

4.1 Work methodology

During the development of the platform, the main stakeholder is the involved staff mem-
bers of the Escuela de Ingenieros de Caminos, Canales y Puertos de Ciudad Real, which
will be the first users of the platform. Therefore, after an initial requirements gathering, sev-
eral follow-up meetings were scheduled, including demo sessions so that the results of each
iteration could be presented, and suggestions could be made.

Given the fact that the development would be made by a very small team, that require-
ments could change during the review and demo sessions, and that the chosen third-party
service for ANPR would need to be tested, it was necessary to adopt a work methodology
that would prevent these obstacles and uncertainty from having an impact on the project.
Agile methodologies, as defined in the Agile Manifesto 1 are a widely used approach in
development that tackle this kind of issues in an effective manner. As opposed to the "wa-

terfall" model, agile methodologies focus on iterative and incremental development cycles,
promoting shorter feedback cycles leading to more flexibility to change and earlier product
validation, among many other advantages [Boe07]. Each iteration is composed of different
phases covering requirements, analysis, design, development, testing and delivery; the end
result is an increment consisting on a working implementation of a subset of functionality.
This result is reviewed to see the degree to which it fulfills its goals; then, the conclusions,
along with other inputs such as new information about the market, identified improvement
points, or priority changes, are used as inputs for the planning of the next iteration.

There are numerous frameworks and methodologies within the agile approach. For ex-
ample, Scrum 2 is a framework that defines a set of events (such as sprint reviews, retro-
spectives and plannings), roles (such as Product Owner and Scrum Master), artifacts, and
rules and values that lead the development process [SS11]. Extreme Programming (XP) and

1www.agilemanifesto.org
2www.scrum.org/resources/what-is-scrum

31

4. Method and work phases

Lean Software Development are other examples of widespread agile software development
frameworks [MMSU15]. For our use case, we have decided to use the principle of iterative
and incremental development in conjuction with Kanban 3, a visual workflow management
framework which organizes development tasks in a three-step divided board (To Do, Doing,
Done) [And10].

4.2 Resources
The following section will enumerate and briefly discuss the resources, either hardware,

software, or of any other kind, which are necessary to tackle the development of the platform,
as well as its deployment and operation.

4.2.1 Hardware resources
• Asus X554LA-XX1248H laptop: It is a mid-range laptop which will be used for the

development of the platform. It is fitted with an Intel i3-5005U processor, 8GB of
RAM, and 1TB of HDD storage; these features perfectly support the development of
web-based microservice applications meant to be deployed on the cloud.

• Raspberry Pi Zero W: This model is a variant of the famous Raspberry Pi System on
a Chip (SoC). Released in 2017, it is a reduced version of the Raspberry Pi, featuring
a 1GHz single-core CPU and 512MB RAM. Besides, the Zero W version features
improved connectivity over 802.11 b/g/n Wireless Lan, and Bluetooth 4.1. This, added
to a camera connector, and a reduced price tag of $10, make it a very good device to
test the platform from the point of view of an image capture device. For this purpose, a
Raspberry Pi Camera Module v2, equipped with a Sony MX219 8-megapixel sensor,
is connected to the camera port.

• Redmi Note 4X: This Android smartphone will be used to test the platform in a real
world environment, allowing us to test the responsive web interface.

4.2.2 Software resources
Operating system

• Ubuntu 16.04 LTS: Launched for the first time in 2004, this GNU/Linux flavor is one
of the most popular ones among desktop users 4. Based on Debian, it provides the apt

package manager, which allows us to download the necessary development software.

• Raspbery Pi OS: Formerly known as Raspbian, it is Raspbery Foundation’s officially
supported operating system 5. It is downloadable in several images with vaying de-
grees of preinstalled software; for our testing purposes, we will use the minimal one,
customizing it for our needs.

3www.atlassian.com/agile/kanban
4www.distrowatch.com
5www.raspberrypi.org/downloads/raspberry-pi-os/

32

Resources

• Android: This widely known mobile Operating System will be used in the smartphone
used to test the operation of the platform in a real-world environment.

Development tools

• GNU Emacs6: This highly extensible text editor, with support for multiple program-
ming languages, will be used for the development of the platform.

• Firefox Developer Tools: The developer tools featuring in the Firefox browser will
allow us to debug, step by step, the Javascript code that will be written for the func-
tional part of the web interface, as well as to render the website in different screen
resolutions.

• Git and BitBucket7: The version control system Git will be used to maintain a code
repository, containing the full history of changes (commits), and allowing us to work
on different versions of the codebase (branches) to isolate the development of different
features.

• Trello8: The free version of this list-making web-based application will be used to
organize the platform development. The different features to be developed will be
separated and organized into cards, which can have different status (To Do, Doing,
Done) in line with the Kanban approach.

Programming languages

• Python: This interpreted, general-purpose programming language will be used to write
the web server of the platform, as well as to write the client-side code that the testing
devices will execute.

• HTML/CSS: The Hypertext Markup Language will be used to format the pages used
in the web interface. The Cascading Style Sheets language will be used to describe the
presentation of the webpage.

• Javascript: This interpreted programming language, meant to be executed in web
browsers, will be used for the functional part of the webpage, performing, among other
tasks, asynchronous calls to the server for image retrieval and device configuration.

• Bash: This shell language will be used to write scripts automating the building and
deployment of the application to the cloud, as well as to initialize the capturing process
in the testing capture device.

6www.gnu.org/software/emacs
7www.bitbucket.org
8www.trello.com

33

4. Method and work phases

Libraries, frameworks, and SDKs

• Flask9: An open-source, lightweight web application framework, with support for
HTML templates, that will be used to write the web application server with a minimal
overhead.

• Bootstrap10: A responsive CSS framework, featuring an advanced grid system, that
will be used to develop the responsive web interface, showing the different capture
devices and their real-time footage, as well as the recognition result.

• JQuery11: A Javascript library that simplifies the access to the HTML Document Ob-
ject Model (DOM) and its manipulation; it is used for the functional part of the web
interface.

• Google Cloud SDK: This software package provides utilities for interacting with Google
Cloud resources, allowing to use them and to deploy infrastructure and applications,
as well as to test AppEngine applications locally.

Documentation tools

• LATEX: This text composition language, widely used in the academic community to
create written documents with a high typographic quality, is used for the generation
of this documentation. The online tool Overleaf 12 is used to simplify the work, as it
provides document hosting and a in-browser editor with collaborative edition features.

• Markdown: This lightweight markup language, widely used to write readme files, will
be used for plain-text documentation of the code repositories.

• Draw.io13: An online diagram creation tool, featuring different icon sets, that will be
used for the creation of figures to illustrate this document.

4.2.3 Cloud resources
This section includes the Cloud resources, which cannot be classified as either hardware

or software resources, as they consist of both the underlying physical infrastructure and a
software layer to make it available as a service, adding different functionalities depending
on the type of the service (for instance, IaaS or PaaS). The chosen Cloud vendor to run
our platform on will be Google Cloud Platform (GCP), and therefore, all the resources
mentioned below refer to GCP services.

• Google App Engine: This PaaS solution will be used to deploy the web platform, as it
fulfills the criteria needed to host the application in a scalable, cost-effective way.

9www.flask.palletsprojects.com/en/1.1.x
10www.getbootstrap.com
11www.jquery.com
12www.overleaf.com
13www.draw.io

34

Resources

• Cloud Datastore: GCP’s managed NoSQL database will be used to store the different
entities that are present in the system, containing information such as the configuration
of each capture device, the users of the system, and the captured images and their
ANPR result.

• Cloud Storage: This managed object storage service will be used to store the images
taken by the capture devices and generate references to them.

35

Chapter 5

Architecture

In this chapter, the architecture proposed for the development and deployment platform
is exposed from a technical point of view. The architecture will be introduced following a
top-down approach, in which, first, a general overview of the different components of the
system will be given, followed by an explanation of each of the defined modules. For the
design of the architecture, its components have been separated according to the functional re-
quirements to be implemented, although systematic, non-functional requirements have been
considered as well, and therefore contribute to shape the end result of the architecture.

5.1 Systematic requirements

Due to the nature of this development, and the methodology used to tackle it, requirements
can change in each iteration as new features are implemented. In this context, it is neces-
sary to take scalability into account for the development of the architecture; here, scalability
is defined as the capability of a system to integrate new components, growing and adding
functionality without negatively affecting the rest of the system. Related to the scalability
requirement (in the sense of adaptation to change), there are two other similar, systematic
requirements: evolvability, defined as the system being able to tolerate software or hardware
modifications, and integration, defined as the capability of the platform to integrate new de-
vices. Beyond these considerations, as the platform will be used to define experiments which
are not easily replicated and that can evolve a potentially high number of devices, availabil-
ity is necessary, defined as the platform robustness and fault-tolerance, detecting failures and
correctly dealing with their consequences. Regarding security, the kind of data that the plat-
form manages is of the uttermost importance; the EU General Data Protection Regulation
(GDPR) defines personal data as "any information relating to an identified or identifiable

natural person" 1. Under this definition, number plate data could be considered as personal
information, and therefore special measures have to be taken to ensure its confidentiality. On
the other hand, it is necessary to deploy mechanisms that deal with potential abuses of the
deployed sensor network. Finally, manageability has to be considered, providing the system
with mechanisms designed to ease the use of the platform.

1www.gdpr.eu/eu-gdpr-personal-data/

37

5. Architecture

5.2 Architecture overview
Taking into account the aforementioned requirements, as well as the functional require-

ments, a layered architecture has been chosen for the platform. This will allow us to easily
grow the system by adding new functionality while keeping it simple to understand, keeping
the system maintainable with low coupling between layers. Besides, as the platform en-
compasses different deployment environments (capture devices, cloud platform), the layered
approach proves to be advantageous for the organization of deployments and isolation of
security threats.

The architecture is composed of 3 independent layers, with different goals, deployment
environments, and levels of responsibility. Figure 5.1 offers a general diagram of the archi-
tecture. The Perceptual layer is the one that will control image capture devices, and allow
them to communicate with the rest of the platform. It does so by means of a capture client
that is installed in each capture device. The Smart Management Layer is the one with the
highest degree of responsibility. It is in charge of receiving information from the capture de-
vices, which is encapsulated in a format known as "control packages"; each control package

is persisted and sent to the ALPR service for processing. It also provides the modules neces-
sary for the definition of experiments. Finally, the Online Monitoring Layer will be in charge
of providing the real-time visualization of the experiment. It should also provide an inter-
face for the experiment definition module, allowing modifications to the experiment (which
can include modifications to the configuration of the capture devices) before or during its
execution.

Each of these layers consists of several modules, each one of them encapsulating a specific
functionality that adds value to its layer, eventually contributing to its goal. The communi-
cation between layers is made through a system of requests; concretely, most modules of the
Smart Management Layer will provide an interface that the other layers can use according
to their needs. Each layer is independent of the others, and they don’t know each other’s im-
plementation details and the way they work; this contributes to the scalability of the system,
as it allows functionality to be added to each layer isolating the impact it provokes on the
others.

In the following sections, the inner workings of each layer and module are detailed, focus-
ing not only on their operation and goals, but also on the used languages and frameworks,
as each layer will execute in different environments. In some cases, implementation details
will be given; finally, this chapter will conclude by giving an overview of some of the design
patterns used for the implementation of the platform.

5.3 Perceptual layer
The Perceptual layer is in charge of directly interacting with the capture devices or sen-

sors that will be deployed on the field; therefore, it constitutes the lowest-level layer of the

38

Perceptual layer

Figure 5.1: General diagram of the architecture

architecture. Concretely, it will consist of a set of capture clients; each one of them will be
deployed to a capture device and will interact with its underlying hardware resources, accord-
ing to the instructions (defined in experiments) received from the Smart Management Layer.
As each capture client is deployed in a different capture device, clients are isolated from each
other, and each client is unaware of the existence of other clients. Their responsibility is lim-
ited to retrieving their corresponding experiment from the upper layer and, according to its
definition, take pictures and send them to the upper layer in the format of Control Packages,
as well as storing the images in secondary memory. It is possible to reprocess the stored
images in a stage after the experiment; this provides the system with fault-tolerance in the
event of network connectivity issues.

39

5. Architecture

Below, each module that the capture client consists of is analyzed, detailing their design
and functionality

5.3.1 Experiment Retrieval Module
When a capture client starts its execution, it needs to retrieve a certain configuration from

the upper layer, relative to both the camera parameters and the date and time when the cam-
era must start recording. The Experiment Retrieval module is in charge of performing this
task, as well as storing this configuration, scheduling the experiment so that it starts at the
configured time, and periodically querying for configuration changes.

As there can be several capture clients, each one of them deployed in a different capture
device, a mechanism for the identification of each client is necessary, so that the server can
send back the configuration that corresponds to the client. In the case of our implementation
of the client for the Raspberry Pi Zero W, the ID for each device is specified in a configura-
tion file stored in a memory stick, among with the address of the server that hosts the Smart
Management Layer. With this design, replacing a faulty sensor is a simple and straightfor-
ward task, as it consists only on provisioning a new capture device and capture client, and
providing it with the right identification. This is related to the systematic requirement of
evolvability.

Once the capture client has queried the Smart Management Layer for its configuration
providing its ID, it receives an Experiment object. This object is encoded in the JSON
format; each of its fields corresponds to a configuration parameter that will be used during
the experiment. An example JSON Experiment object is the following:

1 {

2 "begTime": "2020-06-10T09:00:00",

3 "endTime": "2020-06-10T11:00:00",

4 "resolution": "1024x720",

5 "mode": "manual",

6 "exposure_time": 1000,

7 "freq_capture": 1000,

8 "iso": 320,

9 "rectangle_p1": [

10 280,

11 262

12],

13 "rectangle_p2": [

14 1024,

15 574

16]

17 }

Listing 5.1: JSON Experiment Definition example

40

Perceptual layer

Many of its parameters can be adapted to the physical location of the sensor and the en-
vironment conditions, having the flexibility of being able to define different configurations
for each sensor: for example, it is possible to adapt to the position of the sensor, the weather
conditions (rain, fog, etc.), and lighting level, among other factors. For instance, depend-
ing on the position of the sensor and the networking conditions it may be possible to adjust
the resolution level: a capture device located with a good view to traffic, but with a slow
network connection, may need a lower resolution level than a capture device located further
away from traffic, but with access to an unmetered, fast Wi-Fi connection.

The begTime and endTime fields refer to the date and time when the device should start
and stop recording, respectively. Their values are strings conforming to the ISO 8601 spec-
ification for the encoding of date and time-related data [Hou93]. The resolution field must
indicate a capture resolution that is supported by the underlying sensor; in the case of the Pi-
Camera used during the development of the platform, this resolution can go up to 3280x2464
pixels 2. The mode field can be set to either "manual" or "auto"; when it is set to manual, it is
possible to set the additional fields exposure_time and iso. The exposure_time indicates the
fraction of a second that the light is allowed to enter the camera second in each capture; it can
be adjusted in function of the current environment light. Similarly, the iso field indicates the
sensitivity of the sensor to light; low values can be set for good luminosity levels, taking into
account that bigger values can produce grain in the final images. Finally, the rectangle_p1

and rectangle_p2 fields allow to define, optionally, a subregion inside each captured image.
This subregion will be the part of the image that is persisted to storage and sent in a Control-

Packet, the rest of the image being discarded; this allows to save storage and bandwidth costs
in scenarios where there is certainty about the area where the number plates will appear.

Once this JSON message is retrieved from the upper layer, it is the responsibility of the
experiment retrieval module to parse the configuration and store it so that it can be used later.
Concretely, there exists a Config class, that is instantiated when a configuration message is
received. This class parses the message and stores the configuration; then, the upper layer is
queried again periodically in order to check whether there are changes to the configuration,
and in this case, the configuration object is updated.

After the configuration is parsed and stored, the experiment scheduler is called with the
received begTime and endTime configuration values, and periodically updated as well when-
ever these values change.

Experiment Scheduler

The experiment scheduler is a submodule whose only responsibility is programming the
execution of the capture, thus, initializing the "capture module" at the time indicated by the
begTime field of the configuration; similarly, the capture must stop whenever the endTime is

2www.picamera.readthedocs.io/en/release-1.12/fov.html#camera-modes

41

5. Architecture

reached.

As the capture devices that have been chosen for the development and testing of the plat-
form have a UNIX-based Operating System, it was decided to use cron 3, a widely used
daemon to execute scheduled programs. Cron is configured through ctrontab files, which
contains each command that is scheduled to be executed, as well as the date and time when
it should run, which can be periodic.

The "Experiment scheduler" submodule, therefore, consists on a method of the Config

class which writes the corresponding entries in the crontab file: the entryopint of the "Cap-
ture module" is scheduled to be executed at begTime, and a kill signal is sent to this module
at endTime. Besides, and additional check is performed to run the "Capture module" if the
current time is between the begTime and the endTime, and to send a kill signal to any running
"Capture module" instances should the current time be greater than endTime.

5.3.2 Capture Module
This module is in charge of interacting with the underlying camera hardware, configuring

it according to the parameters found in the Config class, and starting the capture. It is also
its responsibility to persist the captured images in secondary memory, and to provide them
to the "ControlPacket Delivery module".

In the case of the Raspbery Pi Camera Module v2 used in the capture devices where the
client will be deployed, there is an open source Python interface to it, named Picamera 4.
Picamera provides an API that allows us to configure the camera module with all the param-
eters (ISO sensibility, exposure time, etc.) indicated in the experiment definition. Below is
an example of how these parameters are set up:

with picamera.PiCamera() as self.camera:

config = Config()

self.camera.resolution = config.resolution

self.camera.framerate = config.freqcapture

self.camera.exposure_mode = config.mode

if config.mode == "manual":

self.camera.iso = config.iso

self.camera.shutter_speed = config.exposure_time

else:

self.camera.iso = 0

self.camera.shutter_speed = 0

Listing 5.2: Camara parameter setup process

As can be observed, the Picamera API offers a straightforward and convenient way to
configure the camera module with the needed parameters. The iso and shutter_speed param-
eters are set up only when the manual mode is activated; otherwise, default values are set

3www.man7.org/linux/man-pages/man8/cron.8.html
4www.picamera.readthedocs.io/en/release-1.13

42

Perceptual layer

up, as these parameters will be managed by the camera module directly. The capture module
is responsible for periodically updating the camera parameters whenever the configuration
changes; to achieve this, the Observer design pattern is used, which will be explained in the
last section of this chapter.

In order to manage the output of the capture images, Picamera allows us to set a destination
for the capture that can either be a file, or a Python stream. In our case, as the captures
are stored in secondary memory and sent as ControlPackets, two outputs for the capture
are indicated: a file, and a custom stream managed by the "ControlPacket Communication
module". The code listing below shows the process that sets up the capture destinations, and
that starts it.

controlpack_output = ControlPacketOutput()

disk_recording_output = "~/" + str(time.time()) + ".h264"

self.camera.start_recording(disk_recording_output, format="h264")

while(True):

self.camera.wait_recording(config.freqcontrolpack, splitter_port = 2)

self.camera.capture(controlpack_output, ’jpeg’, quality = config.jpeg_quality_percentage)

Listing 5.3: Camera capture setup process

First, a ControlPacketOutput instance from the "ControlPacket Communication module"
is initialized; then, the path of the file which will contain the capture result in secondary
memory is stored in a variable. For this capture, the H264 5 video format has been chosen,
as it was considered that the final video would greatly benefit from inter-frame compres-
sion, given the fact that capture devices are generally located at fixed places. After the
video stream has been initialized, an infinite loop, which manages the picture capture for the
ControlPacketOutput is initialized. We take advantage of the splitter_port parameter of the
wait_recording function, which allows us to operate on different recording streams without
interference between them 6. After the camera has waited for the amount of time specified in
config.freqcontrolpack, a capture is performed to the controlpacket_output stream, indicating
the JPEG format with the quality specified in config.jpeg_quality_percentage.

Picture compression greatly improves the memory footprint of the captured images, en-
abling the system to perform well even under constrained network conditions, such as the
General Packet Radio Service (GPRS), which offers speeds up to 171 kbps. Compression
levels of up to 65 can be used without compromising the ANPR process, being able to reduce
the captured images by up to a factor of four.

5www.itu.int/rec/T-REC-H.264
6www.picamera.readthedocs.io/en/release-1.13/recipes2.html?highlight=splitter_port#recording-at-

multiple-resolutions

43

5. Architecture

Figure 5.2: Images compressed with different JPG compression levels, with filesize data.
Compression levels below 60 significantly compromise the ANPR success rate. The first
three digits of the license plate are blurred for data protection [ÁBSCV+20]

5.3.3 ControlPacket Communication Module
This module is in charge of receiving the images that the "Capture module" takes, creating

ControlPackets, and sending them to the upper layer by calling the REST endpoint it pro-
vides. It must also provide a secondary operating mode in which, instead of processing the
images as they are captured, it processes the video stored in secondary memory and creates
the corresponding ControlPackets, which are sent to the server; this mode is used for capture
devices with no network connectivity during the experiment. Finally, it is worth noting that,
in the response to each sent ControlPacket, the upper layer may include the up-to-date Exper-
iment definition; rather the processing it, the "ControlPacket Communication module" must
pass it to the "Experiment retrieval module", so that changes in the configuration are cor-
rectly handled. This design ensures that the Experiment definition information is constantly
updated during the capture, preserving the separation of concerns between modules.

In this context, a ControlPacket is defined as the basic unit of information that flows be-
tween the Perceptual layer and the Smart Management Layer. It is composed of the following
fields:

• Client ID. The unique ID of the capture device where the client is running on.

• Timestamp. Time mark associated with the moment when the image was taken.

• Latency. Round-trip time (RTT) of the last ControlPacket that was sent. It is 0 for the
first ControlPacket sent in a capture session.

• Image. Binary serialization of the captured image.

ControlPackets will be processed in the upper layer, being enriched with more fields that
correspond to the "Smart Management" layer context, as will be explained in the following

44

Perceptual layer

section.

One of the main considerations that must be taken into account for the implementation of
this module is the parallel and non-blocking nature of ControlPacket delivery. As images
are captured continuously, they have to be sent to the upper layer immediately, regardless
of the delivery status of previous images, which can mean that several images can be in
process of being sent in any given amount of time. This is an important concern to take in
consideration for the availability systematic requirement of the architecture, as issues in the
network connectivity, or even in message receipts by the upper layer, should not negatively
impact the image capture, or the delivery of future ControlPackets.

The mechanism that has been chosen to achieve this is by means of threading, using the
Python module threading 7, from the standard library. It is worth mentioning that in CPython,
which is the most widely used Python implementation, threading is limited in the sense that
only one thread is executed in a given moment in time. This is due to the enforcement of a
Global Interpreter Lock, or GIL. However, this limitation only applies to Python compiled
code, and the execution of library methods written in the C language, as well as I/O opera-
tions managed by the kernel, are exempt from it. Therefore, the existence of such limitation
should not negatively impact our use case of the "threading" library when using the CPython
interpreter, as both the capture process and the delivery of ControlPackets by using network
sockets will be able to run in parallel.

An unique, main thread, denominated "ControlPacketThread", is created as the image
capture stream begins. Its function is to wait for the moment when there is a new image
available in the picture capture buffer; for this, the condition functionality of the Python
threading module is used. This mechanism allows a thread to wait until it receives a notifi-
cation from another section of the program, then continue with its execution. This is often
used as a lock to control access to some shared program state, when synchronization between
concurrent threads is needed; however, in our use case, this functionality will be used so that
the ControlPacketThread can get notified whenever a new image is captured.

class ControlPacketThread(Thread):

...

def run(self):

while(True):

with self.output.condition:

self.output.condition.wait()

image_stream = self.output.image

timestamp = self.output.timestamp

Thread(target=self.send_controlPacket, args=(image_stream, timestamp,)).start()

Listing 5.4: ControlPacketThread definition

7www.docs.python.org/3/library/threading.html

45

5. Architecture

After the notification, the ControlPacketThread creates a new thread whose only respon-
sibility is delivering the captured image to the upper layer as a ControlPacket, and then
continues waiting for new captures. This new thread is created with the Thread constructor,
which allows us to specify, in the target parameter, a method to be run in the newly created
thread, with the arguments indicated in args. Below is the definition of this method.

def send_controlPacket(self, image_stream, timestamp):

config = Config()

r = requests.post(config.address_server + ’/send_controlPack’, headers = {

’client_id’ : config.client_id,

’timestamp’ : str(timestamp),

’latency’ : str(self.last_known_latency)

}, files = {’image’ : image_stream})

self.last_known_latency = r.elapsed.total_seconds() * 1000

config.update(json.loads(str(r.text)))

Listing 5.5: send_controlPacket method definition

The send_controlPacket method sends the ControlPacket as a HTTP POST request to the
upper layer, indicating the client_id, timestamp and latency as headers, and the image data
in the body of the request. It then updates the last_known_latency value so that following re-
quests can use it, and calls the update method of the singleton config object with the response
from the upper layer, so that the "Experiment Retrieval module" performs the corresponding
updates in the experiment definition.

Finally, the ControlPacket Communication module has a batch processing mode, that pro-
cesses an already stored video in H264 format, divides it in ControlPackets according to
the defined capture frequency definition, and sends them to the server. It is independent
of the previously explained online processing module which processes images as they are
taken. Instead, its implementation is simpler, as there is no need to parallelize requests; it
consists on a method that processes the video, selecting frames that are evenly distributed
according to the capture frequency, converting them to the JPEG format, formatting them as
ControlPackets and sending them to the upper layer.

5.4 Smart Management Layer
This layer has the largest amount of responsibility in the platform: its functionality ranges

from handling the communication with the Perceptual Layer, providing each sensor with
its Experiment definition and receiving ControlPackets, to processing each captured image,
sending it to the OpenALPR service to receive the recognised plates. It must also be able to
persist all the information related to each received ControlPacket and their ALPR result in a
database, and provide them to the upper Online Monitoring Layer whenever it requests this
information. Finally, it has to provide means to authenticate users in the platform.

46

Smart Management Layer

For the deployment of this layer, the Google AppEngine PaaS (Platform-as-a-Service) was
chosen. This provides this layer with the advantage of scalability, being able to auto-scale
as needed depending on the dimension of the sensor network it is serving, and avoiding
the complexity of having to provision and maintain our own servers to scale the system.
The flexible environment option has been chosen in order to make this layer more portable
among PaaS providers and to have better access to third-party libraries, as well as to be able
to make use of multithreading, which is limited in the standard environment. This layer will
be implemented as a web server, using the Flask framework, and it will provide different
endpoints which will be consumed both by the lower and by the upper layers.

All the modules in this layer provide a set of HTTP endpoints, where requests can be sent
to; this provides compatibility for the consumers of this API, as they can consume it as long
as they are able to send standard HTTP requests. It is worth noting that, even though in the
explanation of certain functionality, the specific layer that is supposed to consume it will be
indicated, in reality, the API and its consumers are decoupled. This provides the architecture
with extensibility, as new modules that are based on the functionality already provided by
modules in this layer can be added without affecting the existing implementation.

5.4.1 Experiment Definition Module
This module is responsible for providing an interface for the definition and update of

Experiment Definitions, as well as persisting this configuration and sending it to each cap-
ture device client that requests it. It should also provide validation of each received Ex-
periment Definition, checking that they are consistent, and providing default values when
necessary.

Experiment Definition objects were introduced in the "Experiment retrieval module" sec-
tion. For the storage of these entities, as well as the rest of the entities of this module, it
has been decided to use the NoSQL database provided by the Google Cloud Datastore8 ser-
vice; this will allow us to persist our data without having to provision or scale any database
instance. Besides, as there is no need to perform relational queries on the stored data, the
key-value nature of this database is not considered a handicap. In order to interact with this
database, the ndb9 Python library will be used, which gives us an interface that allows us to
define entities, the keys that identify them and the properties they contain, as well as to query
the needed information.

The ndb library provides an API to define entities that is based on extending a class called
Model. Each entity can have one or more properties, which are named values of one of
the supported datatypes (integer, float, datetime, string, or a reference to another entity, for
instance). These properties are indicated, in the model definition, as class variables. Below

8www.cloud.google.com/datastore
9www.googleapis.dev/python/python-ndb/1.4.2/index.html

47

5. Architecture

is an extract of the ControlPacket class definition:

from google.appengine.ext import ndb

class ClientConfig(ndb.Model):

...

begTime = ndb.DateTimeProperty()

endTime = ndb.DateTimeProperty()

freqCapture = ndb.FloatProperty()

freqControlPack = ndb.IntegerProperty()

mode = ndb.StringProperty()

exposure_time = ndb.IntegerProperty()

iso = ndb.IntegerProperty()

rectangle_p1 = ndb.IntegerProperty(repeated=True)

rectangle_p2 = ndb.IntegerProperty(repeated=True)

jpeg_quality_percentage = ndb.IntegerProperty()

def to_dict(self):

...

Listing 5.6: ClientConfig class definition

As can be seen, ndb provides a set of classes, such as IntegerType, that correspond to each
datatype that a property can have. It is possible to define array datatypes with members of the
specified type with the repeated optional parameter; this is done with the rectangle_p1 and
rectangle_p2 properties. This way of defining a model is similar to a DDL (Data Definition
Language) table definition in relational databases. The to_dict method provides a convenient
way to transform a ClientConfig object into a dictionary. ControlPacket entities are then cre-
ated by instantiating the ClientConfig class and calling the put() method; calling this method
on an entity that was already created has the effect of updating it. Below is an example of
how this feature is used when updating a previously defined client configuration:

import utils

from backend.models.ClientConfig import ClientConfig

class ClientConfigManager(utils.Singleton):

@staticmethod

def update_config(client_id, mode=None, exposure_time=None, iso=None, rectangle_p1=None,

rectangle_p2=None):

clientConfig = ClientConfig.get_by_id(client_id)

if mode is not None:

clientConfig.mode = mode

... set more parameters ...

clientConfig.put()

Listing 5.7: ClientConfigManager class definition

48

Smart Management Layer

The update_config method begins by querying the database by calling the get_by_id method
of the Model class, which ClientConfig inherits from. This method is one of the ways that
the ndb API provides to query the database. Then, each entity attribute is overwritten with
the value that is passed as input, and finally, the put() method of ClientConfig is called in
order to update the entity.

More broadly, the ClientConfigManager class introduced above is a "manager" class in
the context of the web server where this layer is being implemented. A common convention
in the programming model used in the implementation of web applications is to separate the
code receiving HTTP requests, parsing and routing them, from the code actually processing
them. The former is encapsulated in classes and/or methods generally known as "routers"
or "handlers", while the latter is encapsulated in "controllers" or "managers". Therefore, the
code introduced above is part of a "manager" that gets called by a "handler" whenever it
receives an HTTP request; below is an extract of the code of this "handler":

from flask import Blueprint, jsonify, make_response, request

bp_config = Blueprint("bp_app_config", __name__)

@bp_config.route(’/update_config’, methods=[’POST’])

def update_config():

client_id = int(request.values.get(’client_id’))

mode = request.values.get(’mode’) if request.values.get(’mode’) else None

... retrieval of parameters ...

ClientConfigManager.update_config(client_id, mode=mode,

exposure_time=exposure_time,

iso=iso,

rectangle_p1=rectangle_p1,

rectangle_p2=rectangle_p2)

return make_response(jsonify({’status’: ’updated’}), 200)

Listing 5.8: /update_config endpoint handler

The Flask framework greatly simplifies the low-level handling of HTTP requests, easing
the development of "handler" functions. In the above code listing, after importing the needed
classes and methods from Flask, be begin by creating a Blueprint. In Flask, Blueprints are
used to ease the development of modular applications 10; their basic concept is that they are
meant to record operations to be executed when dispatching requests. and generating URLs
from one endpoint to another. The Blueprint bp_config will be in charge of registering all
the operations related to the Experiment Definition Module.

In order to register which method should be run in response to a request, function deco-
rators are used 11. Function decorators are syntax sugar for composing methods; concretely,

10www.flask.palletsprojects.com/en/1.1.x/blueprints/
11www.python.org/dev/peps/pep-0318/

49

5. Architecture

before the definition of a new function, a line starting by the @ sign indicates that the new
function is the result of composing the body definition with the function indicated after @.
For example, the code in the following listing:

@dec

def func(*args):

pass

Is equivalent to:

def func(*args):

pass

func = dec(func)

Without the intermediate assignment to the variable func. It is worth noting that this pattern
is possible thanks to the fact that, in Python, functions are first-class objects, which means
that it is possible to assign them to variables, allowing us to pass them as arguments to other
functions as well as returning them from other functions. This is a basic feature found in
functional programming languages, which Python draws some inspiration from, allowing us
to create new abstractions based on this concept.

Resuming the explanation about the update_config() handler function, it can be observed
that it is decorated with the route method of the bp_config Blueprint; as arguments to this
decorator function, the ’update_config’ string is passed, which represents the endpoint to be
handled, and the array of methods to be handled, in this case, POST. As can be observed,
the Flask framework, with the Blueprint class and by using function decoration, provides us
with a very simple way to define routing in an HTTP web server.

As update_config is a handling function, its responsibility is limited to extract the values
of the required parameters from the HTTP request, invoke the corresponding method of
ClientConfigManager, and giving a HTTP response to the client that performed the request.
As can be observed in its definition, those tasks are performed in order: it begins by obtaining
the client_id, which is the only required parameter, and continues by receiving the rest of the
parameters, which are optional (mode, exposure_time, iso, rectangle_p1, and rectangle_-

p2. Then, it calls the update_config method, and it finishes by returning a new Response

object by using the auxiliar make_response and jsonify functions: the response consists on a
confirmation that the desired entity has been updated, with the 200 HTTP code.

Apart from defining and updating experiment definitions (also known as client configu-
rations), the Experiment Definition module has the responsibility of providing these defini-
tions, both when explicitly requested, and as a response whenever a capture device commu-
nicates by sending a Control Packet. In order to accomplish this, a new "handler" function is
defined:

50

Smart Management Layer

from flask import Blueprint, jsonify, make_response, request

bp_config = Blueprint("bp_app_config", __name__)

@bp_config.route(’/get_config<int:clientId>’, methods=[’GET’])

def get_config(clientId):

config = ClientConfig.get_by_id(str(clientId))

if config:

return jsonify(config.to_dict())

else:

abort(404)

Listing 5.9: /get_config endpoint handler

As one can see, the interface of the Experiment Definition module is expanded with a new
endpoint, /get_config. Whenever the server receives a request to this URL followed by the
ID of a client, it will give a response containing the JSON object corresponding to the exper-
iment definition of the requested client ID, or an empty response with the HTTP 404 status
code. In this case, no manager code is called from the handler; instead, the ClientConfig

model is directly called from the handler, querying for the configuration of the correspond-
ing client. Therefore, the separation of concerns between "handler" and "manager" is broken
in this particular case in favor of conciseness; however, a "manager" can be created at any
time should complexity increase during the evolution of the platform.

Finally, when it comes to reporting the status of the Experiment Definition to the capture
devices each time they communicate, this module provides the means to query this definition
to the ALPR Intelligent Processing Module, which is in charge of the communication with
the capture devices, by means of the ClientConfig class.

5.4.2 ALPR Intelligent Processing Module
This module is in charge of the receipt of ControlPackets from the Perceptual Layer, the

request of recognized plates to the OpenALPR Cloud service, and the persistence of the
images and recognition results. Similarly to the rest of the modules of the Smart Management
Layer, this module provides a set of endpoints that expand the interface of the layer, allowing
modules from other layers to call them as needed.

Below, theControlPacket model is introduced, which, similarly to the previously intro-
duced ClientConfig model, makes use of the ndb library for its definition. The ControlPacket

model has all the fields which are received from the Perceptual Layer (client_id, timestamp

and latency), plus three fields which contain information relative to the plate detection pro-
cess, which are plate, confidence and json_response. Some of the fields are defined passing
the parameter indexed=True to its property class; concretely, the fields client_id and times-

tamp. The reason for this is that these two fields are considered to be the unique identifier of
each ControlPacket, and queries will be performed based on them.

51

5. Architecture

from google.appengine.ext import ndb

class ControlPacket(ndb.Model):

client_id = ndb.IntegerProperty(indexed=True)

timestamp = ndb.DateTimeProperty(indexed=True)

latency = ndb.FloatProperty(indexed=False)

plate = ndb.StringProperty(indexed=False, repeated=True, required=False)

confidence = ndb.FloatProperty(

indexed=False, repeated=True, required=False)

json_response = ndb.TextProperty(indexed=False)

def to_dict(self):

...

def get_packet_id(self):

return str(self.client_id) + "_" + ’%f’ % (utils.unix_time_millis(self.timestamp) / 1000)

@staticmethod

def query_by_packet_id(packet_id):

(client_id, timestamp) = packet_id.split("_")

client_id = int(client_id)

timestamp = datetime.datetime.fromtimestamp(float(timestamp))

return ControlPacket.query().filter(ControlPacket.client_id == client_id).filter(

ControlPacket.timestamp == timestamp).fetch()[0]

Listing 5.10: Controlpacket model definition

Indeed, because of the design of Google Cloud Datastore, queries run on predefined index
tables that are periodically updated, and it is, therefore, necessary to define which properties
must be indexed at the moment of the creation of the model. Besides, two methods are
defined for the use of our application, get_packet_id and query_by_packet_id. They are
based on the concept of a "packet_id", which consist on the concatenation of a packet’s
client_id and its timestamp.

For the storage of the captured images, Cloud Datastore is not used, as can be observed
by the fact that there is no image field in the ControlPacket model class. Instead, the object
storage service Google Cloud Storage 12 has been used, as it provides a simple and cost-
effective way to store binary files, and prevents some of the downsides that come with storing
binary blobs in Cloud Datastore (such as the maximum size). For integration in Python pro-
grams, the cloudstorage library is used, which provides a very simple interface to the Cloud
Storage service. Below, the ControlPacketManager class, which contains all the controller
functions in this module, is introduced, along with the save_image function, which saves the
provided image in Cloud Storage:

The cloudstorage library provides a very simple interface to the Cloud Storage service;
indeed, in our use case, creating a new object consists on calling the open method with its
path, writing mode and optional content_type. This returns a class whose write method is

12www.cloud.google.com/storage

52

Smart Management Layer

called passing it the binary image as an argument, and the process is finished by a call to
close.

import utils

import cloudstorage as gcs

class ControlPacketManager(utils.Singleton):

def save_image(self, packet_id, image):

gcs_file = gcs.open("/{bucket_name}/{packet_id}".format(

bucket_name=constants.BUCKET_NAME, packet_id=packet_id), "w", content_type="image/jpeg")

gcs_file.write(image)

gcs_file.close()

Listing 5.11: ControlPacketManager definiton

It is worth mentioning that, to build the path of the object in Cloud Storage a bucket name

is concatenated with the ID of the packet. In Cloud Storage, buckets are the basic containers
were data is stored: each object is contained within a bucket 13. Bucket names are globally
unique; in our case, the bucket name is stored in a configuration constant.

Requests to the OpenALPR service for license plates are performed by calling the API
REST that it provides. Documentation about the structure of the requests and responses,
as well as code samples, is available in the official documentation 14. The ALPR Intelli-
gent Processing Module processes the response from OpenALPR, extracting the candidate
license plates and their respective confidence value, an integer ranging from 0 to 100; then,
it stores them in the ControlPacket plate and confidence fields. The raw response from the
OpenALPR service is stored in the json_response field in case further analysis of this data is
desired.

Now that the ControlPacket model has been introduced, as well as the image persistence
in Cloud Datastore and the number plate request to the OpenALPR service, a general idea
of the processes that are executed when every ControlPacket arrives has been exposed. Con-
cretely, a function handler is triggered when HTTP POST requests arrive at the endpoint
"send_controlPack", and forwards all the necessary parameters, which are included in the
request body, to the add_controlPacket method of the ControlPacketManager class, previ-
ously introduced. This method is the one in charge of orchestrating all the processing of a
ControlPacket, querying the OpenALPR service and persisting the ControlPacket to Cloud
Datastore and the image to Cloud Storage. Finally, the handler of the "send_controlPack"
endpoint retrieves the ClientConfiguration that corresponds to the client ID that sent the
ControlPacket, and includes it in the response so that the client has the most up-to-date Ex-
periment Definition.

13www.cloud.google.com/storage/docs/key-terms#buckets
14www.doc.openalpr.com/api.html#carcheck-api

53

5. Architecture

5.4.3 Management and Storage Module
The role of this module is to offer certain functionality that the upper layer will need to

correctly authenticate end users of the platform and to access the ControlPacket history of
the different capture devices.

ControlPacket History Retrieval Submodule

This submodule is in charge of providing the means to audit in real-time the stored Con-
trolPackets and to perform analysis on them. It will extend the API of this layer with new
endpoints meant to be consumed by the upper layer; however, no new models will be added,
as all the required functionality is covered by the already existing ControlPacket entity. The
handler methods of the newly created endpoints will be organized under the bp_app_get-

Data Blueprint, and will make use of the already existing ControlPacketManager, extending
it with new methods when needed.

The first endpoint that is added is called /get_Data. Its functionality is to return the last
ControlPacket received by each capture device that is registered in the system, and that thus
has an Experiment Definition. Optionally, it is possible to pass a Client ID to this endpoint,
calling it in the form of get_Data/<int:client_id, to get the last ControlPacket of the capture
device with the specified Client ID. The handler method then calls a static method of the
ControlPacketManager called get_last_controlpackets, that accepts a list of Client IDs as an
argument, representing the capture devices whose last ControlPackets we want to get. The
manager class then calls the model ControlPacket, which makes use of the filter and order

methods provided by ndb to get the required ControlPacket; the Datastore table in turn is
queried, filtered by Client ID and ordered by timestamp in a descending manner.

The next endpoint provided by this submodule is /get_image<packet_id>.jpeg. Its ob-
jective is to provide the Online Monitoring Layer with the means to, once it has received
a ControlPacket from a certain capture device, access the captured image in JPEG format.
As was explained in the ALPR Intelligent Processing Module, capture images are stored in
Google Cloud Storage, a different datastore than the one where ControlPackets are persisted.
Thanks to the concatenation of the Client ID and the timestamp of a ControlPacket, its Packet
ID is built, which is equivalent to the path of the stored image, plus the ".jpeg" extension.
This new endpoint takes the path of the desired image as an input and returns the image in bi-
nary format. It gets the image thanks to the get_image method of the ControlPacketManager

class, which uses the cloudstorage library to get the image file from Cloud Storage.

Another functionality that should be offered by this submodule to the Online Monitoring
Layer is the possibility of sending regular updates about the latest ControlPackets that have
been received from each capture device. This will give the user interface a convenient way to
periodically update the information about each capture device, allowing the user to receive
constant, updated information about the capture process. To achieve this, one of the possi-

54

Smart Management Layer

bilities that was considered was sending update notifications from the server to the client by
using the WebSocket protocol [FM11]. This protocol provides a full-duplex communication
channel over a single TCP connection, and is designed to work over the HTTP 80 and 443
ports; it is, therefore, compatible with HTTP, and a HTTP connection can be changed to a
WebSocket connection with the HTTP upgrade header. The fact that a server can initiate
communication with a client implies a break with the classical client-server model; however,
it can prove to be superior to other alternatives such as long polling in this kind of scenario
where clients wait for updates from a server. Despite this, applications can face several ob-
stacles when using this protocol, as it has not been adopted in a widespread way yet. For
example, WebSocket connections may fail when traversing restrictive firewalls or proxies
that don’t support them; this is notoriously common in the case of connections over mobile,
2/3/4G networks. [ME12] analyses this and other issues in the adoption of WebSockets for
handheld devices, particularly focusing on battery save issues. Application designers usually
work around these issues by implementing mechanisms that use standard HTTP connections
when the WebSocket protocol doesn’t work or is unreliable. However, given the fact that a
big number of end-users of the platform are likely to connect through a mobile network, it
was decided that the complexity of adding support for the WebSocket protocol was unneces-
sary.

Instead, it has been decided to provide the update functionality in a standard HTTP end-
point, that will be queried periodically by the Online Monitoring Layer. Concretely, a Packet
ID will be received, and the latest ControlPacket that has been received by the capture device
that sent the original Packet, if any, will be returned. The fact that this endpoint doesn’t
return any ControlPacket if there are no updates allows saving network traffic in a context
where frequent updates may be requested by multiple clients, to many capture devices. This
functionality is exposed in the /get_update endpoint, which takes the Packet ID from the
last_packet_id parameter in the request body, and calls a method in the ControlPacketMan-

ager called get_update passing the Packet ID to it; if a new ControlPacket is returned from
the manager function, it is returned in the response, and otherwise an empty response with
the HTTP 304 (not modified) status code. Overall, this solution allows the upper layer to
query for updates with a high frequency, allowing the user to receive information about the
capture status in a reasonable amount of time.

Finally, for the historical analysis of the received ControlPacket, functionality allowing to
get a list of the last N ControlPackets that were sent by a particular client is required. This
will let the user visualize the evolution of an experiment, being able to see all the recent
images and the detected license plates that were detected, which will prove to be useful in-
formation for any adjustment that may be required in the capturing device. This functionality
is implemented with the /get_history endpoint, that accepts as parameters the client_id, the
desired number of ControlPackets to get (n_elements), and a cursor. This cursor is an op-

55

5. Architecture

tional string, and is used for paginated requests: when the number of ControlPackets stored
in the database is greater than n_elements, the ndb library returns a cursor that can be used
in a subsequent request to receive new packages. Overall, from an implementation perspec-
tive, the way in which the ControlPacket model is queried is very similar to the /get_data

endpoint, as a filter by the Client ID and a sort by timestamp are applied.

User management submodule

The role of this submodule is to support the authentication of users that are authorized to
use the platform. The Online Monitoring Layer will perform requests to this submodule, and,
as a response, it should receive an indication of whether or not a certain combination of user
a password is valid, and the user is allowed to use the platform. As part of user management,
it was decided not to include any permission and/or role system that would allow to control
which functionality of the platform each user is allowed to access; instead, every user is
allowed to access all the functionality of the system. This decision was taken due to the
fact that all the users of the platform perform similar tasks, and moreover, no destructive
operation (for example, the deletion of ControlPackets or Experiment Definitions) is allowed
in the platform.

For the implementation of this functionality, a new model, called AppUser, is created.
It has two string parameters: username, which is indexed, and password, which consists
on the hash of the password string that the user chose. A handler function, listening on
the /user_login, reads the username and password fields of every POST request it receives,
and queries the AppUser to compare whether a user with the received username exists, and
whether the passwords match, returning the appropriate response. Overall, this design for
the User Management Submodule provides a basic login functionality that covers the needs
of the application, and that is easily extensible.

5.5 Online Monitoring Layer

The role of this layer is to let the user monitor the state of a traffic analysis experiment.
To ease as much as possible the use of the system, increase compatibility, and avoid the
installation of software by the user, the interaction with this layer is carried through a web
browser. The functionality of this layer can be divided into two blocks: first, the functionality
related to the definition of experiments, which will consist of a set of forms aimed to make
the selection and definition of the different parameters as convenient as possible. Second,
the functionality related to the monitoring of ongoing experiments, which must include both
the receipt of updates of the last ControlPackets received by the capture devices, as well as
the possibility to see the history of captures of a particular device.

The systematic requirement of manageability is of the utmost importance in this layer of
the architecture, as it will be the one that the end user will interact with. One of the main

56

Online Monitoring Layer

challenges to be addressed is the fact that this interaction can be performed through many
different devices. For example, a laptop or desktop computer may be used to set up the
experiment definitions for multiple capture devices, or to see the history of captures of an
experiment once it has finished. On the other hand, operators of capture devices that connect
from the field will generally make use of mobile devices, which can range from smartphones
to tablets. Therefore, it is necessary to design the user interface with the idea that it will
need to work under many different screen resolutions and screen sizes. In web design, an
interface with this characteristic is considered to be "responsive" [Gar11], and it proves to be
a fundamental requisite in most modern web interfaces.

As techniques to create responsive webpages have become widespread, frameworks that
simplify performing this task have emerged. For the development of the modules explained
below, the Bootstrap 15 framework has been chosen. It is an HTML, CSS and Javascript
open-source framework used for the creation for responsive design, providing simple, intu-
itive and clean results. It is based on dividing the element of the page into columns with
customized sizes, which are adapted depending on the size of the device that renders the
page. This is a very good fit for some of our use cases, as it will allow a simple way to orga-
nize the information about the different capture devices in a grid, for instance. Bootstrap was
initially developed by Twitter in 2011, and it is hosted, maintained and under development
in a GitHub repository 16 under the MIT license.

This layer will be hosted in the Google App Engine PaaS, in instances from the standard
environment, using the Flask framework. Webpages served by this layer need to include
dynamic content. One of the ways it is achieved through the layer is by the use of templates
when generating a webpage in the server; concretely, the Jinja2 17 template system will be
used. Jinja2 allows us to include Python expressions embedded in HTML templates, which
will be evaluated in the server when a page is requested. This will allow us to work with
the responses from the Smart Management Layer and include them in the different HTML
templates in a very convenient way. Once the web browsers receive the different dynamically
generated webpages from the server, in some cases, AJAX queries will be performed to the
server, for instance, to support interactive functionality, or to receive updates; this will be
detailed below, in the description of each module.

5.5.1 Authentication Module
The role of this module is to provide an interface allowing the users of the platform to log

in, as well as verifying that each request made to the rest of the layer has been performed by
an authenticated user. Logged in users receive a session cookie, which the web browser will
attach to subsequent requests to the server.

15www.getbootstrap.com/
16www.github.com/twbs/bootstrap
17www.jinja.palletsprojects.com/en/2.11.x/

57

5. Architecture

In order to ease the development of this module, the Flask-Login18 library was used. It
provides several methods that handle the session cookie creation and validation processes
while implementing standard security measures; it also supports alternative request authenti-
cation methods, such as HTTP ’Authorization’ headers. It provides an API based on function
decorators that is simple and concise, allowing us, for instance, to easily define the endpoints
that require authentication by simply adding a decorator annotation on top of their handling
function definition.

The user login functionality provided by this module can be reached through the /login

endpoint. A POST request to it must be performed in order to log a user in the system, with
the username and password in its body. The handler function will hash the password with
the SHA-256 function and query the appropriate route of the Smart Management Module
to check whether or not the provided combination of username and password is correct.
When so, a session cookie will be built using the default class provided by the library (called
UserMixin), and the method login_user will be called to return a response; otherwise, a
response with the 401 (Unauthorized) HTTP status code will be returned. On the other hand,
when a GET request arrives, a static webpage containing a login form, called login.html, is
returned.

5.5.2 Experiment Visualization Dashboard
This module provides a page containing a dashboard in which a logged-in user can see

a summary of all the capture devices and the last ControlPacket each one of them sent.
This page serves as the main page of the platform, the Authentication Module redirects to
it after the user logs in, and all the rest of the functionality is accessible through it. All the
information about the last sent ControlPackets is rendered on the page, including the captured
image, the candidate plates, and the latency. The page is organized as a grid; in each cell,
the information about a capture device is provided. Bootstrap automatically resizes the grid,
adding columns and rows depending on the screen size of the device where the browser runs.
Figure 5.3 shows a mockup of the Experiment Visualization Dashboard, as visible when
rendered in a desktop web browser.e

The Experiment Visualization Dashboard is accessible through the /index endpoint, which
takes an optional client_id parameter in case the user only wants to load the information
about a single capture device. When a request arrives, the handling function performs a call
to the History Retrieval Module of the Smart Management Layer, in order to get the last
ControlPacket sent by the different capture devices. Once this information is received, the
index.html template is rendered and returned to the web browser.

The Python code embedded in the index.html template handles the processing of the Con-
trolPacket data returned by the Smart Management Layer, generating a set of div elements

18www.flask-login.readthedocs.io/en/latest

58

Online Monitoring Layer

Figure 5.3: Mockup of the Experiment Visualization Dashboard

in order to correctly show the information on the page. The template also imports a set of
Javascript functions that are used to request periodical updates; concretely, for each capture
device, a request is performed to the /get_Update endpoint of the server, which queries the
Smart Management Layer for updates. The jQuery library is then used in the web browser
in order to update the corresponding elements.

5.5.3 Experiment Definition Interface
This module is in charge of providing a form that will allow the user to visualize the current

configuration, also known as experiment definition, of a capture device, and to update it. In
order to ease as much as possible the filling of the different parameters, and to prevent errors,
only allowed values should be allowed to be introduced.

A template with the name of config.html contains the form to be filled up. It is contained
in an element which has the modal class, which is predefined by Bootstrap; by showing
the form in a modal window, the transition between this interface and the main Experiment
Visualization Dashboard is smoother. Embedded Python code controls the different option

59

5. Architecture

and input HTML tags that must be enabled or checked depending on the current configura-
tion state. This template is rendered on GET calls to the /clientConfig endpoint, while POST
calls to the same endpoint will submit a form; when it happens, the handling function verifies
the received fields, and then performs the corresponding call to the Experiment Definition
Module in the Smart Management Layer.

5.5.4 ControlPacket History Visualizer
The goal of this last module of the Online Monitoring Layer is to provide a visualization

of the last ControlPackets sent by a particular capture device. This visualization will be
shown when clicking on a specific link of the Experiment Visualization Dashboard, and will
be opened as a modal window. A default number of ControlPackets will be shown, and the
user will be able to load more on-demand when scrolling down in the visualization.

The endpoint that will return the visualization has the name of get_Update, and it will
get the required information from the Management and Storage Module of the Smart Man-
agement Layer. Unlike other endpoints in this layer, get_Update does not render a template
returning a set of HTML elements; instead, it returns a JSON object, that a Javascript method
in the web browser side processes. This decision was taken in order to simplify the lifecycle
of the HTML elements created for this visualization: as they are not recreated each time that
get_Update is called, but rather updated, performance is increased (network traffic reduces
as well) and the implementation is simplified. A listener is set up so that every time the user
scrolls through all the available ControlPackets, more are requested, based on the value of
the cursor that was returned by the last call to get_Update, achieving pagination.

5.6 Design patterns
Design patterns are reusable solutions to commonly found design problems that can hap-

pen in many different situations, facilitating the creation of quality designs. A design pat-
tern is defined as a set of techniques that solve common problems in software development
[Pre95]. An adequate choice of design patterns during the design of the architecture can
contribute making it simpler and, therefore, improve its reusability, scalability, and maintain-
ability. Below, different patterns that have been chosen in the development of the platform
are introduced.

5.6.1 Singleton pattern
Singleton is a creational pattern that solves two different problems: ensuring that a class

only has a single instance, and providing a global access point to that instance. As it solves
these two different problems at the same time, some authors consider it as an anti-pattern,
as it breaks the Single Responsibility Principle, and have found that its use is often corre-
lated with more fault-prone code structures [Vok04]. However Singleton remains a useful
design pattern when used under specific use cases, such as access control to a unique, shared

60

Design patterns

resource (for instance, a database, or a file).

In the architecture for the platform, the Singleton pattern is used, for instance, in the Config

class that is used in the Perceptual Layer. There, a unique object is used by the three modules
of the layer, for different purposes. Concretely, the Experiment Retrieval Module populates
the created Config instance after it receives the configuration, and updates them when needed.
The Capture Module, on the other hand, needs to read the Config object in order to set up
the camera parameters for the capture. Finally, the ControlPacket Communication Module
reads the experiment configuration each time it needs to send a ControlPacket.

Therefore, the use of the Singleton pattern is considered to be justified in this case, as it
encompasses both issues that the pattern addresses: a single instance must be provided for a
class, and it is accessed by multiple points in the code. The usage of the pattern consists on
Config inheriting from a Singleton class, whose code is exposed below.

class Singleton(object):

""" Singleton base class to extend from """
_instance = None

def __new__(cls, *args, **kwargs):

if not cls._instance:

cls._instance = super(Singleton, cls).__new__(cls, *args, **kwargs)

return cls._instance

Listing 5.12: Singleton Pattern implementation

In Python, the __new__ method of a class is called at the time of the creation of a new
instance, and returns the new instance (unlike __init__, which does not return anything as
it is in charge of initializing an instance once it has been created). By using this method to
return an existing instance of the class should it exist, or otherwise create and return it, it
is ensured that only one instance of the child class exists, while providing a global unique
access point to it.

5.6.2 Observer pattern
Observer is a behavioral design pattern allowing to define a subscription mechanism that

allows one or several objects to be notified about an event that the object they are observing
reports. The object that is being observed (also known as notifier, or publisher) is not aware
of the type of the objects that observe it (also known as listeners, or subscribers). This is
achieved because subscribers implement a common interface that allows them to be notified,
allowing the publisher to call this notifying interface in a uniform way. This way, decoupling
between the publisher and subscribers is attained.

In the proposed architecture, there are two cases where the Observer pattern is used, with
different implementations; both of them are found in the Perceptual Layer. The first one is

61

5. Architecture

related to the Config class; as it can be updated at any moment by the Experiment Definition
Layer that is responsible for it, but the Capture Layer depends on its attributes in order to
properly manage the capture process, the Observer pattern proves to be useful to solve this
issue. In this case, the pattern is implemented by means of a class Subject, that Config will
inherit; this class will provide methods (attach and dettach) allowing observer objects to
sign up for updates, and a notify method allowing the Subject to alert the subscribers. The
CameraManager will act as the subscriber, receiving updates whenever the Config notifies
them, and modifying the capture process accordingly. It is worth noting that, as the reader
may have noted, the Config class inherits from both the Singleton and the Subject classes:
indeed, multiple class inheritance is allowed in Python, which allows to easily implement
those two patterns in this case.

The second case where this pattern is used in the Perceptual Layer is in the ControlPacket
Delivery Module; indeed, as was explained, the use of the Condition method of the threading

library allows the ControlPacketOutput class, which contains a buffer where captured images
are stored, to trigger a notification to the ControlPacketThread class, which will then create
a new thread to process the image stored in the buffer.

Overall, the use of the observer pattern in these two examples allows an easy way to trigger
notifications between objects that keeps simplicity, but still ensures isolation between each
module of the layer.

62

Chapter 6

Results

This chapter comprises two parts. The first one describes the developed prototype of the
project, including the capture sensors that were used and the modules and functionalities
that have been implemented, including the user interface. It will also give an example of a
real-world traffic analysis experiment that was carried through the platform. The second part
describes the evolution of the project during its development period, specifying the iterations
involved in it and the tasks performed in each one of them. The final part shows some
statistics related to the work made in the code repository where the project is hosted.

6.1 Project Prototype

The end result of this project is a fully functional platform, consisting of a server and
user interface that can be deployed to Google App Engine, and a capture client that can
be installed on a Raspberry Pi Zero W. After the user takes the necessary steps to set up
the capture devices (1), he or she can log into the platform and see the dashboard with all
the capture devices and their last communication (2), define experiment definitions for each
capture device (3), and see the full history of Control Packets for any given device (4).

6.1.1 Capture devices

First, the capture device model that has been used during the development and testing of
the platform is shown. The Raspberry Pi Zero W is visible, with a PiCamera attached to it
and a 5V external battery used to power it, in figure 6.1.

The capture device is contained in a custom-made enclosure. Added to the described
components, a USB drive must be added containing the initial configuration for the capture
device, which includes information about the Wi-Fi network it must connect to, the address
to connect to the Smart Management Layer, and optionally, the initial configuration of the
experiment definition. It is worth noting that the recorded video will be stored in this USB
drive.

Two different capture devices were used for the testing of the platform, in order to prove
the possibility of easily replicating the software installation for a second device, as well as
the capability of the whole platform to handle multiple capture devices.

63

6. Results

Figure 6.1: Interior of an image capture device

6.1.2 Login and dashboard
Figure 6.2 shows the login page of the platform; it consists on a simple page consist-

ing on an username and a password field. These credentials are provided by the platform
administrator, as there is no need for functionality to sign up to the system.

Figure 6.2: Login page of the platform

Once the user has logged in, he or she has access to the Experiment Visualization Dash-
board, and can visualize the list of capture devices and their last sent picture. Figure 6.3
shows it for the case where there is only one client; as new clients communicate, the dash-
board will be filled in a grid pattern, adapting to the screen size of the device that renders the
interface. Figure 6.4 shows a zoomed-in image of how a capture device is represented in the
dashboard; in that case, the captured image contains no detected number plates. It is possible
to see the timestamp when the image was taken, the latency of the ControlPacket, and the

64

Project Prototype

"History" and "Config" options allowing to access the Experiment Definition Interface and
the ControlPacket History Visualizer, respectively. However, from this page, it is possible
to draw a rectangle representing the area of an image where number plates are expected, by
dragging and dropping the cursor over the desired region of the image, which will be handled
by the Experiment Definition Interface module.

Figure 6.3: The Experiment Visualization Dashboard

Figure 6.4: Close up view of the representation of a capture device in the dashboard

6.1.3 Experiment Definition
As it was showed in the visualization dashboard, for each capture device, it is possible to

access its experiment definition by clicking its "Config" button. When done, the Experiment
Definition Interface, is opened in a new modal window. In figure 6.5, the form used for the
experiment definition is shown. In this case, the "auto" mode is selected in the leftmost part
of the form, and the rightmost part of it shows the two automatic modes that are supported by

65

6. Results

our capture device: "sports" and "night". Selecting the "manual" option in the leftmost part
would enable selectors in the rightmost part to choose the desired ISO sensibility and shutter
speed. After the "Update" button is pressed, all changes defined in this form are applied to the
desired capture device once it communicates with the Smart Management Layer, affecting
ongoing experiments, if any.

Figure 6.5: Form used in the Experiment Definition Interface

6.1.4 ControlPacket History
Finally, whenever the user clicks the "History" button for a capture device, a new modal

will open, containing the last received Controlpackets, with the newest first, in a scrollable
format. Figure 6.6 shows this history visualizer, including a ControlPacket for which there
has been a plate detected.

Figure 6.6: The modal window opened for the ControlPacket History Visualizer

6.2 Practical Example
It is worth noting that, after the project was developed, it has been used to successfully

conduct a real-world experiment with 30 nodes. The experiment was carried in the cam-

66

Project Evolution

pus area of Ciudad Real, and the gathered data was used by researchers of the Escuela de

Caminos, Canales y Puertos in order to conduct traffic flow analysis and estimation. The
results are published in the Sensors journal [ÁBSCV+20].

The fact that this experiment was successfully conducted not only proves that the archi-
tecture adapts to the scalability and integration constraints it was designed for, but also that
the platform solves a real-world need, adding value to a research work and contributing to it.
Figures 6.7 and 6.8 show a set of the capture devices that were deployed on the field during
the experiment.

Figure 6.7: Set of capture devices to be deployed, along with the prototype of their enclosure
[ÁBSCV+20]

Figure 6.8: Capture devices deployed at several locations [ÁBSCV+20]

6.3 Project Evolution
This section details the different iterations, based on the methodology explained in chapter

4, during which the project has been developed until the end result. At the end of each
iteration, a meeting was scheduled with the tutor and, depending on their availability, with
the stakeholders from the Escuela de Ingenieros de Caminos, Canales y Puertos. Depending

67

6. Results

on the evolution of the project, demos were carried during those meetings as well; their goal
was to validate the developed functionalities and to decide the steps to undertake during the
next iteration. The platform was developed by two people: Carlos Cebrián, and the author
of this document.

Iteration 1: State-of-the-art research
From: 03/07/2017 To: 17/07/2017

Research was conducted about the current of cameras for number plate recognition. The
hardware platform for the Perceptual Layer (Raspberry Pi Zero W) and how to configure
it was studied. Different solutions for ANPR were researched, choosing to use the com-
mercial cloud version of OpenANPR after a comparison of its cost versus the cost of the
training and deployment of a custom algorithm

Iteration 2: Design and initial implementation of the Perceptual Layer
From: 17/07/2017 To: 31/07/2017

Initial development of the different modules of the Perceptual Layer, implementing the
whole sequence of operations made by it from its automatic boot and experiment retrieval
to the capture and delivery of ControlPackets to a local development server. Some isolated
tests of the OpenALPR cloud service were carried with the captured images in order to
validate it.

Iteration 3: Design and initial implementation of the Smart Management and
Online Monitoring Layers

From: 31/07/2017 To: 21/08/2017

An initial version of the three modules of the Smart Management Layer was implemented.
In the Online Monitoring Layer, an initial version of the Experiment Visualization Dash-
board was implemented, aiming to finish and initial end-to-end working version of the
platform. In this iteration, all the deployment and testing of the platform has been carried
in a local environment.

Iteration 4: Deployment to App Engine and integration with the Perceptual Layer
From: 21/08/2017 To: 11/09/2017

Once the three layers had been developed, they were integrated, correcting the errors which
couldn’t be detecting at development time and adding some functional improvements. The
Smart Management Layer and Online Monitoring Layer were deployed to Google App En-
gine, releasing the development team from the burden of maintaining a local development
server, and allowing to test the behaviour of the whole platform in its final deployment
environment; integration with the Perceptual Layer was addressed.

68

Project Evolution

Iteration 5: End-to-end and acceptance testing and documentation
From: 11/09/2017 To: 25/09/2017

At this point, a MVP (Minimum Viable Product) of the platform was developed, and for
the first time, with all the layers being integrated, it was possible to fully test it. Different
tests were carried placing a testing capture device from the Perceptual Layer in different
locations and under varied conditions, all of which proved to be satisfactory; on the other
hand, multiple functional improvements were identified, adding them to the backlog in
order to address them in future iterations.

Iteration 6: User authentication, visualization of history of ControlPackets, and
video recording

From: 25/09/2017 To: 08/10/2017

Some of the previously identified functional improvements were implemented. Con-
cretely, in order to improve the security of the platform, the Authentication Module was
implemented; the ControlPacket History Visualizer was implemented as well, as the neces-
sity to visualize previous ControlPackets was identified in the last iteration. The necessary
functionality to support both modules was implemented in the Smart Management Layer
as well. Finnally, in the Perceptual Layer, the Capture Module was improved, allowing it
to record video to secondary memory.

Iteration 7: Perceptual Layer bug fixing and UI improvements
From: 08/10/2017 To: 20/10/2017

Bug fixing was performed over the functionality implemented in the last iteration, and
the integration and testing of the login functionality was carried. The visualization of
the history of ControlPackets was improving by adding a functionality that fetches more
ControlPackets as the user scrolls down. Finally, some UI improvements were made,
including the inclusion of a default template and background image for the login form,
and a header in the main page.

Iteration 8: Code refactoring and documentation
From: 20/10/2017 To: 10/11/2017

Due to the fact that many new features were implemented in the previous iterations, it was
decided to dedicate an iteration to a reorganization of the codebase and its documentations.
Improvements were mainly carried in the Online Monitoring Layer, as it was the layer
where most new functionality was implemented.

69

6. Results

Iteration 9: Image transfer optimization
From: 10/11/2017 To: 20/11/2017

After analysis of the performance indicators of the platform, it was found out that image
transfer times were a bottleneck in the architecture, and therefore, it was decided to im-
prove them. The solution that was taken was modifying the architecture to abandon the
base64 image encoding that was previously used, saving processor cycles both in the client
and in the server, as well as arround 30% of network traffic.

Iteration 10: Implementation of a system to define regions of interest
From: 20/11/2017 To: 04/12/2017

Implementation on a functionality consisting in offering the user the possibility to define a
region in the captured image where number plates are most likely to be found. The goal is
that only this region is sent to the ANPR service, which would allow to save resources. For
the implementation of the functionality, the Experiment Definition Module and Interfaces
were modified, as well as the ANPR Processing Module.

Iteration 11: Possibility to define camera parameters
From: 04/12/2017 To: 15/01/2017

Some of the real-world tests that were carried in previous iterations were unsatisfactory
due to the captured images being blury, specially in low-light situations. Therefore, tests
were carried of captures changing manually the camera parameters relative to exposition
time and ISO sensibility. As they were satisfactory, it was decided to implement the pos-
sibility to define these parameters in the Experiment Definition, even during the course of
a capture, which had implications in the whole system, specially in the Perceptual Layer.

Iteration 12: Delivery of ControlPackets for offline-taken capture
From: 15/01/2018 To: 22/01/2018

The ControlPacket Communication Module of the Perceptual Layer was expanded with
a new mode of functioning, consisting on processing the stored video from an previous
capture, extracting its frames and generating the ControlPackets that correspond to them,
and sending them to the Smart Management Layer; this will allow capture sensors which
were offline at the time of the capture to deliver their results once they have network
conneectivity.

70

Development Cost

Iteration 13: Instructions for the operation of the platform and other documentation
From: 22/01/2018 To: 31/01/2018

Once the system was in a stable version, and ready for experiments with multiple cap-
ture sensors, a guide detailing how to operate and deploy it was elaborated, along with
documentation about the entire system design

6.4 Development Cost
The platform was developed between July 1st, 2017 and January 31st, 2018, a 7 month pe-

riod which, after deducting non-working and holiday days, amounts to a total of 120 working
days. With 5 hours worked per day, this is equivalent to 600 worked hours; as there were two
people involved in the project, this amounts to a total of 1200 hours worked on the project.
Assuming a compensation of AC30/h for a junior software developer, a total cost of AC36,000
is estimated.

The required tools and devices for the development of the platform were: two computers,
equivalent to the Asus X554LA-XX1248H laptop, which has a retail price of AC469 at the PC-

Componentes1 e-commerce, and two smartphones used to test the responsive web interface,
equivalent to the Redmi Note 4X, with a cost of AC147.90 each. The usage of Google Cloud
Platform incurred in no cost, as it was covered by the free tier2, which includes a 300$ free
credit for new accounts. On the other hand, the starter plan of the OpenALPR CarCheck
API 3 was used, which costs $29 (currently AC24.20) per month. In order to test the platform,
a 5 month-long subscription was afforded.

The resources used for the development and testing of the Perceptual Layer were; a Rasp-

berry Pi Zero W (AC10 retail price) and a PiCamera Module V2.1 (sold for AC23.63), a 5000
mAh Powerbank used to power the Raspberry (sold for AC8.29), a 16GB MicroSD card (sold
for AC6.39) storing the OS and capture client, and a 128MB memory stick (AC1.97).

The total cost of the development of the platform, taking into account the expenses ex-
plained above, is AC37,405.14. Table 6.1 summarizes the employed resources and their total
cost.

6.5 Project Statistics
During the development of the system, Git repositories have been used, which allow simul-

taneous collaborations from the different members of the team, as well as version controlling.
Concretely, two code repositories have been used: the first one hosts the code related to the
Perceptual Layer, while the second one covers the code related to the Smart Management

1www.pccomponentes.com
2www.cloud.google.com/free
3www.openalpr.com/software/carcheck

71

6. Results

Resources Units Cost/u Cost
OpenALPR CarCheck API Basic Plan (monthly) 5u AC24.20 AC121.00
Asus X554LA-XX1248H Laptop
Redmi 4X Smartphone

2u
2u

AC469
AC147.9

AC938.00
AC295.8

Raspberry Pi Zero W
PiCamera Module V2
15000 mAh Powerbank
16GB MicroSD Card
128MB Memory Stick

1u
1u
1u
1u
1u

AC10.00
AC23.69
AC8.29
AC6.39
AC1.97

AC10.00
AC23.69
AC8.29
AC6.39
AC1.97

Developer Salary 1200u AC30.00 AC36,000.00
TOTAL AC37,405.14

Table 6.1: Total cost calculation (including taxes)

and Online Monitoring Layers. Using tools such as Gitstats4, it is possible to extract some
useful statistics from the repository for its study.

The repository hosting the Perceptual Layer code sums, at the time of this writing, 754
lines of code (LOCs) in 66 commits, of which 83.42% are written in Python, 12.20% in
Bash, and the remaining 4.38% correspond to configuration files and deployment guides. On
the other hand, the repository hosting the Smart Management and Online Monitoring Layer
sums 1845 lines in 349 commits, of which 42.93% are written in Python, 42.22% in HTML,
CSS and JavaScript, and the remaining 14.85% in other languages. Below, the count of lines
of code of both repositories is plotted against time.

Figure 6.9: Evolution of Lines of Code (Perceptual Layer repository)

4www.github.com/dmitryn/GitStats

72

Project Statistics

Figure 6.10: Evolution of Lines of Code (Smart Management and Real-Time Monitoring
Layers repository)

73

Chapter 7

Conclusions

In this chapter, the conclusions obtained after the design, implementation, testing, and use
of the platform are detailed. First, the degree of fulfillment of each of the objectives defined
in chapter 2 is assessed, in order to determine whether or not the main objective has been
reached. Second, possible future work lines are detailed, based on both the experience during
the development of the platform, feedback from the users, and the state-of-the-art. Finally,
the personal opinion of the author will be detailed, concluding this document.

7.1 Achieved Objectives
Starting from the objectives that were defined, this section details the solutions that have

been developed to address each one of them.

1. Support for the definition of experiments. The user can define the experiment settings
related to the camera parameters and areas of interest through the Experiment Defi-
nition Interface, which gets stored thanks to the Experiment Definition Module. The
rest of the experiment settings can be directly set through the latter; in the Perceptual
Layer, the Experiment Retrieval Module will fetch the required settings, providing
them to the capture device. Additionally, the defined parameters will be applied to the
capture device as soon as they are received, even during ongoing experiments.

2. Retrieval of data from the capture devices. The capture images are sent in the format of
ControlPackets, which encapsulates all the required data, via the ControlPacket Deliv-
ery Module, and received via the ANPR Intelligent Processing Module. Each capture
device is identified with its Client ID. Reliability against network issues is addressed
by storing the whole capture in secondary storage, in video format, and offering the
possibility to send it back to the Smart Management Layer after the experiment, when-
ever network connectivity is available.

3. Support for the ALPR process. The ANPR Intelligent Processing Module supports the
request of license number plates to the chosen OpenALPR Cloud Service; however,
decoupling from this service is ensured, as the requests can be sent to any other API.

4. Portability between devices. One of the implementation details of the Online Moni-
toring Layer is the fact that it generates responsive webpages thanks to the Bootstrap

75

7. Conclusions

framework; therefore, compatibility with any modern web browser, no matter the de-
vice it runs on, or its screen size, is ensured. Besides, some design choices, such as
the use of the WebSocket protocol, were discarded in favor of improved portability
between devices.

5. Real-time monitoring and configuration changes. The Online Monitoring Layer fetches
new ControlPackets periodically (by default, every 5 seconds), ensuring that the users
have an updated view about the state of every capture device at any given moment.
Load and real-world testing with multiple concurrent users have shown that the plat-
form scales well to this situation, allowing each user to have current information about
the experiment. On the other hand, changes performed to any Experiment Definition
are communicated to the capture devices as soon as they communicate with the Smart
Management Layer, and the latter handles these changes as soon as they are received,
updating the camera settings and other parameters accordingly.

6. Detection of errors at the capture devices. The Experiment Visualization Dashboard
provides continuously updated information about each control device, including the
latency of arriving packets, the detected number plates, and the captured image, and
allows any user that is monitoring it to perform corrective configuration changes im-
mediately.

7. History of captures. The ControlPacket History Visualizer provides the functionality
which allows the user to see the history of captures for any given capture device, load-
ing more items as he or she scrolls down, providing a full perspective of the evolution
of the experiment.

8. Ease of use. Both the User Interface of the Online Monitoring Layer, the deployment
process of the Smart Monitoring Layer, and the configuration process of capture de-
vices in the Perceptual Layer, were designed with usability in mind, aiming to ease the
use of the platform as much as possible, and providing written guides when necessary.

9. Deployment of the system to the cloud. The Smart Management and Online Monitoring
layers were deployed to the App Engine service of Google Cloud, being possible to
deploy more instances of the platform should the need arise.

7.2 Future Work
This section details lines of future work, identified as both improvements to the current

functionality of the system, and additions to it.

1. Release of a commercial version. Once the system is stabilized, and, as is the case,
proves to behave well in real-world situations, it is possible to offer it as a service for
clients. Examples of possible clients that may find value in this platform range from

76

Future Work

research groups to public institutions, governments, international organizations, and
private companies.

2. Security improvements. While the confidentiality of the network traffic between all
layers is ensured with the HTTPS protocol, and users need to log in in order to use
the Online Monitoring Layer, more security mechanisms can be implemented and en-
forced. For example, it is possible to provide capture devices with a secret token that
identifies them to the Smart Management Layer, ensuring that only authenticated de-
vices can use its API. On the other hand, the use of encryption can be enforced in the
secondary storage of capture devices, improving the confidentiality of recorded video.

3. Development of a custom ALPR model. During the development of this platform, the
OpenALPR commercial service proved to be a good choice in terms of cost-benefit.
However, as the system scales to more capture devices, the cost of this service can
become prohibitively high. Similarly, as more labeled images are available from the
result of previous experiments, the cost of training a custom model decreases, making
it become a more appealing option.

4. Increased portability between cloud environments. During the development of this
system, Google Cloud Platform and its App Engine service proved to give us the flex-
ibility and ease of use that was needed. While it is possible to keep the platform
deployed in this service with a low operation cost, for some use cases, it may be nec-
essary to deploy it to other cloud service or on-premises (for example, for compliance
reasons). A migration of the system to a vendor-agnostic platform such as Kubernetes
may avoid vendor lock-in and give support for these use cases.

5. Support for more kinds of capture devices. It is possible to adapt the platform to
other kinds of capture devices, which enables exploration of even lower-cost hardware
platforms. As the Capture Module is clearly isolated from the rest of the components
of the Perceptual Layer, it is possible to modify it to adapt to other capture libraries,
therefore adapting the whole Layer to any device that runs a Linux flavor.

6. Anomaly detection of capture devices. In order to ease the monitoring of experi-
ments where a big number of capture devices is present, it is possible to implement
an anomaly detection algorithm with the objective of alerting the users of devices that
may be malfunctioning. Variables such as the latency of ControlPackets or the number
of detected ControlPackets can be used, as well as the captured images.

7. Geo-location of capture devices. Data about the geographical location of each capture
device can be optionally added to the different Experiment Definitions in order to both
ease the monitoring of experiments and have more data available for future analysis.
A map widget could be added to the Experiment Visualization Dashboard in order to
facilitate the geo-location.

77

7. Conclusions

7.3 Fulfilled Competences
Below, in table 7.1, the fulfilled competencies relative to the Computation intensification

are detailed, emphasizing their relationship with the work performed in this final disserta-
tion.

Table 7.1: Justification of the specific competences addressed in the final dissertation
Competence Justification
Capacidad para conocer los fun-
damentos, paradigmas y técnicas
propias de los sistemas inteligentes
y analizar, diseñar y construir sis-
temas, servicios y aplicaciones infor-
máticas que utilicen dichas técnicas
en cualquier ámbito de aplicación.

In order to obtain the best possible results
from the plate recognition phase, the meth-
ods and techniques behind ALPR were anal-
ysed, choosing the system that best suits this
specific case’s needs after a review of its used
techniques and algorithms.

Capacidad para conocer y desarrol-
lar técnicas de aprendizaje computa-
cional y diseñar e implementar apli-
caciones y sistemas que las utili-
cen, incluyendo las dedicadas a ex-
tracción automática de información
y conocimiento a partir de grandes
volúmenes de datos.

Machine Learning algorithms are used in
ALPR solutions (particularly in number plate
detection and character recognition), which
the platform will use extensively. On the other
hand, future lines of work (such as anomaly
detection in capture devices) are based on Ma-
chine Learning techniques.

Capacidad para desarrollar y eval-
uar sistemas interactivos y de pre-
sentación de información compleja y
su aplicación a la resolución de prob-
lemas de diseño de interacción per-
sona computadora.

In the design of the web interface, the way in
which the information is presented to the user
was taken into account, focusing the design on
a simple and intuitive interface which allows
the user to easily take control of the experi-
ment in an interactive way.

7.4 Personal Opinion
This work puts an end to my undergraduate studies. During these years, I had the opportu-

nity to learn, from different perspectives, about my passion, Computer Science, which is one
of the main forces transforming the world as we know it. I am glad to say that my univer-
sity studies have greatly helped me through my path to become a good Computer Engineer,
giving me the necessary tools to responsibly contribute to this changing world.

I could verify that most, if not all of the courses I took during my studies, helped me during
the development of this project. I could also learn about the implications that a development
of this magnitude faces, with multiple systems in different environments interacting between
them, and the design choices that need to be made. I had the opportunity to learn, in a small
and autonomous team, about modern web application development, the public cloud, and
the applications of low-cost capture devices such as the Raspberry Pi. While the range of
technologies to chose from was very big, I think we made the right decision choosing App

78

Personal Opinion

Engine, Flask, and Bootstrap. App Engine offers developers a free environment to develop
and test their applications on, which can scale as needed, while Flask offers a minimalist
approach to web server development, and Bootstrap fulfills the requirement for responsive
pages we had. Overall, I could see how different technologies could be combined to create
a new solution. On the other hand, I could verify the utility of agile methodologies in the
context of developments with changing requirements and uncertainty.

This project helped me also to validate the potential that Computer Engineering has to
complement other areas. Like any other development project, a greater degree of refine-
ment could have been achieved, as there is always room for improvement; however, I feel
satisfied that the solution we implemented helped improve an otherwise tedious and manual
process, enabling it to be more cost-effective and scalable and, therefore, contribute to the
development of the urban traffic analysis research field.

79

Personal Opinion

APPENDICES

81

Appendix A

Instructions for the setup of the platform

Below, the documentation file provided to the users of the platform that details how to
operate it is transcribed. It contains instructions on how to install the capture client on the
Raspberry Pi devices and set up the configuration on the Smart Management Layer. Finally,
instructions on how to access the web interface are provided.

A.1 Instructions
The goal of these instructions is to specify how to deploy the ANPR platform.

A.1.1 Requirements for the deployment
• Access to the Google App Engine project console

• n Raspberry Pis fitted with Camera Modules

• n SD cards

• n pendrives in order to store the configuration and video captures

A.1.2 Setup of the clients
First, we must configure the Raspberries (clients). The recommended procedure is mount-

ing the original SD card, performing the changes, and cloning the image to the n-1 remaining
cameras.

The first step is Wi-Fi setup. For this, we edit the /etc/wpa_supplicant.conf file and we
make sure that the eduroam username and password are updated and valid. In this file, we
store the SSID and authentication parameters of the hotspot that the Raspberry connects to
when no eduroam connectivity is located; we must make sure as well that this information is
valid and corresponds to the desired hotspot.

Once this change is performed, and after making sure that the image is functional, the
memory card can be cloned.

$ dd bs=4M if=/path/to/image.img of=/dev/sdX

$ dd bs=4M if=/dev/sdX of=/path/to/image.img

...

$ e2fsck -f /dev/mmcblk0p2

83

A. Instructions for the setup of the platform

$ resize2fs /dev/mmcblk0p2

Listing A.1: Camara image cloning process

The second part of the configuration is located inside the pendrive of each Raspberry.
Its functionality is identifying each one of them. Inside each pendrive, there must be two
files: ADDRESS_SERVER, containing the backend web address, and CLIENT_ID, contain-
ing the numeric, unique ID that is assigned to the device. Therefore, we will make sure that
each pendrive contains those two files, and that each Raspberry has a different CLIENT_ID

assigned.

A.1.3 Server setup
Inside the application database, which we can access from the Google App Engine con-

sole, there must be a ClientConfig entity per each Raspberry that is deployed.

Therefore, we will add each entity that is necessary, clicking on Create Entity. For each
entity, the Key identificator will be a custom name that will match the CLIENT_ID of the
corresponding Raspberry.

We will edit, as well, the rest of the compulsory fields: begTime and endTime, with the
starting and ending date of the experiment (in UTC), freqCapture with the number of FPS
that we want to record, freqControlPack with the seconds between deliveries of ControlPack-
ets, and mode, which is advised to set to "sports".

A.1.4 Usage of the platform
Once the configuration is finished, we can start using the platform. The Raspberries, once

launched, will connect to the specified WiFi network (Eduroam or, by default, the specified
network), get their corresponding configuration, and start the capture once the experiment
beginning time is reached, if everything works as expected.

It will be possible to follow the development of the experiment in the user panel 1, after
logging in with the required credentials.

1http://www.platerecognitionplatform.appspot.com

84

Appendix B

Testing the platform in real-world environments

During the development of the platform, several tests of it were performed. This was par-
tially done in order to validate the integration of the layers of the platform and the reliability
of the system; however, there was also a need to test the chosen OpenALPR service with the
captures that the Raspberry PI devices took. This appendix exposes two different tests: the
first one validates the operation of the platform under normal environmental circumstances,
while, for the second one, issues were detected, and new functionality was implemented to
address them.

Overall, the system performed correctly when used under clean meteorological conditions
with daytime light, and with the capture device located in a strategic point. This was checked
even when the licence plates had a significant skew. In the showed images, the end of each
number plate is deleted in order to protect personal information.

Figure B.1: Result of a plate detection in ideal conditions.

85

B. Testing the platform in real-world environments

However, when light conditions worsen and motion blur appears, license plates are some-
times unreadable.

Figure B.2: Blurred car image in low-light conditions

The possibility to set camera parameters such as ISO sensibility and shutter speed was
implemented after observing this behavior in the tests of the system. The possibility to
define an area where license plates of interest are expected to appear was implemented as
well, in order to prevent situations such as the one seen in the figure above, where license
plates of parked vehicles are detected.

86

Bibliography

[AALK06] Christos Nikolaos E Anagnostopoulos, Ioannis E Anagnostopoulos, Vassilis
Loumos, and Eleftherios Kayafas. A license plate-recognition algorithm for
intelligent transportation system applications. IEEE Transactions on Intelli-

gent transportation systems, 7(3):377–392, 2006.

[AAP+08] Christos-Nikolaos E Anagnostopoulos, Ioannis E Anagnostopoulos, Ioan-
nis D Psoroulas, Vassili Loumos, and Eleftherios Kayafas. License plate
recognition from still images and video sequences: A survey. IEEE Transac-

tions on intelligent transportation systems, 9(3):377–391, 2008.

[ÁBSCV+20] Fernando Álvarez-Bazo, Santos Sánchez-Cambronero, David Vallejo, Car-
los Glez-Morcillo, Ana Rivas, and Inmaculada Gallego. A low-cost auto-
matic vehicle identification sensor for traffic networks analysis. Sensors,
20(19):5589, 2020.

[AHP06] Timo Ahonen, Abdenour Hadid, and Matti Pietikainen. Face description with
local binary patterns: Application to face recognition. IEEE transactions on

pattern analysis and machine intelligence, 28(12):2037–2041, 2006.

[And10] David J Anderson. Kanban: successful evolutionary change for your tech-

nology business. Blue Hole Press, 2010.

[AQIS07] Ayman AbuBaker, Rami Qahwaji, Stan Ipson, and Mohmmad Saleh. One
scan connected component labeling technique. In 2007 IEEE International

Conference on Signal Processing and Communications, pages 1283–1286.
IEEE, 2007.

[AS94] Richard Arnott and Kenneth Small. The economics of traffic congestion.
American scientist, 82(5):446–455, 1994.

[Boe07] Barry Boehm. A survey of agile development methodologies. Laurie

Williams, 45:119, 2007.

[BVO11] Norbert Buch, Sergio A Velastin, and James Orwell. A review of computer
vision techniques for the analysis of urban traffic. IEEE Transactions on

Intelligent Transportation Systems, 12(3):920–939, 2011.

87

[Can86] John Canny. A computational approach to edge detection. IEEE Transactions

on pattern analysis and machine intelligence, (6):679–698, 1986.

[CH98] Yuntao Cui and Qian Huang. Extracting characters of license plates from
video sequences. Machine Vision and Applications, 10(5-6):308–320, 1998.

[CLCW09] Zhen-Xue Chen, Cheng-Yun Liu, Fa-Liang Chang, and Guo-You Wang.
Automatic license-plate location and recognition based on feature salience.
IEEE transactions on vehicular technology, 58(7):3781–3785, 2009.

[CMJ08] Enrique Castillo, José María Menéndez, and Pilar Jiménez. Trip matrix and
path flow reconstruction and estimation based on plate scanning and link ob-
servations. Transportation Research Part B: Methodological, 42(5):455–481,
2008.

[DISB12] Shan Du, Mahmoud Ibrahim, Mohamed Shehata, and Wael Badawy. Auto-
matic license plate recognition (alpr): A state-of-the-art review. IEEE Trans-

actions on circuits and systems for video technology, 23(2):311–325, 2012.

[E+08] Andrew Eberline et al. Cost/benefit analysis of electronic license plates.
Technical report, 2008.

[FM11] Ian Fette and Alexey Melnikov. The websocket protocol, 2011.

[Gar11] Brett S Gardner. Responsive web design: Enriching the user experience.
Sigma Journal: Inside the Digital Ecosystem, 11(1):13–19, 2011.

[GMMP02] Surendra Gupte, Osama Masoud, Robert FK Martin, and Nikolaos P Pa-
panikolopoulos. Detection and classification of vehicles. IEEE Transactions

on intelligent transportation systems, 3(1):37–47, 2002.

[Han20] John W Hanson. Using city gates as a means of estimating ancient traffic
flows. PLoS one, 15(2):e0229580, 2020.

[HK76] Joseph Hoshen and Raoul Kopelman. Percolation and cluster distribution.
i. cluster multiple labeling technique and critical concentration algorithm.
Physical Review B, 14(8):3438, 1976.

[Hou62] Paul VC Hough. Method and means for recognizing complex patterns, De-
cember 18 1962. US Patent 3,069,654.

[Hou93] Gary Houston. Iso 8601: 1988 date/time representations, 1993.

[JW11] Kevin L Jackson and Robert Williams. The economic benefit of cloud com-
puting. NJVC Executive, 2011.

88

[KC11] H Erdinc Kocer and K Kursat Cevik. Artificial neural networks based vehicle
license plate recognition. Procedia Computer Science, 3:1033–1037, 2011.

[KDDT13] Barbara Karleuša, Nevena Dragičević, and Aleksandra Deluka-Tibljaš. Re-
view of multicriteria-analysis methods application in decision making about
transport infrastructure. 2013.

[LLH16] J. Lin, L. C. Lin, and S. Huang. Migrating web applications to clouds with
microservice architectures. In 2016 International Conference on Applied Sys-

tem Innovation (ICASI), pages 1–4, 2016.

[Mar07] Ondrej Martinsky. Algorithmic and mathematical principles of automatic
number plate recognition systems. Brno University of technology, pages 20–
23, 2007.

[MBRP10] Zuwena Musoromy, Faycal Bensaali, Soodamani Ramalingam, and Georgios
Pissanidis. Comparison of real-time dsp-based edge detection techniques for
license plate detection. In 2010 Sixth International Conference on Informa-

tion Assurance and Security, pages 323–328. IEEE, 2010.

[ME12] Giridhar D Mandyam and Navid Ehsan. Html5 connectivity methods and
mobile power consumption. Accessed January, 16:2013, 2012.

[MMSU15] Gurpreet Singh Matharu, Anju Mishra, Harmeet Singh, and Priyanka Upad-
hyay. Empirical study of agile software development methodologies: A com-
parative analysis. ACM SIGSOFT Software Engineering Notes, 40(1):1–6,
2015.

[NYK+05] Shigueo Nomura, Keiji Yamanaka, Osamu Katai, Hiroshi Kawakami, and
Takayuki Shiose. A novel adaptive morphological approach for degraded
character image segmentation. Pattern Recognition, 38(11):1961–1975,
2005.

[ÖÖ12] Fikriye Öztürk and Figen Özen. A new license plate recognition system based
on probabilistic neural networks. Procedia Technology, 1:124–128, 2012.

[Pre95] Wolfgang Pree. Design patterns for object-oriented software development.
1995.

[PSK+10] G Padmavathi, D Shanmugapriya, M Kalaivani, et al. A study on vehicle
detection and tracking using wireless sensor networks. Wireless Sensor Net-

work, 2(02):173, 2010.

89

[PSP13] Chirag Patel, Dipti Shah, and Atul Patel. Automatic number plate recognition
system (anpr): A survey. International Journal of Computer Applications,
69(9), 2013.

[SCJRG17] Santos Sánchez-Cambronero, Pilar Jiménez, Ana Rivas, and Inmaculada Gal-
lego. Plate scanning tools to obtain travel times in traffic networks. Journal

of Intelligent Transportation Systems, 21(5):390–408, 2017.

[SLE19] David Schrank, Tim Lomax, and Bill Eisele. 2019 urban mobility report.
Texas Transportation Institute,[ONLINE]. Available: http://mobility. tamu.

edu/ums/report, 2019.

[Smi07] Ray Smith. An overview of the tesseract ocr engine. In Ninth international

conference on document analysis and recognition (ICDAR 2007), volume 2,
pages 629–633. IEEE, 2007.

[SMX04] Zhang Sanyuan, Zhang Mingli, and Ye Xiuzi. Car plate character extraction
under complicated environment. In 2004 IEEE International Conference on

Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583), volume 5, pages
4722–4726. IEEE, 2004.

[SP00] Jaakko Sauvola and Matti Pietikäinen. Adaptive document image binariza-
tion. Pattern recognition, 33(2):225–236, 2000.

[SS11] Ken Schwaber and Jeff Sutherland. The scrum guide. Scrum Alliance, 21:19,
2011.

[TO13] Dob Todorov and Yinal Ozkan. Aws security best practices. Amazon

Web Services [Online]. Available from: http://media.amazonwebservices.

com/AWS_Security_Best_Practices.pdf, 2013.

[Vok04] Marek Vokac. Defect frequency and design patterns: An empirical study of
industrial code. IEEE Transactions on Software Engineering, 30(12):904–
917, 2004.

[vT11] Cornelis van Tilburg. Traffic policy and circulation in roman cities. Acta

Classica, 54:149–171, 2011.

[WJ04] Christian Wolf and J-M Jolion. Extraction and recognition of artificial text in
multimedia documents. Formal Pattern Analysis & Applications, 6(4):309–
326, 2004.

90

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	Motivation and problematic
	Document structure

	Objectives
	General objective
	Specific objectives

	Background
	Automatic Number Plate Recognition
	ANPR steps
	ANPR solutions overview

	Cloud Computing
	Introduction
	Advantages of the Public Cloud
	Cloud provider review

	Method and work phases
	Work methodology
	Resources
	Hardware resources
	Software resources
	Cloud resources

	Architecture
	Systematic requirements
	Architecture overview
	Perceptual layer
	Experiment Retrieval Module
	Capture Module
	ControlPacket Communication Module

	Smart Management Layer
	Experiment Definition Module
	ALPR Intelligent Processing Module
	Management and Storage Module

	Online Monitoring Layer
	Authentication Module
	Experiment Visualization Dashboard
	Experiment Definition Interface
	ControlPacket History Visualizer

	Design patterns
	Singleton pattern
	Observer pattern

	Results
	Project Prototype
	Capture devices
	Login and dashboard
	Experiment Definition
	ControlPacket History

	Practical Example
	Project Evolution
	Development Cost
	Project Statistics

	Conclusions
	Achieved Objectives
	Future Work
	Fulfilled Competences
	Personal Opinion

	Instructions for the setup of the platform
	Instructions
	Requirements for the deployment
	Setup of the clients
	Server setup
	Usage of the platform

	Testing the platform in real-world environments
	Bibliography

