
UNIVERSIDAD DE CASTILLA-LA MANCHA

ESCUELA SUPERIOR DE INFORMÁTICA

BACHELOR IN COMPUTER SCIENCE

Automatic LED Control System for Podiums in a
Television Quiz Show Platform

Carmen Cabañas Bógalo

July, 2025

AUTOMATIC LED CONTROL SYSTEM FOR PODIUMS IN A TELEVISION
QUIZ SHOW PLATFORM

UNIVERSIDAD DE CASTILLA-LA MANCHA
ESCUELA SUPERIOR DE INFORMÁTICA

Department of Technology and Information Systems

BACHELOR IN COMPUTER SCIENCE
SOFTWARE ENGINEERING

Automatic LED Control System for Podiums in a
Television Quiz Show Platform

Author: Carmen Cabañas Bógalo

Advisor: David Vallejo Fernández

Co-advisor: Francisco Manuel García Sánchez-Belmonte

July, 2025

Carmen Cabañas Bógalo

Ciudad Real – Spain

E-mail: Carmen.Cabanas1@alu.uclm.es
Telephone: 638 51 02 70

© 2025 Carmen Cabañas Bógalo

This work is licensed under CC BY-SA 4.0. To view a copy of this license, visit
https://creativecommons.org/licenses/by-sa/4.0/

i

https://creativecommons.org/licenses/by-sa/4.0/

TRIBUNAL:

Presidente:

Vocal:

Secretario:

FECHA DE DEFENSA:

CALIFICACIÓN:

PRESIDENTE VOCAL SECRETARIO

Fdo.: Fdo.: Fdo.:

iii

Abstract

In recent years, programmable LED lighting has established itself as a key expressive
resource in interactive and entertainment environments, thanks to its energy efficiency, ver-
satility and ability to integrate with digital systems. At the same time, TV quiz shows have
remained one of the most recognisable cultural formats, especially in prime time. Their
popularity has been reinforced both in traditional media and on digital platforms. This is
due to the promotion of real-time participation dynamics and gamification elements, which
encourage the active involvement of the audience.

In this context, Furious Koalas S. L., a spin-off company of the University of Castilla-La
Mancha, has developed its own infrastructure for live competitions with audience interaction.
This platform combines physical lecterns, mobile applications and audiovisual components
to create immersive experiences. However, the management of the LED strips integrated
in the lecterns was carried out using external tools that were too complex for the specific
requirements of the system.

The aim of this work is to design, develop and validate a technological solution for the
dynamic and synchronised control of LED lighting in interactive competitions. The pro-
posal consists of a modular application composed of two main elements: on the one hand,
a web interface that allows managing videos and actions in an intuitive way, and on the
other hand, a back-end server in charge of coordinating the projection of animations in real
time. This architecture communicates with the physical controller (Deskontroller 16) via the
Art-Net protocol to project content onto addressable LED strips integrated into customised
lecterns.

The previous tool used, MadMapper, offered excessive coverage in relation to the specific
use required by the platform, as it is a professional solution designed for more complex
artistic environments. In contrast, the system developed in this project significantly reduces
the operational burden, eliminates dependence on external licenses and precisely fits the
functional needs of Furious Koalas S.L. Moreover, it integrates with the main server of the
competition via HTTP requests, allowing direct control from the central system.

During its development, challenges typical of real-time systems were addressed, such
as audiovisual synchronisation, asynchronous task management or network communication
between the computer and the controller. The tool was successfully deployed in a real envir-
onment, the XVIII Castilla-La Mancha Informatics Olympiads, where it proved its technical
robustness and its ability to adapt to a live production situation.

v

Resumen

En los últimos años, la iluminación LED programable se ha consolidado como un recurso
expresivo clave en entornos interactivos y de entretenimiento, gracias a su eficiencia ener-
gética, versatilidad y capacidad de integración con sistemas digitales. Paralelamente, los
concursos de preguntas y respuestas tipo televisivo han mantenido su vigencia como uno
de los formatos culturales más reconocibles, especialmente en franjas de máxima audiencia
(prime time). Su popularidad se ha reforzado tanto en los medios tradicionales como en las
plataformas digitales. Esto se debe al impulso de dinámicas de participación en tiempo real
y elementos de gamificación, que fomentan la implicación activa del público.

En este contexto, Furious Koalas S. L., una spinoff de la Universidad de Castilla-La Man-
cha creada en 2016, ha desarrollado una infraestructura propia para la realización de con-
cursos en directo con interacción del público. Esta plataforma combina atriles físicos, ap-
licaciones móviles y componentes audiovisuales para crear experiencias inmersivas. Sin
embargo, la gestión de las tiras LED integradas en los atriles se realizaba mediante her-
ramientas externas que resultaban excesivamente complejas para los requisitos concretos del
sistema.

El presente trabajo tiene como objetivo diseñar, desarrollar y validar una solución tecnoló-
gica para el control dinámico y sincronizado de la iluminación LED en concursos interact-
ivos. La propuesta consiste en una aplicación modular compuesta por dos elementos princip-
ales: por un lado, una interfaz web que permite gestionar vídeos y acciones de forma intuit-
iva, y por otro, un servidor backend encargado de coordinar la proyección de animaciones en
tiempo real. Esta arquitectura se comunica con el controlador físico (Deskontroller 16) me-
diante el protocolo Art-Net para proyectar contenidos en tiras LED direccionables integradas
en atriles personalizados.

La herramienta previamente empleada, MadMapper, ofrecía una cobertura excesiva en
relación con el uso concreto que requería la plataforma, ya que se trata de una solución pro-
fesional diseñada para entornos artísticos más complejos. En contraste, el sistema desarrol-
lado en este proyecto reduce significativamente la carga operativa, elimina la dependencia de
licencias externas y se ajusta con precisión a las necesidades funcionales de Furious Koalas
S.L. Además, se integra con el servidor principal del concurso mediante peticiones HTTP, lo
que permite su control directo desde el sistema central.

Durante su desarrollo se abordaron desafíos propios de los sistemas en tiempo real, como
la sincronización audiovisual, la gestión de tareas asíncronas o la comunicación en red entre
el ordenador y el controlador. La herramienta se desplegó con éxito en un entorno real,
las XVIII Olimpiadas de Informática de Castilla-La Mancha, donde demostró su robustez
técnica y su capacidad para adaptarse a una situación de producción en vivo.

vii

Acknowledgement

Finalizar este Trabajo de Fin de Grado no solo marca el cierre de una etapa académica, sino
también un momento de reflexión y gratitud hacia todas las personas que me han acompañado
en este camino.

En primer lugar, quiero expresar mi agradecimiento más profundo a mi familia. Gracias
por haber estado siempre ahí, no solo durante estos años de universidad, sino desde mucho
antes: en el colegio, en el instituto, en cada pequeño paso que me ha traído hasta aquí.
Vuestra confianza en mí, vuestro apoyo incondicional y los valores que me habéis transmitido
han sido fundamentales para convertirme en la persona que soy hoy. Todo este recorrido, con
sus logros y dificultades, no habría sido posible sin vuestra presencia constante.

También quiero dar las gracias a mis amigos de siempre, con quienes he compartido gran
parte de mi vida, y a los que he tenido la suerte de conocer durante la carrera. Vuestro
apoyo, vuestras palabras de ánimo y esos momentos compartidos, tan necesarios en los días
complicados, han sido un pilar imprescindible para seguir adelante.

Por último, pero no menos importante, quiero dedicar una mención especial a mis tutores
de TFG, David y Paco. Gracias por brindarme la oportunidad de desarrollar este proyecto
junto a vosotros y por confiar en mí desde el primer momento. Agradezco sinceramente
vuestra guía, vuestras enseñanzas y la disponibilidad que siempre habéis mostrado para ay-
udarme en cada fase del proceso.

A todos vosotros, gracias por formar parte de este camino.

Carmen

ix

A los que siempre estuvieron

xi

Contents

Abstract v

Resumen vii

Acknowledgement ix

Contents xiii

List of Tables xvii

List of Figures xix

List of code listings xxiii

1 Introduction 1

1.1 Context . 1

1.1.1 The popularity of quiz-based formats across media and platforms . 1

1.1.2 Gamification and its benefits for interactive events 2

1.1.3 Furious Koalas’ infrastructure . 2

1.2 Project proposal . 4

1.2.1 Architectural overview . 4

1.3 Document structure . 6

2 Objectives 7

2.1 General objectives . 7

2.2 Specific objectives . 7

3 State of art 9

3.1 LED Lighting Control Technologies . 9

3.1.1 Introduction to Programmable LED Lighting 9

3.1.2 Communication Protocols for LED Control 13

xiii

0. Contents

3.1.3 Controllers and Hardware for LED Management 16

3.2 Video Processing for LED Animations . 19

3.2.1 Video Analysis Techniques for Lighting 19

3.2.2 Video-to-LED Mapping: Approaches and Algorithms 20

3.2.3 Software Tools for Video-to-LED Mapping 22

3.3 Software Engineering Applied to Lighting Control Systems 27

3.3.1 Software Architectures in Real-Time Control Systems 27

3.3.2 Development of User Interfaces for LED Animation Configuration . 32

4 Methodology 37

4.1 Development methodology . 37

4.1.1 Project management: Scrum framework 37

4.1.2 Software development: agile practices 38

4.1.3 Work planning . 39

4.2 Development workflow . 40

4.3 Hardware and software resources . 40

4.3.1 Hardware resources . 40

4.3.2 Operating systems . 41

4.3.3 Software resources . 41

5 Architecture 45

5.1 General overview . 45

5.2 Order coordination and business logic (back-end) 47

5.3 Communication with hardware subsystem (Art-Net) 50

5.4 Buffer loading and synchronisation subsystem 53

5.5 Video processing and management subsystem 58

5.6 Web interface (Front-End) . 62

5.7 Deployment architecture and integration with the quiz server 64

6 Results 67

6.1 Development Context . 67

6.2 Incremental validation, systematic testing 68

6.3 Physical assembly of the LED lecterns . 70

6.4 Web interface for testing and configuration 71

6.5 Production deployment: XVIII Castilla-La Mancha Informatics Olympiads 72

xiv

7 Conclusions 75

7.1 Reached objectives . 75

7.2 Addressed competences . 76

7.3 Personal conclusion . 77

7.4 Future work . 78

A Appendix A 83

A.1 User Stories . 83

B Appendix B 87

B.1 Evolution through iterations . 87

C Appendix C 95

C.1 Deployment Instructions . 95

C.2 User Manual . 97

References 107

xv

List of Tables

3.1 Functional comparison between conventional and programmable LEDs. . . 12

3.2 Summary of key differences between LED control protocols. 16

3.3 Comparison between software tools and libraries for addressable LED control. 27

5.1 Summary of the architectural evolution towards a buffer-based real-time play-
back model. 54

B.1 Summary of results – Iteration 1 . 87

B.2 Summary of results – Iteration 2 . 88

B.3 Summary of results – Iteration 3 . 88

B.4 Summary of results – Iteration 4 . 89

B.5 Summary of results – Iteration 5 . 89

B.6 Summary of results – Iteration 6 . 90

B.7 Summary of results – Iteration 7 . 91

B.8 Summary of results – Iteration 8 . 91

B.9 Summary of results – Iteration 9 . 92

B.10 Summary of results – Iteration 10 . 92

B.11 Summary of results – Iteration 11 . 93

xvii

List of Figures

1.1 Live quiz competition organised by Furious Koalas for the company ABB.
The quiz included company-related questions and used digital lecterns with
LED lighting and real-time ranking display. 3

1.2 Simplified high-level overview of the LED Management System. 5

3.1 Examples of modern applications of programmable LEDs: traffic signage,
automotive lighting, and LED panels in live concerts. Sources: (left) https:
//tecnivial.com/catalogo/carreteras/senalizacion-luminosa/
senalizacion-luminosa-definitiva-y-radares/senales-y-pan
eles-led/, (center) https://recambiosloeches.com/nueva-nor
mativa-para-instalacion-de-led-en-automoviles/ and (right)
https://pin.it/7dViRTafb . 11

3.2 Immersive installation by James Turrell, where carefully calibrated light-
ing and geometric framing are used to transform architectural space through
light perception. Image: ’The Light Inside’, Museum of Fine Arts, Houston.
Photo by Ed Schipul (Houston, TX, USA) Source: https://www.archda
ily.cl/cl/998736/la-luz-como-materia-10-artistas-que-trans
forman-el-espacio-con-la-iluminacion 12

3.3 Typical DMX512 wiring setup: a DMX controller sends unidirectional data
to a sequence of DMX drivers, each connected to an RGB LED fixture. The
resistor is placed at the end of the line to ensure signal integrity. Source: How
to wire DMX/RDM lighting systems, eldoLED, 2020. Available at: https:
//www.soliled.com/wp-content/uploads/2020/06/Learning-Cen
ter_Application-note_How-to-wire-DMX-lighting-systems.pdf . 14

3.4 Comparison of data delivery modes in network-based lighting protocols:
broadcast (used by Art-Net), unicast, and multicast (used by sACN). Only
multicast sends data exclusively to devices that request it, improving effi-
ciency. Source: Advatek Lighting, Art-Net vs sACN: which should I use?,
available at https://www.advateklighting.com/blog/guides/art-n
et-vs-sacn . 15

3.5 Conceptual LED mapping models: direct 1:1 (left), warped for irregular sur-
faces (centre), and zonal mapping by image regions (right). 20

3.6 MadMapper interface for mapping visual content onto LED surfaces [Gar24a]. 23

3.7 Resolume Arena interface showing layered clips, effects, and the output
monitor. Source: https://resolume.com/software 24

xix

https://tecnivial.com/catalogo/carreteras/senalizacion-luminosa/senalizacion-luminosa-definitiva-y-radares/senales-y-paneles-led/
https://tecnivial.com/catalogo/carreteras/senalizacion-luminosa/senalizacion-luminosa-definitiva-y-radares/senales-y-paneles-led/
https://tecnivial.com/catalogo/carreteras/senalizacion-luminosa/senalizacion-luminosa-definitiva-y-radares/senales-y-paneles-led/
https://tecnivial.com/catalogo/carreteras/senalizacion-luminosa/senalizacion-luminosa-definitiva-y-radares/senales-y-paneles-led/
https://recambiosloeches.com/nueva-normativa-para-instalacion-de-led-en-automoviles/
https://recambiosloeches.com/nueva-normativa-para-instalacion-de-led-en-automoviles/
https://pin.it/7dViRTafb
https://www.archdaily.cl/cl/998736/la-luz-como-materia-10-artistas-que-transforman-el-espacio-con-la-iluminacion
https://www.archdaily.cl/cl/998736/la-luz-como-materia-10-artistas-que-transforman-el-espacio-con-la-iluminacion
https://www.archdaily.cl/cl/998736/la-luz-como-materia-10-artistas-que-transforman-el-espacio-con-la-iluminacion
https://www.soliled.com/wp-content/uploads/2020/06/Learning-Center_Application-note_How-to-wire-DMX-lighting-systems.pdf
https://www.soliled.com/wp-content/uploads/2020/06/Learning-Center_Application-note_How-to-wire-DMX-lighting-systems.pdf
https://www.soliled.com/wp-content/uploads/2020/06/Learning-Center_Application-note_How-to-wire-DMX-lighting-systems.pdf
https://www.advateklighting.com/blog/guides/art-net-vs-sacn
https://www.advateklighting.com/blog/guides/art-net-vs-sacn
https://resolume.com/software

0. List of Figures

3.8 TouchDesigner interface showing its node-based programming environment
and modular structure. Source: https://interactiveimmersive.io/to
uchdesigner-user-interface/ . 25

3.9 QLC+ Virtual Console with user-defined widgets for live DMX lighting con-
trol. Source: https://www.qlcplus.org 26

3.10 Architectural models in distributed lighting control systems. Images from Geeks-
forGeeks: Architecture Styles in Distributed Systems https://www.geeksf
orgeeks.org/architecture-styles-in-distributed-systems/. . . 30

3.11 Combined pipeline and data-parallel processing for pixel-wise operations.
Each pixel progresses through a multistage pipeline, allowing concurrent
processing at different pipeline stages. Image from A Parallel Reconfigur-
able Architecture for Real-Time Stereo Vision [CJ09]. 30

3.12 GUI built with PyQt for LED and servo control via Arduino. Screenshot
from: DonskyTech, YouTube https://www.youtube.com/watch?v=5uqw
zu8wT3A. 34

3.13 The xLights interface, with timeline editor and audio waveform. Source:
DrZzs & GrZzs, YouTube https://www.youtube.com/watch?v=p7wV6A
26Gak. 35

3.14 LED Matrix Studio interface and physical LED output. Screenshot from:
Boaztheostrich, YouTube https://www.youtube.com/watch?v=fHhKf1
lGWx0. 36

3.15 Lightkey interface in a worship environment. Screenshot from: Felty Stu-
dios, YouTube https://www.youtube.com/watch?v=y_ZebL1PAeU. . . . 36

4.1 Estimated work plan for the project . 40

5.1 High-level component diagram of the Quiz Main System. The LED Man-
agement System is one of the coordinated subsystems alongside question
display, score management (Simple-Quiz Server), and moving-head lighting
control. 46

5.2 Layered architecture of the LED Management System. The components are
grouped into presentation, domain, and persistence layers according to their
functional responsibilities. 47

5.3 Logical structure of the back-end organised in four conceptual layers: present-
ation, application, domain, and persistence. Each class is grouped according
to its role and dependency level within the system. 49

5.4 The allocation of LEDs by DMX universes and their physical distribution . 52

5.5 Simplified class diagram of the hardware communication subsystem. It in-
cludes the classes responsible for buffer loading (PlaybackService), double-
buffer management (DoubleFrameBufferService), and RGB data trans-
mission (LEDService). 53

xx

https://interactiveimmersive.io/touchdesigner-user-interface/
https://interactiveimmersive.io/touchdesigner-user-interface/
https://www.qlcplus.org
https://www.geeksforgeeks.org/architecture-styles-in-distributed-systems/
https://www.geeksforgeeks.org/architecture-styles-in-distributed-systems/
https://www.youtube.com/watch?v=5uqwzu8wT3A
https://www.youtube.com/watch?v=5uqwzu8wT3A
https://www.youtube.com/watch?v=p7wV6A26Gak
https://www.youtube.com/watch?v=p7wV6A26Gak
https://www.youtube.com/watch?v=fHhKf1lGWx0
https://www.youtube.com/watch?v=fHhKf1lGWx0
https://www.youtube.com/watch?v=y_ZebL1PAeU

5.6 Diagram illustrating the double-buffering mechanism. The PlaybackSer-
vice writes frames to the active buffer, managed by DoubleFrameBuf-
ferService. Upon completion, a swap operation takes place, making the
written buffer available for reading. The LEDService continuously reads
from the passive buffer to transmit RGB data to the Art-Net controller. . . . 55

5.7 Visual representation of the four playback modes supported by the system.
From top-left to bottom-right: Individual, Different, AllLecterns, and
Wide. Each configuration determines how the video content is distributed
and synchronised across the three lecterns. 56

5.8 The buffer loading and synchronisation subsystem simplified. It shows which
classes involved from the reception of an order (video or action) until the
processed RGB frame is written to the corresponding FrameBuffer. 57

5.9 Class diagram of the Video processing and management subsystem. It shows
which classes are used by this subsystem 61

5.10 Early-stage prototype of the LED Manager interface, designed in Figma. It
shows the planned layout for video selection, projection mode configuration,
and playback control. 62

6.1 Use case diagram of the LED Management System. It shows the interactions
between the System User and the Main Quiz Server with the LED module.
Internal cases such as Send Video to Lecterns are handled by the system at a
lower level of abstraction. 67

6.2 Chronological overview of the development iterations and main milestones. 68

6.3 Physical assembly of the LED lecterns: internal components, external LED
distribution, and overall visual design. 70

6.4 Web interface for testing and configuring animation projections. It enables
the selection of target lecterns, definition of playback modes, and triggering
of animations. 72

6.5 Images of the XVIII Castilla-La Mancha Informatics Olympiads. 74

C.1 Button to add a new video to the system (top-right of the screen) 98

C.2 Modal shown after successful video upload 98

C.3 Modal shown after successful video upload 99

C.4 Delete button associated with each uploaded video 99

C.5 Warning modal shown when attempting to delete a video linked to one or
more actions . 100

C.6 Warning modal shown when attempting to delete a video linked to one or
more actions . 100

C.7 Action Mode, highlighting add and edit action buttons. 101

C.8 Modal view for the configuration of actions, showing different assignment
types. 102

C.9 Delete button associated with each action 103

xxi

0. List of Figures

C.10 Confirmation modal for deleting an action 103

C.11 Modal for video preview before LED projection 104

C.12 Selection of video and action, with preview/play buttons and clean controls
highlighted . 105

C.13 Example of the interface in light mode . 106

xxii

List of code listings

5.1 Algorithm for Pixel Rearrangement . 59

xxiii

Chapter 1

Introduction

IN this chapter, the general context and motivation behind the project are presented, fol-
lowed by an overview of the proposed system and the structure of this document.

1.1 Context
Today, LED lighting systems are widely used in all types of environments, including in-

dustrial and cultural spaces. Their low energy consumption, colour customisation capabilit-
ies and ease of integration with electronic and digital systems have made these systems a key
tool for designing visual experiences. From stage shows and artistic installations to urban
environments, road signs and educational spaces, programmable light is increasingly being
used as a functional and expressive resource.

1.1.1 The popularity of quiz-based formats across media and platforms
Question-and-answer contests have maintained a strong presence in popular culture, par-

ticularly on television, where they combine suspense, time pressure and audience particip-
ation. Gameshows like Who Wants to Be a Millionaire?, Des chiffres et des lettres and
Pasapalabra have had a massive audience for a years. The television quiz show is one of the
earliest and most enduring forms of broadcast entertainment, based on the idea of ordinary

people performing under pressure [Su 08].

Such formats have enjoyed longevity thanks to their hybrid nature: combining factual
knowledge with spectacle, individual competition with collective viewing and entertainment
with a sense of shared cultural values. This combination has enabled quiz shows to remain
relevant despite changes in the media landscape, such as the shift towards digital interaction
and mobile entertainment.

In parallel, the digitalisation of entertainment has led to the emergence of trivia-based
apps and interactive quiz platforms such as Kahoot! 1 or Trivial Crack 2. These platforms
use competition, instant feedback and game-based progression systems to engage users in
educational and recreational contexts.

1https://kahoot.com
2http://preguntados.com/

1

https://kahoot.com
http://preguntados.com/

1. Introduction

1.1.2 Gamification and its benefits for interactive events
The use of game mechanics in non-game contexts, known as gamification, has become

more common in areas like education, health, productivity and entertainment media. Ac-
cording to Deterding et al., this phenomenon can be defined as “the use of game design
elements in non-game contexts” [DDea11]. Typical mechanisms include points, badges,
leaderboards, and instant feedback systems, which aim to increase user engagement and par-
ticipation. The ability of these mechanics to stimulate intrinsic motivation has been proved,
particularly when they are designed to support users’ sense of autonomy, competence, and
relatedness, as outlined by Self-Determination Theory [RD00].

In interactive events, gamification plays a dual role: it transforms the structure of particip-
ation, encouraging users to remain attentive and engaged, and it amplifies the memorability
and emotional impact of the experience. Empirical studies confirm that providing users with
immediate feedback in the form of scores, badges or performance indicators enhances their
engagement and perceived competence [HKea14].

Moreover, interactive lighting has been identified as an effective form of visual feedback.
LED-based light displays can notify remote users of the system’s status or ambient inter-
action without the need for on-screen messages, creating a more natural and spatially dis-
tributed interface [FBea15]. Similarly, light stimuli with colour, intensity or animation are
successfully used in educational contexts to signal progress, collaboration or task comple-
tion [LRea20].

1.1.3 Furious Koalas’ infrastructure
In this context, Furious Koalas Ltd. 3, a spinoff of the University of Castilla-La Mancha,

has developed its own infrastructure for real-time quiz-based contests with live production
and audience interaction. This system has been used at events like the Informatics Olympiads
and in special quiz shows for companies, weddings, trade fairs, and other public or company
events. The company makes interactive experiences based on TV shows like Pasapalabra,
Who Wants to Be a Millionaire? or ¡Boom!, and can customise them to suit the customer.
These activities combine live hosting, digital devices and audiovisual elements, including
LED lighting, to enhance engagement and participation. Participants can join in person
via lecterns or remotely through mobile apps that allow them to answer questions in real
time. 4

As shown in Figure 1.1, Furious Koalas’ infrastructure has been successfully implemented
in corporate settings, such as at the ABB team-building convention held in April 2023 at the
Oceanogràfic Auditorium in Valencia. There, more than 250 employees took part in a live
quiz designed to reinforce internal knowledge through gamified interaction.

3https://www.furiouskoalas.com
4See for example: https://www.youtube.com/watch?v=OFo6m7AlgOY

2

https://www.furiouskoalas.com
https://www.youtube.com/watch?v=OFo6m7AlgOY

Context

Figure 1.1: Live quiz competition organised by Furious Koalas for the company ABB. The
quiz included company-related questions and used digital lecterns with LED lighting and
real-time ranking display.

This infrastructure involves custom-designed lecterns equipped with buttons, integrated
screens and distributed LED strips. These lecterns serve as the main physical interface for
participants, enabling direct and synchronous interaction with the quiz system. The logic
and scoring of each game session is managed by the main coordination platform developed
in-house, which in this document is referred to as the Main Quiz System. The aim is to make
the experience of participants and attendees more exciting by using visual elements that are
in sync with the event’s progression.

Until now, lectern lighting was managed using MadMapper software5, a professional tool
that is widely used in artistic projection environments. However, in this case, it was used
exclusively to control the LEDs by the spinoff staff, which was not worth the operational
complexity involved in configuring it. Although the system worked properly during events,
the prior preparation was impractical and tool itself proved to be far more ambitious and
complex than the specific needs of this project required.

These limitations motivated the development of a more flexible software solution, specific-
ally adapted to the Furious Koalas lectern system. The aim was to offer a more accessible,
efficient, and fully integrated control in the contest logic.

5https://madmapper.com/

3

https://madmapper.com/

1. Introduction

1.2 Project proposal

This Final Degree Project was carried out within the framework of an internship at Furi-
ous Koalas. It proposes the design, development, and validation of a customised software
solution for LED lighting control in interactive environments, which is applied to an existing
infrastructure of lecterns. Based on the system’s functional requirements, a modular applica-
tion has been developed that can receive projection orders from a web interface and the main
quiz platform. Both sources of interaction are integrated transparently.

The system enables dynamic animations to be projected onto LED strips. During its de-
velopment, challenges associated with real-time control systems were addressed, including
accurate synchronisation of audiovisual content, concurrent task management, and maintain-
ing fluidity in playback under high-load conditions.

With a user-friendly interface and the ability to validate in real environments, the system
proved its operational feasibility at the XVIII Castilla-La Mancha Informatics Olympiads
held in April 2025 at the School of Computer Science (ESI) in Ciudad Real.

In comparison to the previous MadMapper-dependant setup, the new implementation
brings several practical advantages. Firstly, it eliminates dependency on third-party software
for control over integration with the event’s main logic. Secondly, the solution’s modular
structure makes maintenance and future extensions, such as new animation formats or in-
teraction modes, easier. Lastly, the web interface allows non-technical users to operate the
system with minimal training.

Overall, this project shows the development of a technically robust and versatile control
system. This integrates software engineering, real-time audiovisual synchronisation, and dir-
ect application in live production environments. The successful deployment of the system
at a public event highlights its maturity and potential for reuse in similar interactive scen-
arios.

1.2.1 Architectural overview

The LED control system developed in this project has a modular, layered architecture
which separates responsibilities into three main categories: presentation, domain logic, and
persistence. This high-level organisation ensures the system is maintainable and scalable,
and provides a clean separation of concerns between the user interface, the core functionality,
and the data layer. At a more detailed level, the domain layer is subdivided into three con-
ceptual packages following clean architecture principles [Mar17]: interface adapters (HTTP
endpoints); an application coordination layer (controllers); and a domain core containing
business logic and entities.

The system is composed of two main parts. The first part is a web interface developed
in TypeScript, which lets users select videos or predefined actions and send them to specific

4

Project proposal

lecterns. These videos and actions contain the animations to be projected on one or more
LED lecterns, according to the chosen configuration. The second part is a back-end service

made in Python using Flask. This is in charge of the playback logic and handles real-time
communication with the Art-Net LED controller model (Deskontroller 16) used in Furious
Koalas’ quiz infrastructure.

The back-end consists of three logical subsystems that handle video pre-processing, double
buffering, and DMX data transmission. These subsystems have distinct functional respons-
ibilities within the system. LED animations are encoded into RGB frames, loaded into a
buffer structure and transmitted in synchrony with the event flow.

A simplified diagram of the system architecture is shown in Figure 1.2. It shows the main
functional modules, which are grouped into three conceptual layers: presentation, domain
and persistence. It also highlights the separation of concerns that guided the design of the
system. This architectural structure has been designed to facilitate future extensions and pro-
mote modular development, ensuring that each subsystem can evolve independently without
compromising the system’s overall functionality.

Figure 1.2: Simplified high-level overview of the LED Management System.

5

1. Introduction

1.3 Document structure
The remainder of this document is structured as follows, in accordance with the standards

for Final Degree Projects of the School of Computer Science at the University of Castilla-La

Mancha (UCLM).

Chapter 2: Objectives

This chapter defines the main functional goals of the system, aligned with the specific
needs identified in the project’s context.

Chapter 3: State of the Art

This chapter reviews the main technologies and engineering principles relevant to sys-
tem development. It is divided into three major thematic areas: programmable LED
lighting and its control protocols; video processing techniques for LED-based anim-
ations; and software engineering methods applied to real-time lighting control sys-
tems.

Chapter 4: Methodology

The methodology followed here includes the planning made and also other resources
used in this project.

Chapter 5: Architecture

This chapter provides a detailed overview of the architecture of the developed system.
It explains the reasoning behind the key design choices, the evolution of the system, and
its internal structure.

Chapter 6: Results

This chapter presents the main outcomes of the project, highlighting how the system
was used in a real contest environment.

Chapter 7: Conclusions and future work

The final chapter discusses proposed objectives have been achieved and suggests pos-
sible improvements and directions for future development.

6

Chapter 2

Objectives

IN this chapter, the objectives of the project are outlined. Specifically, the main objective
is explained, followed by the sub-goals that support it.

2.1 General objectives
This project aims to design a customised system for the automatic control of program-

mable LEDs integrated into lecterns used in a TV quiz show, whose platform belongs to
the UCLM spin-off Furious Koalas S.L. Also, the system must be able to operate in syn-
chronisation with the main quiz-control server and be fluid in their interactions. This means
that lighting effects must be accurately timed and coordinated with events such as contestant
responses, score changes, or game phases.

Thus, this system aims to provide an efficient and practical solution for displaying video
content on the LED strips attached to the lecterns. The solution must be integrated with the
Deskontroller 16, a model of the PIX CONTROL 16 controller, which is compatible with the
Art-Net protocol. It must provide a simplified user interface to facilitate the configuration of
the animations.

2.2 Specific objectives
The LED control system developed in this project is designed to serve as a key component

within the quiz show platform developed by Furious Koalas S.L. The specific objectives of
the system are as follows:

• Facilitate system usability for non-technical users: The system must be easy for
users without programming knowledge to operate. This requires a simplified interac-
tion model and an intuitive interface so that lighting animations can be triggered and
configured without any technical expertise.

• Ensure visual fidelity and synchronisation: The colour output of the LEDs must
accurately reflect the original video associated with each animation to be projected
onto the lecterns. This includes minimal latency and frame loss, which is crucial for
guaranteeing a seamless visual experience during the quiz show.

7

2. Objectives

• Integrate the system with the quiz platform: The LED control module must be com-
patible with the company’s existing infrastructure. This involves receiving instructions
from the main server in standard communication formats and responding to external
events in real-time.

• Validate the system in a real-world context: The project must be tested in a realistic
environment using the company’s actual hardware. A first version of the system is
expected to be deployed and used at a public event to demonstrate its effectiveness and
robustness.

• Contribute to cost reduction and platform competitiveness: The solution is inten-
ded to replace the use of licenced external software, which is currently employed in
the production of quiz shows and requires a paid subscription. By developing a LED
control module, the company aims to reduce its long-term operational costs, as well as
to increase the autonomy and competitiveness of its platform.

8

Chapter 3

State of art

IN this chapter, it is presented a comprehensive review of the technologies, methodologies,
and architectural approaches related to LED lighting control and video-driven visual sys-

tems. The subject is divided into three primary sections: lighting control protocols and hard-
ware, video analysis techniques for dynamic lighting, and software engineering strategies
applied to real-time multimedia systems. This fundamental knowledge underpins the sub-
sequent development of the system outlined in subsequent chapters.

3.1 LED Lighting Control Technologies
3.1.1 Introduction to Programmable LED Lighting
LED technology history

The technology related to light-emitting diodes has experienced significant evolution since
its first discoveries, becoming one of the main lighting solutions these days.

1907 – First contact with electroluminescence by Henry Joseph Round

The first documented observation of electroluminescence, a phenomenon in which semi-
conductors emit light, was made in 1907 by the British engineer Henry J. Round. During
testing carborundum-based cat whisker rectifiers (polycrystalline SiC), he observed visible
light at the metal–semiconductor junction [DK08]. He published this in a brief note in Elec-

trical World [Rou07].

Although similar effects in materials like silicon and germanium were sporadically ob-
served in the following decades, their erratic nature and unclear physical basis limited further
progress [Sch03].

1920s - Oleg Lossev’s investigations

Between 1923 and the 1940s, Russian physicist Oleg V. Lossev studied electrolumin-
escence in point-contact silicon carbide (SiC) diodes at the A. F. Ioffe Physical-Technical
Institute in Leningrad. He investigated their electrical and optical behaviour in detail and
correctly identified the light emission as originating from a surface ’active layer’ associated
with the n-type region, although the emission mechanism remained unclear [DK08].

9

3. State of art

Lossev envisioned optical data transmission, thus anticipating modern photonics. Despite
the limitations imposed by resource scarcity and political repression (he died during the
Siege of Leningrad in 1942), his contributions stimulated interest in semiconductor physics
and provided the basis for future LED technology [DK08].

1962 - First visible LED by Nick Holonyak

In 1962, while working at General Electric, Nick Holonyak Jr. developed the first LED
to emit visible red light using a gallium arsenide phosphide (GaAsP) alloy [DK08]. This
marked a step change from infrared-only emissions, earning him the recognition of being
the ’father of visible LEDs’.

The use of direct-bandgap semiconductors, like GaAsP, allowed efficient light emission
and made multicolour and high-brightness LEDs possible, expanding their application from
basic indicators to electronic displays [DK08].

1980-1990 - Evolution to high-efficiency and high-brightness LEDs

In the 1980s and 1990s, LED technology advanced with the introduction of compound
semiconductors like aluminium-gallium-arsenide (AlGaAs) and indium-gallium-aluminium-
phosphide (InGaAlP), enabling greater luminous efficiency, intensity, and colour range, as
described in [DK08].

These improvements emerged from a better understanding of heterostructures and the ad-
option of epitaxial techniques such as metal-organic chemical vapour deposition (MOCVD),
which enabled the precise control of crystalline layers at the nanoscale level [DK08, Sch03].
Consequently, LEDs evolved from simple indicators to general-purpose lighting elements
used in road signs, automotive systems and electronic displays [DK08]

From conventional to programmable LEDs

The transition from fixed LEDs to programmable systems was driven by the convergence
of digital electronics and control protocols such as DMX512 [EST24], standardised in the
1980s. This enabled the individual control of each light point, allowing for dynamic lighting
installations.

The later spread of addressable LED strips—based on chips like WS2812 1 or
APA102 [AEC16], and their integration with platforms such as Arduino [BS14] or Raspberry
Pi 2 made programmable lighting accessible to both professionals and amateurs. Program-
mable LEDs differ from conventional ones in that they can interpret real-time instructions to
adjust colour, intensity, or behaviour individually.

1Adafruit NeoPixel Überguide: https://learn.adafruit.com/adafruit-neopixel-uberguide
2https://projects.raspberrypi.org/en/projects/physical-computing/3

10

https://learn.adafruit.com/adafruit-neopixel-uberguide
https://projects.raspberrypi.org/en/projects/physical-computing/3

LED Lighting Control Technologies

Modern applications of programmable LEDs

Thanks to their efficiency, durability and programmable behaviour, LEDs have evolved
into core components in diverse sectors [DK08, KSea07]. In transport and automotive,
they are used in traffic signals, variable signage and vehicle lighting for their visibility, low
consumption and fast response [SBea00, Yu13]. In consumer electronics, they serve as
backlighting in displays, mobile devices and large-format panels [Tsa05].

Figure 3.1 illustrates some of these applications, including traffic signage, automotive
lighting, and stage performance environments, where programmable LEDs have become
commonplace.

Figure 3.1: Examples of modern applications of programmable LEDs: traffic signage, auto-
motive lighting, and LED panels in live concerts.
Sources: (left) https://tecnivial.com/catalogo/carreteras/senalizacion-lum
inosa/senalizacion-luminosa-definitiva-y-radares/senales-y-paneles-led
/, (center) https://recambiosloeches.com/nueva-normativa-para-instalacion
-de-led-en-automoviles/ and (right) https://pin.it/7dViRTafb

Beyond industrial use, programmable LEDs are central to stage and artistic environ-
ments. Their synchronisation capabilities via DMX512 [EST24] or Art-Net [Art24] enable
dynamic light effects in concerts, plays or audiovisual installations [GBea24, Dun15]. Their
small size makes them suitable for integration into costumes, scenery, or instruments.

In the field of interactive art and immersive installations, programmable LEDs respond
to external stimuli (e.g., motion, sound), generating personalised visual experiences [SCea23].
These systems are found in museums, festivals and urban interventions, where light becomes
a material of perception. A notable example is shown in Figure 3.2, which depicts an im-
mersive environment created by James Turrell.

Finally, they are increasingly employed in dynamic architectural lighting and decora-
tion, both indoor and outdoor, transforming spaces through animated light patterns [Xu24].
Software such as MadMapper, TouchDesigner or Resolume3 allows full creative control over
each pixel’s behaviour.

3https://madmapper.com, https://derivative.ca, https://resolume.com

11

https://tecnivial.com/catalogo/carreteras/senalizacion-luminosa/senalizacion-luminosa-definitiva-y-radares/senales-y-paneles-led/
https://tecnivial.com/catalogo/carreteras/senalizacion-luminosa/senalizacion-luminosa-definitiva-y-radares/senales-y-paneles-led/
https://tecnivial.com/catalogo/carreteras/senalizacion-luminosa/senalizacion-luminosa-definitiva-y-radares/senales-y-paneles-led/
https://recambiosloeches.com/nueva-normativa-para-instalacion-de-led-en-automoviles/
https://recambiosloeches.com/nueva-normativa-para-instalacion-de-led-en-automoviles/
https://pin.it/7dViRTafb
https://madmapper.com
https://derivative.ca
https://resolume.com

3. State of art

Figure 3.2: Immersive installation by James Turrell, where carefully calibrated lighting and
geometric framing are used to transform architectural space through light perception. Image:
’The Light Inside’, Museum of Fine Arts, Houston. Photo by Ed Schipul (Houston, TX,
USA)
Source: https://www.archdaily.cl/cl/998736/la-luz-como-materia-10-artis
tas-que-transforman-el-espacio-con-la-iluminacion

Feature Conventional LEDs Programmable LEDs
Control On/off switching or basic colour

variation
Individual control of colour,
brightness, and timing

Directionality Uniform behaviour across the cir-
cuit

Addressable: each LED responds
independently

Protocols No data interpretation; voltage-
based

Support DMX512, SPI, Art-Net

Hardware Simple drivers or resistors Requires controllers and digital in-
terfaces

Applications Lighting, indicators, displays Media art, installations, reactive
environments

Interactivity No feedback or adaptation Real-time reaction to sensors,
sound, or video

Table 3.1: Functional comparison between conventional and programmable LEDs.

Differences between conventional LEDs and programmable LEDs

Although both types of LEDs operate by injecting current across a p–n junction [Sch03],
their control capabilities and application domains differ significantly. As shown in Table 3.1,
programmable LEDs incorporate digital interfaces, support communication protocols, and
enable real-time, per-pixel control—features absent in conventional implementations.

12

https://www.archdaily.cl/cl/998736/la-luz-como-materia-10-artistas-que-transforman-el-espacio-con-la-iluminacion
https://www.archdaily.cl/cl/998736/la-luz-como-materia-10-artistas-que-transforman-el-espacio-con-la-iluminacion

LED Lighting Control Technologies

Advantages of LED programming and control over traditional lighting

Compared to traditional technologies like incandescent or halogen lamps, programmable
LEDs offer substantial benefits [GBea24]:

• Dynamic and individualised control: Support for dynamic effects, colour transitions,
and synchronisation through DMX512 [EST24] or Art-Net [Art24].

• High energy efficiency: Lower power consumption and adaptive brightness [Tsa05].

• Longer lifespan: Reduced maintenance costs due to extended durability [Tsa05].

• Instant response: Immediate on/off switching, crucial for real-time visual
effects [SCea23].

• Integration flexibility: Available in strips, arrays, or panels, adaptable to architecture,
costumes, or furniture [Tsa05].

• Interactive potential: Integration with sensors enables intelligent, responsive envir-
onments [SCea23].

3.1.2 Communication Protocols for LED Control
The control of programmable LEDs relies on digital communication protocols that trans-

mit lighting data precisely and reliably. Different protocols suit different needs in terms
of scale, complexity and latency. This section reviews the most commonly used standards:
DMX512, Art-Net, sACN (E1.31) and SPI, focusing on their technical characteristics, limit-
ations and typical applications in modern LED systems.

DMX512: Standard in stage lighting

The DMX512 protocol was developed in 1986 by the United States Institute for Theatre
Technology (USITT) and later standardised by ESTA [EST24]. Designed for stage lighting
control, it uses unidirectional communication over RS-485, continuously transmitting digital
data through a single line. Each ‘universe’ can manage up to 512 channels, each representing
a value between 0 and 255.

In RGB LED systems, each LED usually needs three channels (R, G and B), enabling
control of up to 170 RGB LEDs per universe. Larger setups require multiple universes and
distribution hardware, such as Art-Net nodes or DMX splitters [Art24].

Furthermore, the typical refresh rate of DMX512 is 44 Hz. Using many channels in-
creases the update interval per LED, which can introduce latency, especially problematic in
synchronised audiovisual applications. [EST24].

Despite its limited bandwidth and unidirectional nature, DMX512 remains the industry
standard for medium-scale lighting setups where full-pixel precision is not required. Its
reliability and widespread adoption make it ideal for use in concerts, theatre productions and
architectural lighting.

13

3. State of art

As shown in Figure 3.3, DMX fixtures are commonly connected in a daisy-chained topo-
logy, with a 120 Ω termination resistor at the end to maintain signal integrity.

Figure 3.3: Typical DMX512 wiring setup: a DMX controller sends unidirectional data to a
sequence of DMX drivers, each connected to an RGB LED fixture. The resistor is placed at
the end of the line to ensure signal integrity.
Source: How to wire DMX/RDM lighting systems, eldoLED, 2020. Available at: https:
//www.soliled.com/wp-content/uploads/2020/06/Learning-Center_Applicatio
n-note_How-to-wire-DMX-lighting-systems.pdf

Art-Net: DMX through the Ethernet

Art-Net is a protocol developed in 1998 by Artistic Licence to transmit DMX512 data
over Ethernet networks using UDP/IP [Art24]. Taking advantage of standard infrastructure
(e.g. switches and routers) enables the management of hundreds of DMX universes sim-
ultaneously, equivalent to tens of thousands of channels. This scalability makes Art-Net
ideal for large-scale installations involving numerous addressable LEDs, such as LED walls,
synchronised shows or interactive projections.

Unlike serial DMX512, it benefits from the high bandwidth and speed of Ethernet, offering
lower latency and higher refresh rates, which facilitates real-time synchronisation with audio
or video content [Art24]. The use of IP routing allows flexible universe distribution across
multiple nodes, simplifying the organisation of complex systems. Furthermore, software
tools like MadMapper, Resolume, QLC+ and TouchDesigner4 are natively compatible with
Art-Net, enabling direct control from a computer without external DMX hardware.

In short, Art-Net overcomes the limitations of the DMX512 structure in terms of channel
count, speed and scalability by extending it over a modern network. It has therefore become
the reference protocol for advanced lighting control.

sACN: Modern evolution of Art-Net

The sACN protocol (Streaming Architecture for Control Networks), standardised as ANSI
E1.31, was developed by Entertainment Services and Technology Association (ESTA) to
transmit DMX512 data over Ethernet more efficiently than earlier protocols such as Art-Net

4https://madmapper.com, https://resolume.com, https://www.qlcplus.org, https:
//derivative.ca

14

https://www.soliled.com/wp-content/uploads/2020/06/Learning-Center_Application-note_How-to-wire-DMX-lighting-systems.pdf
https://www.soliled.com/wp-content/uploads/2020/06/Learning-Center_Application-note_How-to-wire-DMX-lighting-systems.pdf
https://www.soliled.com/wp-content/uploads/2020/06/Learning-Center_Application-note_How-to-wire-DMX-lighting-systems.pdf
https://madmapper.com
https://resolume.com
https://www.qlcplus.org
https://derivative.ca
https://derivative.ca

LED Lighting Control Technologies

or DMX512 itself [Ent18]. It supports up to 63,999 universes, nearly doubling Art-Net’s
capacity.

A key improvement is its use of multicast transmission, which sends data only to sub-
scribed devices. This reduces network load and enhances efficiency, as illustrated in Fig-
ure 3.4. However, proper network configuration (e.g., IGMP snooping) is essential to take
full advantage of this feature [Ent18].

Figure 3.4: Comparison of data delivery modes in network-based lighting protocols: broad-
cast (used by Art-Net), unicast, and multicast (used by sACN). Only multicast sends data
exclusively to devices that request it, improving efficiency.
Source: Advatek Lighting, Art-Net vs sACN: which should I use?, available at https:
//www.advateklighting.com/blog/guides/art-net-vs-sacn

While sACN offers superior scalability and network optimisation, Art-Net remains popu-
lar for its simplicity and broad device compatibility [Ent18].

SPI: Direct and efficient low-level control

SPI (Serial Peripheral Interface) is a synchronous protocol widely used in embedded sys-
tems to communicate between microcontrollers and peripherals [Mic03, Tex12]. In LED
control, SPI enables direct pixel-level addressing in strips or matrices [iSk24].

Unlike protocols such as DMX512 or Art-Net, which operate over networked or serial
infrastructures, SPI uses direct electrical lines (typically a data line and, optionally, a clock
line) to connect the microcontroller (e.g. Arduino, ESP32 or Raspberry Pi) to the
LEDs [Tex12, Mic03].

Its advantages include high transmission speed, precise timing and low hardware require-
ments, as it eliminates the need for intermediary controllers or converters [Tex12, SVea20].
However, signal degradation over long distances and dependence on the microcontroller’s
processing capacity limit its scalability [iSk24].

SPI allows accurate control of each peripheral at high transmission speeds [Tex12], mak-
ing it suitable for precise and fast communication. Moreover, without conversion or interme-
diate protocols required, SPI is a direct and efficient solution in terms of processing [SVea20].

15

https://www.advateklighting.com/blog/guides/art-net-vs-sacn
https://www.advateklighting.com/blog/guides/art-net-vs-sacn

3. State of art

Feature DMX512 Art-Net sACN SPI
Transmission RS-485 (XLR) Ethernet (UDP) Ethernet (UDP,

multicast)
Direct GPIO
lines

Scalability
and channels

1 universe (512
ch)

100+ universes Up to 63,999 uni-
verses

Depends on clock
and wiring

Speed and
latency

Moderate (44
Hz)

High High, optimised
via multicast

Very high, real-
time control

Hardware re-
quired

DMX controller Art-Net node or
compatible soft-
ware

sACN-capable
devices

Microcontroller
only

Use cases Theatre, small
setups

Video mapping,
large shows

Complex installs,
architectural con-
trol

Makers, DIY,
education

Table 3.2: Summary of key differences between LED control protocols.

Due to its simplicity and accessibility, SPI is frequently used in maker projects, education,
experimental media art and prototyping, where control and flexibility are prioritised over
scale or standardisation.

Comparing DMX512, Art-net, sACN and SPI protocols

To better understand the characteristics and practical implications of the protocols presen-
ted in the previous sections, table 3.2 provides a concise comparison of the four main com-
munication protocols used in programmable LED systems. It includes core aspects such as
transmission method, scalability, speed, and typical use cases.

3.1.3 Controllers and Hardware for LED Management
In programmable LED systems, controllers or drivers act as intermediaries between con-

trol software and the LEDs. They interpret digital signals from protocols like
DMX512 [EST24], Art-Net [Art24], sACN [Ent18] or SPI [SVea20], converting them into
electrical signals that activate each LED or group.

Depending on the installation’s complexity, controllers range from simple DMX decoders
to advanced multi-universe interfaces with real-time synchronisation capabilities. Choosing
the right hardware depends on the LED type, communication protocol, project scale, and
control precision required.

PIX CONTROL 16: operation, features and capabilities

The term PIX CONTROL 16 refers to multi-output controllers compatible with Art-Net,
capable of handling 16 DMX universes (8,192 channels). These devices are suitable for
medium to large-scale LED installations where efficient management of multiple universes
is required.

16

LED Lighting Control Technologies

In this project, the Deskontroller 16 was used as a representative model. It supports 16
Art-Net universes via 8 physical ports (2 universes per port) and outputs SPI (TTL) signals
directly to addressable LED strips, such as WS2812, SK6812 or APA102 [Des17]. It is not
suitable for conventional DMX512 fixtures.

More advanced variants, such as the Deskontroller LITE V35, manage up to 32 universes
(16384 channels) and offer for more precise control and enhanced mapping.

General Operation

These controllers:

• Receive Art-Net packets via Ethernet (UDP/IP) [Art24].

• Convert the data into SPI signals, emitted through physical outputs for direct connec-
tion to digital strips.

Configuration Interface

The Deskontroller 16 includes a web-based interface to configure:

• Universe assignment, channel count and LED layout.

• Colour order (RGB/RGBW), gamma correction and timing sync.

• Network settings (IP, subnet mask).

Performance and Applications

With refresh rates up to 50 fps, it supports smooth animations and synchronised lighting.
Typical use cases include:

• Interactive installations and digital art.

• LED façades and museum displays.

• Video-to-light synchronisation in multimedia events.

In summary, the Deskontroller 16 is a robust and efficient option for pixel-based LED
control in Art-Net environments, particularly when traditional DMX512 fixtures are not in-
volved.

Alternatives to Deskontroller 16

There are multiple alternatives to the Deskontroller 16, adapted to different budgets, pro-
ject scales, and user profiles. These solutions can be broadly categorised into two groups:
professional-grade controllers and DIY-oriented or educational devices.

5https://www.deskontrol.net/es/controlador-led-art-net/384-deskontroller-lite-v
3-32-universos-artnet.html

17

https://www.deskontrol.net/es/controlador-led-art-net/384-deskontroller-lite-v3-32-universos-artnet.html
https://www.deskontrol.net/es/controlador-led-art-net/384-deskontroller-lite-v3-32-universos-artnet.html

3. State of art

1. Professional Controllers

Enttec DMX USB Pro: A compact USB-to-DMX interface widely used in theatrical
and educational settings. Although it only handles one DMX universe, it is valued for its
reliability, compatibility with software like QLC+, LightKey or Resolume, and ease of setup.
It requires a computer to remain connected during operation. 6

Advatek PixLite Mk3: A high-end Art-Net/sACN controller with direct SPI output, de-
signed for medium and large-scale installations. It offers advanced features such as pixel
mapping, integrated effects and redundancy, as well as a comprehensive web interface. 7

Philips Colour Kinetics Data Enabler Pro: An all-in-one solution for architectural
lighting that combines data and power delivery over a single line. Typically used in per-
manent, large-scale installations, it integrates smoothly with lighting design platforms and
high-durability fixtures. 8

2. DIY (Do It Yourself), educational or low-cost solutions

Arduino + TLC5940: Combining Arduino with the TLC5940 driver from Texas Instru-
ments enables control of up to 16 high-resolution PWM channels. 9 Although it is ideal
for educational or small-scale projects, it lacks native support for DMX or Art-Net unless
additional modules or custom code are used. 10

Raspberry Pi + SPI / Art-Net (with libraries such as rpi_ws281x or OLA): Raspberry
Pi can control addressable strips via SPI or function as an Art-Net node using libraries like
OLA.11 It is a flexible platform for experimental setups or as an intermediate bridge between
software and hardware.12

ESP32 with WLED or FastLED: This WiFi-enabled microcontroller supports real-time
LED control via apps or remote servers. Firmware like WLED 13 allows Art-Net and E1.31
reception, making it suitable for mobile or temporary installations.14

T-1000S / K-1000C / K-8000C: Low-cost offline controllers that play preloaded anim-
ations from SD cards. Commonly used in façades or storefronts, they support chips like
WS2812 but lack real-time responsiveness [88L17, LED23].

6https://www.enttec.com/es/product/dmx-usb-interfaces/dmx-usb-pro-professional-1
u-usb-to-dmx512-converter/

7https://www.advateklighting.com/products/collections/professional-pixel-control
8https://www.colorkinetics.com/global/products/pds/dataenablerpro
9https://www.ti.com/product/TLC5940

10https://www.arduino.cc
11https://www.openlighting.org/ola
12https://www.raspberrypi.com
13https://kno.wled.ge
14https://www.espressif.com/en/products/socs/esp32

18

https://www.enttec.com/es/product/dmx-usb-interfaces/dmx-usb-pro-professional-1u-usb-to-dmx512-converter/
https://www.enttec.com/es/product/dmx-usb-interfaces/dmx-usb-pro-professional-1u-usb-to-dmx512-converter/
https://www.advateklighting.com/products/collections/professional-pixel-control
https://www.colorkinetics.com/global/products/pds/dataenablerpro
https://www.ti.com/product/TLC5940
https://www.arduino.cc
https://www.openlighting.org/ola
https://www.raspberrypi.com
https://kno.wled.ge
https://www.espressif.com/en/products/socs/esp32

Video Processing for LED Animations

Practical Considerations in Large LED Installations

When it comes to large-scale addressable LED systems, selecting a suitable controller re-
quires an evaluation of the installation’s physical, electrical and logical characteristics. Most
controllers operate with addressable chips that embed control logic in each pixel, enabling
individual data processing. The most widely used controllers are:

WS2812 – Popular RGB chip using a single PWM data line without a clock [Wor13]. 15

APA102 – Also known as DotStar, uses SPI (data + clock), enabling higher refresh
rates [AEC16]. 16

SK6812 – Variant compatible with WS2812, but offering improved colour consistency
and RGBW versions [DOOC15].

These LEDs are wired in a daisy-chain: data is passed from one LED to the next. While
this simplifies cabling, it introduces two key limitations:

• Signal degradation with long strips or high pixel counts, causing artefacts or loss of
synchronisation [iSk24].

• Chain interruption if one LED fails.

Electrically, each RGB pixel can draw up to 60mA. In long strips, this may cause voltage
drop, leading to dimmer LEDs at the far end. To mitigate this, power injection points are
distributed along the strip, ensuring uniform brightness and avoiding system instability.17

3.2 Video Processing for LED Animations
3.2.1 Video Analysis Techniques for Lighting

LED lighting systems can respond to video content using computer vision techniques
to extract relevant visual features in real time. The most common techniques are motion
detection, colour analysis and image segmentation.

Motion detection identifies dynamic regions within a scene and is useful for triggering
reactive lighting or highlighting movement. Techniques include background subtraction,
optical flow, and interframe difference analysis [GW20, Cap. 10].

Colour analysis determines the chromatic composition of a frame, enabling synchron-
isation between screen content and ambient lighting. Systems that map dominant colours to
RGB LEDs help create immersive environments. The use of colour sensors in cyber-physical
systems has been studied in the context of real-time image segmentation based on colour sim-
ilarity in RGB space, which is applicable in interactive environments with dynamic lighting
[XSea18].

15https://learn.adafruit.com/adafruit-neopixel-uberguide
16https://learn.adafruit.com/adafruit-dotstar-leds
17https://learn.adafruit.com/rgb-led-strips/current-draw, https://www.ledyilightin

g.com/the-ultimate-guide-to-addressable-led-strip/#elementor-toc__heading-anchor-12

19

https://learn.adafruit.com/adafruit-neopixel-uberguide
https://learn.adafruit.com/adafruit-dotstar-leds
https://learn.adafruit.com/rgb-led-strips/current-draw
https://www.ledyilighting.com/the-ultimate-guide-to-addressable-led-strip/##elementor-toc__heading-anchor-12
https://www.ledyilighting.com/the-ultimate-guide-to-addressable-led-strip/##elementor-toc__heading-anchor-12

3. State of art

Image segmentation divides a frame into meaningful regions using methods such as
thresholding, k-means clustering or deep learning [PP93]. This facilitates the assignment
of different LED groups to specific areas. Recent approaches also decompose lighting into
direct and indirect components to improve spatial accuracy [MSea19].

These techniques form the basis of intelligent lighting systems that adapt to visual stimuli
and constitute the foundation for the pixel mapping methods discussed in the next section.

3.2.2 Video-to-LED Mapping: Approaches and Algorithms
Once the relevant visual information has been extracted from the video analysis, it needs

to be transformed into useful commands for LED systems. This process is divided into three
levels: the conceptual mapping model, the pixel mapping logic and the algorithm used to
execute this mapping.

Conceptual models of LED mapping–video

Mapping models define how video pixels are associated with physical LEDs, depending
on the installation topology and intended effects (see Figure 3.5):

Figure 3.5: Conceptual LED mapping models: direct 1:1 (left), warped for irregular surfaces
(centre), and zonal mapping by image regions (right).

• Direct Mapping (1:1): Each LED represents exactly one pixel of the video. It is
useful when the video resolution and the arrangement of the LEDs match.

LED(i, j) = Pixel(i, j)

20

Video Processing for LED Animations

• Calibrated or Warped Mapping: It is applied when LEDs are placed on non-planar
or irregular surfaces. A geometric transformation (e.g., homography) adapts the con-
tent to physical coordinates [BEea07, Maj04].

• Zonal Mapping (by Regions): The image is divided into regions (LED groups). Com-
mon in adaptive systems like segmented automotive headlights [WMea21].

Pixel mapping logics

Mapping logic defines how video pixels are associated with physical LEDs, depending on
the spatial layout of the installation. The main approaches are:

• Linear Mapping: Frequently used in LED strip installations arranged as one-
dimensional matrices. Each LED corresponds to a fixed horizontal or vertical strip of
the video, and receives the average colour or a representative pixel from that region.18

• Snake (Zigzag) Scan: Common in matrix-like LED panels where strips are wired
in alternating directions, allowing efficient allocation without rewiring. This pattern
requires handling row direction inversions and is analogous to scanning strategies used
in 2D imaging systems [VNea20].

• Coordinate-Indexed Access: The LED layout is stored as a two-dimensional matrix
where each (x, y) coordinate maps to a video pixel or region. This approach is espe-
cially effective when the LED arrangement matches or is proportional to the resolution
of the source content.19

• Spatial Proximity Mapping: In non-uniform or three-dimensional LED layouts (e.g.,
light sculptures, curved surfaces, façades), spatial structures like Voronoi diagrams or
k-d trees assign each LED to its closest pixel in the projection space. This ensures
that each emitter reflects the dominant colour of its surrounding visual region [LG07,
CXea21].

Algorithms for efficient video processing

Transforming video into LED control signals efficiently requires mapping colour data and
optimising visual quality, speed, and system responsiveness. Several strategies are employed
in real-time lighting systems:

• Bilinear and bicubic interpolation: Applied when adapting video to lower-resolution
LED matrices (e.g., projecting HD onto a 16×16 grid). Bilinear interpolation com-
putes the average of four neighbouring pixels [PM17], while bicubic uses sixteen for
smoother transitions and greater detail retention [AFea18]. The latter improves edge
definition and spatial accuracy at the cost of higher processing load.

18https://learn.sparkfun.com/tutorials/addressable-led-strip-hookup-guide/all
19https://www.hackster.io/news/displaying-patterns-on-an-irregular-led-matrix-cb0

cb4e8bfc6

21

https://learn.sparkfun.com/tutorials/addressable-led-strip-hookup-guide/all
https://www.hackster.io/news/displaying-patterns-on-an-irregular-led-matrix-cb0cb4e8bfc6
https://www.hackster.io/news/displaying-patterns-on-an-irregular-led-matrix-cb0cb4e8bfc6

3. State of art

• Spatial Clustering (K-means, DBSCAN): These unsupervised methods group pixels
by visual similarity (e.g., colour or intensity) to reduce content complexity while pre-
serving coherence. K-means is suited to regular regions [JMea99], while DBSCAN
excels in irregular or noisy scenes [EKea].

• Active Region Mapping (ROI): The concept of regions of interest (ROI) enables the
selective processing of visual content by focusing on particularly noticeable areas,
such as faces or moving objects, which are detected via background subtraction or
saliency models [PHMea22]. By ignoring peripheral areas, it reduces computational
load and enhances the expressiveness of the LED output in perceptually meaningful
regions.

Real-time performance in large installations requires low-latency algorithms and optimised
implementations, which often use parallel computation to maintain fluidity.

Time synchronisation between video and LEDs

Accurate synchronisation between video frames and the LED output is crucial in order to
avoid visual artefacts, such as flickering, latency and desynchronisation. Several strategies
are commonly employed for this purpose:

• Timestamps (Presentation Timestamps – PTS): Timed video streams contain
timestamps that indicate when each frame should be displayed. These markers ensure
that the LED output remains in sync with the temporal flow of the video [Tek14].

• External events: Sensors (e.g., depth cameras, accelerometers) can trigger lighting
changes in response to gestures or movement, turning the LED system into a reactive
interface [Zou20].

• Network protocols such as Art-Net and sACN: To synchronise multiple universes or
distributed devices, Art-Net uses the ArtSync packet, which coordinates simultaneous
playback across nodes [Art24]. sACN includes built-in priority and timing mechan-
isms [Ent18].

• Frame buffers: Intermediate buffers store RGB data before emission, regulating out-
put rate and preventing inconsistencies or overlaps between frames [GW20, Sec. 1.5].

To ensure smooth and coherent playback, the chosen strategy must be adapted to the system’s
hardware capabilities and the real-time constraints of the content.

3.2.3 Software Tools for Video-to-LED Mapping
LED video mapping software tools enable visual content to be transformed into control

signals compatible with protocols such as DMX512, Art-Net, SPI and sACN. Typically,
these applications allow users to import video files, define output regions, map LEDs spa-
tially, and configure synchronisation parameters. While some tools prioritise ease of use

22

Video Processing for LED Animations

through graphical interfaces, others offer advanced features oriented towards professional
workflows.

MadMapper: Professional tool for LED mapping

MadMapper is a widely used tool for creating interactive audiovisual installations in-
volving LED mapping. It enables users to import visual content and assign regions of videos
or images to physical LED fixtures via an intuitive graphical interface, as shown in Fig-
ure 3.6 [Gar24a].

Figure 3.6: MadMapper interface for mapping visual content onto LED surfaces [Gar24a].

It supports the DMX512, Art-Net and sACN protocols and allows multiple LED uni-
verses [Gar24a] to be controlled with real-time synchronisation via MIDI, OSC and external
sensors [Gar24b, Gar24d]. Real-time effects can be created using OpenGL shaders written
in GLSL, leveraging GPU acceleration [Gar24c]. This makes it suitable for dynamic and
low-latency environments.

While MadMapper excels in visual flexibility and user interface design, it is not intended
for complex logic or conditional processing. Such tasks are better addressed by node-based
systems like TouchDesigner. Nevertheless, MadMapper has become a standard in concerts,
exhibitions and interactive scenography where coordinated control of lighting and media is
essential.

Its project gallery documents professional works in over 40 countries, showcasing its
widespread adoption in the creative industry20. Moreover, its Instagram account offers a
wide selection of recent installations with visual examples and real setups 21.

20https://madmapper.com/gallery/
21https://www.instagram.com/mad_mapper

23

https://madmapper.com/gallery/
https://www.instagram.com/mad_mapper

3. State of art

Resolume Arena

Resolume Arena is a real-time video mixing platform widely used by VJs and audiovisual
performers. Though not designed specifically for LED mapping, it supports Art-Net output,
enabling the assignment of visual “slices” to LED universes or physical outputs 22.

Its layered architecture makes it easy to combine video clips, effects, and generative con-
tent. Integrated audio analysis tools allow you to synchronise visuals with rhythm and fre-
quency. Resolume supports MIDI, OSC, FFGL and GLSL, as well as real-time texture shar-
ing via Syphon on macOS and Spout on Windows.

While it is powerful for screen-based manipulation, its LED mapping capabilities are more
limited than those of dedicated tools such as MadMapper. An overview of its interface is
shown in Figure 3.7.

Figure 3.7: Resolume Arena interface showing layered clips, effects, and the output monitor.
Source: https://resolume.com/software

TouchDesigner

TouchDesigner is a node-based visual programming environment designed for use in inter-
active installations, real-time performances and advanced multimedia systems. Unlike tools
that focus solely on video output, TouchDesigner allows the integration of sensor data, audio
inputs and conditional logic, and can be controlled via Art-Net, DMX512, sACN, MIDI,
OSC or NDI 23.

Thanks to its modular architecture, dynamic data flows can be constructed using nodes
(operators) that perform specific tasks, such as transformation, filtering or rendering. This
flexibility supports the creation of generative content and real-time interaction. Figure 3.8
shows an example of the interface.

22https://resolume.com
23https://docs.derivative.ca/Main_Page

24

https://resolume.com/software
https://resolume.com
https://docs.derivative.ca/Main_Page

Video Processing for LED Animations

Figure 3.8: TouchDesigner interface showing its node-based programming environment and
modular structure.
Source: https://interactiveimmersive.io/touchdesigner-user-interface/

TouchDesigner is especially suitable for complex, responsive environments and data-
driven visual systems [Li24]. It supports Python scripting, GLSL shaders, and protocols
such as Spout, Syphon, OSC and MIDI. Although it is powerful, its complex nature makes
it more suitable for those with technical experience in multimedia engineering or creative
coding.

QLC+

Q Light Controller Plus (QLC+) is a free, open-source lighting control application com-
patible with DMX512 and Art-Net [oL23]. It is structured around functional views such as
Functions, Devices, Inputs/Outputs and the Virtual Console, supporting scene programming,
live execution and real-time control.24

Although it was not designed for video mapping, QLC+ can control addressable LED
strips, moving heads and RGB fixtures with high temporal precision. It supports MIDI, OSC,
USB-DMX and audio-based triggers and enables users to create custom control widgets on
the Virtual Console.

Thanks to its open-source nature, QLC+ is particularly useful for educational purposes,
low-budget projects and permanent installations, where the primary goal is not audiovisual
integration. An example of its interface is shown in Figure 3.9.

24https://www.qlcplus.org

25

https://interactiveimmersive.io/touchdesigner-user-interface/
https://www.qlcplus.org

3. State of art

Figure 3.9: QLC+ Virtual Console with user-defined widgets for live DMX lighting control.
Source: https://www.qlcplus.org

Other Open-source Solutions

Several open-source tools offer flexible LED control to users with programming know-
ledge. This makes them ideal for educational purposes, generative art, prototyping and
small-scale installations:

• FastLED: C++ library for microcontrollers like Arduino or ESP32, supporting ad-
dressable strips (WS2812, APA102, SK6812) with animation and brightness control.25

• rpi_ws281x: C library for Raspberry Pi, enabling LED control via PWM or SPI.
Compatible with Python/C++ for high-volume LED arrays.26

• WLED: Firmware for ESP8266/ESP32, offering wireless LED control via web inter-
face, app, Art-Net, E1.31, MQTT, or Alexa.27

While lacking graphical interfaces, these tools stand out for their low cost, adaptability
and integration with custom-coded systems.

Table 3.3 compares the tools and libraries discussed above in terms of usability, protocol
compatibility, extensibility, and typical application context.

25https://fastled.io/
26https://github.com/jgarff/rpi_ws281x
27https://kno.wled.ge

26

https://www.qlcplus.org
https://fastled.io/
https://github.com/jgarff/rpi_ws281x
https://kno.wled.ge

Software Engineering Applied to Lighting Control Systems

Software /
Library

Ease of use Protocol support Extensibility Typical use

MadMapper High (graph-

ical interface)

Art-Net, DMX,

sACN, OSC,

MIDI

Moderate

(OSC, modules,

shaders)

Professional LED

installations, map-

ping

Resolume

Arena

High (VJ-

oriented)

Art-Net, OSC,

MIDI, Sy-

phon/Spout

Limited (effects

and clips)

VJ performances,

audio-visual effects

TouchDesigner Medium-Low

(node-based

environment)

Art-Net, DMX,

OSC, MIDI, NDI

High (Python,

shaders, custom

nodes)

Complex interactive

systems

QLC+ Medium (tech-

nical lighting

interface)

DMX, Art-Net,

OSC, MIDI

Limited (open-

source)

Theatrical and archi-

tectural lighting

FastLED Low (code-

based)

N/A (direct con-

trol)

High (fully pro-

grammable)

Educational and

generative art

rpi_ws281x Low (code-

based)

N/A (PWM/SPI) High (script in-

tegration)

Data visualisation,

custom Pi setups

WLED High (web/app

interface)

Art-Net, E1.31,

MQTT, Alexa

Medium (API

and presets)

WiFi installations,

creative lighting

Table 3.3: Comparison between software tools and libraries for addressable LED control.

As summarised in Table 3.3, tool selection depends on project scale, user expertise and
functional requirements. MadMapper and Resolume both offer intuitive interfaces for live
performance contexts. TouchDesigner, on the other hand, enables modular, logic-based con-
trol for complex setups. QLC+ is ideal for stage lighting, while FastLED, rpi_ws281x and
WLED are versatile, low-cost solutions for custom-coded or embedded systems.

3.3 Software Engineering Applied to Lighting Control Systems
3.3.1 Software Architectures in Real-Time Control Systems

Real-time systems are essential when the correctness of a system depends on both the
output and the timing. They are generally classified as hard or soft real-time, depending on
how critical it is to meet deadlines [LO11].

LED lighting control is usually soft real-time, meaning that small delays will not cause
failures, but may reduce visual quality. In live or interactive contexts, however, maintaining
low latency is crucial to avoid desynchronisation. Therefore, architectural decisions must
consider not only functionality, but also concurrent execution, device synchronisation and
responsiveness to time-sensitive events [Bab12].

27

3. State of art

Characteristics of Real-Time Systems Applied to Light Control

Designing an LED-based lighting system requires adopting core characteristics of real-
time systems (RTS). This is particularly important for the ability to respond to events with
low latency [LO11]. The most relevant functional and non-functional requirements are out-
lined below:

Temporal determinism

Temporal determinism is particularly important in stage and architectural lighting. A de-
terministic system ensures that each operation is completed within a known maximum time,
even under heavy load. In this context, scenes, effects or colour transitions must occur
precisely at the scheduled time. Flickering, delays or desynchronisation between DMX uni-
verses must be avoided [LO11].

Multi-source integration and real-time response

Modern lighting systems operate as cyber-physical environments, integrating multiple data
streams (video, sensors, audio and manual inputs) in parallel. In order to maintain perceptual
synchronisation and visual coherence, these heterogeneous signals must be processed with
low latency. Common input sources include:

• Real-time video: Visual content (e.g., RGB pixels) is mapped to lighting commands
via temporary buffers and refresh-rate synchronisation [GW20].

• Sensors (light, motion, sound): In interactive contexts, lighting responses are adap-
ted based on sensor inputs. Technologies such as I2C, SPI and MQTT facilitate the
acquisition of real-time data that triggers scene changes [KDB16].

• User Interfaces: From consoles to web applications. The user has direct control of
the system, especially in live contexts.

• Audio or music: FFT-based analysis and peak detection align light effects with mu-
sical rhythm and dynamics [LO11].

To ensure parallel, real-time processing, several architectural mechanisms are typically
employed:

• Concurrent buffers: Temporary storage that supports simultaneous read/write opera-
tions, preventing data loss [LO11] [GW20, Sec. 1.5].

• Device synchronisation: Mechanisms such as synchronised clocks or event triggers
coordinate multiple inputs [LO11].

• Priority Planning: Priority queues ensure time-critical events are processed preferen-
tially [LO11].

• Parallel execution threads: Handling external events in separate threads prevents
blocking the main loop and reduces scheduling overhead [LO11].

28

Software Engineering Applied to Lighting Control Systems

• Event buses: Intermediate distribution layers decouple producers (e.g., sensors) from
consumers (e.g., output modules), improving scalability and modularity.

It is this capacity for coordinated multi-source integration that enables the creation of im-
mersive and adaptive lighting for both live performances and interactive installations [Bab12,
LO11].

Architectural models used in real-time lighting control

Modern lighting control systems, particularly those intended for interactive or high-resolution
environments, are increasingly adopting distributed architectures. These systems achieve
greater scalability, fault tolerance and proximity to actuators by delegating computation to
autonomous modules rather than relying on a central controller [TVS06]. Four architectural
styles are illustrated in Figure 3.10:

• Layered: Divide functionality into hierarchical levels (e.g., interface, logic, hardware
abstraction), enabling clear separation between user-facing elements (e.g., dashboards)
and low-level protocols (e.g., Art-Net, DMX) [TVS06].

• Object-based architectures: Components act as self-contained objects that interact
with each other via APIs or RPC mechanisms. This is ideal for modular lighting
systems, where controllers and visualisation modules can coordinate flexibly. Service-
Oriented Architectures (SOAs) are a common implementation that enables reuse and
interoperability in heterogeneous environments [TVS06].28

• Data-centred: It relies on a shared repository or publish-subscribe middleware. In
lighting, subsystems can access shared timelines, buffers or animation banks either
synchronously or asynchronously [TVS06].

• Event-based: Modules operate independently and communicate asynchronously, re-
acting to stimuli such as sensor inputs or video frames. Processing is only triggered
when needed, ensuring low latency, energy efficiency, and loose coupling [TVS06].

Due to the interactive and time-sensitive nature of LED animations, event-based archi-
tectures are a particularly good fit. These architectures provide immediate responsiveness
and integrate seamlessly with interrupt-driven or observer-based software patterns, which
are commonly used in sensor-enhanced lighting systems [LO11].

Processing Models: Pipelines and Parallel Processing

Interactive lighting systems greatly benefit from pipelines, where data flows through se-
quential stages (acquisition, analysis and rendering) allowing each stage to process differ-
ent data elements concurrently. This technique, known as pipeline parallelism, enables

28https://www.geeksforgeeks.org/architecture-styles-in-distributed-systems/

29

https://www.geeksforgeeks.org/architecture-styles-in-distributed-systems/

3. State of art

(a) Layered architecture (b) Data-centered architecture

(c) Object-based architecture (represented via
SOA)

(d) Event-based architecture

Figure 3.10: Architectural models in distributed lighting control systems.
Images from GeeksforGeeks: Architecture Styles in Distributed Systems
https://www.geeksforgeeks.org/architecture-styles-in-distributed-syste
ms/.

continuous throughput with minimal latency and is widely used in high-rate vision sys-
tems. [CJ09].

For instance, Sabater et al. [SBea17] implemented a multi-stage pipeline for light-field
video processing, including geometric calibration, colour homogenisation, depth estimation,
and rendering. As illustrated in Figure 3.11, pipeline and data parallelism can be combined
to process high-throughput pixel data efficiently.

Figure 3.11: Combined pipeline and data-parallel processing for pixel-wise operations. Each
pixel progresses through a multistage pipeline, allowing concurrent processing at different
pipeline stages. Image from A Parallel Reconfigurable Architecture for Real-Time Stereo
Vision [CJ09].

30

https://www.geeksforgeeks.org/architecture-styles-in-distributed-systems/
https://www.geeksforgeeks.org/architecture-styles-in-distributed-systems/

Software Engineering Applied to Lighting Control Systems

For large-scale LED arrays, data parallelism becomes essential. Frames are divided into
smaller blocks processed in parallel across threads or cores, distributing computational load
and reducing latency.

This strategy is exemplified in Guthe et al.[GWea02], where volumetric datasets are split
into cubic blocks that are compressed, decompressed, and rendered concurrently using GPU-
based texture mapping:

"We divide the data sets into cubic blocks... we apply the wavelet filters to each

block... This results in a lowpass filtered block and wavelet coefficients... We

render these blocks using hardware texture mapping..." [GWea02].

These models significantly enhance the performance and responsiveness of real-time light-
ing, enabling continuous video or sensor input to be transformed into precise control sig-
nals [SBea17].

Handling large volumes of data in real time

In reactive lighting systems with hundreds or thousands of output channels, it is essen-
tial to manage high-throughput data streams with minimal latency. In addition to the ar-
chitectural model, specific optimisation techniques are required to ensure stable and timely
performance [LO11]. Common strategies include:

• Downsampling: This reduces computational load by adapting the resolution of the
source content (e.g., a 20×16 video) to match the LED array, preserving spatial cor-
respondence. Some learning-based algorithms retain essential spatial and temporal
patterns, enhancing visual coherence [XTea22].

• Ring buffers: Fixed-size circular buffers allow concurrent reads and writes, avoid-
ing blocking and ensuring consistent data flow in animations or audio-reactive light-
ing [Tan09].

• Task parallelisation: Reading, processing and transmission are carried out in separ-
ate threads. Synchronised queues or semaphores prevent race conditions and ensure
deterministic execution [SBea17, GWea02].

• Compact data structures: Using binary arrays, vectorised buffers (e.g. NumPy) or
memory-aligned blocks in C/C++ minimises memory usage and accelerates computa-
tion, which is key for high-frame-rate scenarios [The25].

These techniques minimise the delay between input and output, ensuring smooth and syn-
chronised performance even under high load, and avoiding visual artefacts such as flickering
or glitches [LO11].

31

3. State of art

3.3.2 Development of User Interfaces for LED Animation Configuration
User interfaces (UIs) in programmable lighting systems combine technical capabilities

with creative intent. They enable users to configure animations, colour schemes, timing
and spatial mappings, thereby simplifying the design and deployment of lighting effects.
Well-designed UIs enhance workflows and facilitate the creation of precise visual composi-
tions.

Tools and languages for interface development

Interfaces for programmable lighting systems are usually created using cross-platform
tools that convert user input into control commands such as DMX scenes or RGB values,
while also providing clear feedback on the system’s status.

The choice of development environment depends on the application type (local or dis-
tributed), hardware constraints, and user profile (technician, artist, or operator). The most
widely used tools are outlined below:

Qt (C++): A high-performance framework widely used for professional UI development.
Its signal-slot architecture simplifies event handling and synchronisation, which is ideal for
managing DMX universes and animation control panels. 29

Qt offers a rich set of components (e.g., RGB sliders, timelines, layout managers) suitable
for complex lighting interfaces 30. Several specialised modules support real-time, multi-
sensory installations:

• Media and Sensor Integration: Modules such as Qt Multimedia and Qt Sensors
support video, audio and environmental input 31.

• Hardware Communication: Qt Serial Port and Serial Bus provide communic-
ation with hardware through serial ports or industrial buses. They enable integration
with DMX512 and Art-Net controllers 32.

• Data Visualisation: Qt Charts and Qt Data Visualization offer real-time plots
of intensity levels and sensor inputs 33.

• Animation and Remote Control: Qt Quick Timeline, Lottie Animation, and
Remote Objects allow the generation of keyframe-based animations and distributed
control 34.

29https://doc.qt.io/
30https://doc.qt.io/qt-6/index.html
31https://doc.qt.io/qt-6/qtmultimedia-index.html; https://doc.qt.io/qt-6/qtsensors

-index.html
32https://doc.qt.io/qt-6/qtserialport-index.html; https://doc.qt.io/qt-6/qtserialb

us-index.html
33https://doc.qt.io/qt-6/qtcharts-index.html; https://doc.qt.io/qt-6/qtdatavisuali

zation-index.html
34https://doc.qt.io/qt-6/qtquicktimeline-index.html; https://doc.qt.io/qt-6/qtlotti

eanimation-index.html; https://doc.qt.io/qt-6/qtremoteobjects-index.html

32

https://doc.qt.io/
https://doc.qt.io/qt-6/index.html
https://doc.qt.io/qt-6/qtmultimedia-index.html
https://doc.qt.io/qt-6/qtsensors-index.html
https://doc.qt.io/qt-6/qtsensors-index.html
https://doc.qt.io/qt-6/qtserialport-index.html
https://doc.qt.io/qt-6/qtserialbus-index.html
https://doc.qt.io/qt-6/qtserialbus-index.html
https://doc.qt.io/qt-6/qtcharts-index.html
https://doc.qt.io/qt-6/qtdatavisualization-index.html
https://doc.qt.io/qt-6/qtdatavisualization-index.html
https://doc.qt.io/qt-6/qtquicktimeline-index.html
https://doc.qt.io/qt-6/qtlottieanimation-index.html
https://doc.qt.io/qt-6/qtlottieanimation-index.html
https://doc.qt.io/qt-6/qtremoteobjects-index.html

Software Engineering Applied to Lighting Control Systems

• Web and Audio Extensions: Qt WebSockets, WebChannel, TextToSpeech and
Spatial Audio support remote control via browser and immersive audio design 35.

Thanks to its modular design and extensive ecosystem of libraries, Qt remains a versatile
platform for developing responsive, real-time lighting interfaces.

JavaFX: This is a Java-based framework for building modern user interfaces. It features
a hierarchical scene graph, declarative animations and integration with sensors or external
devices via third-party libraries. 36

Thanks to its cross-platform architecture, it can be deployed on desktops, embedded sys-
tems and touch-enabled devices. This makes it suitable for educational tools, custom LED
configurators and visually interactive environments. 37

Tkinter and PyQt: Both are popular for prototyping in Python. Tkinter, included in the
standard library, offers limited graphical capabilities but allows quick development of simple
tools with minimal code 38.

By contrast, PyQt 39 offers full access to the Qt ecosystem from Python, enabling the
development of sophisticated UIs without leaving the interpreted environment. Its compat-
ibility with libraries like pyartnet and OLA makes it particularly effective for LED and
DMX control 40.

Figure 3.12 shows a PyQt interface for controlling LEDs and a servo via Arduino. It shows
real-time interaction without requiring Qt Designer.

PyQt interfaces can incorporate background processing using QThread 41, enabling re-
sponsive UIs even with ongoing Art-Net communication. Its modular structure supports
scalable and reusable component design.

Web frameworks (React, Electron): These are well-suited for distributed or multi-device
interfaces. Combining a Python backend (e.g., Flask or FastAPI) with a React or Vue
frontend enables interactive dashboards for real-time control via browsers, which is ideal for
multi-user environments or LAN/WiFi access without installation 42.

With Electron, these interfaces can be packaged as cross-platform desktop apps for
Windows, macOS, and Linux, maintaining a single codebase while avoiding browser de-

35https://doc.qt.io/qt-6/qtwebsockets-index.html; https://doc.qt.io/qt-6/qtwebchan
nel-index.html;https://doc.qt.io/qt-6/qttexttospeech-index.html; https://doc.qt.io/qt
-6/qtspatialaudio-index.html

36https://docs.oracle.com/javase/8/javase-clienttechnologies.htm
37https://openjfx.io/
38https://docs.python.org/3/library/tkinter.html
39https://www.riverbankcomputing.com/software/pyqt/intro
40https://pyartnet.readthedocs.io/en/latest/pyartnet.html; https://www.openlighting

.org/ola
41https://doc.qt.io/qt-6/qthread.html
42https://react.dev/

33

https://doc.qt.io/qt-6/qtwebsockets-index.html
https://doc.qt.io/qt-6/qtwebchannel-index.html
https://doc.qt.io/qt-6/qtwebchannel-index.html
https://doc.qt.io/qt-6/qttexttospeech-index.html
https://doc.qt.io/qt-6/qtspatialaudio-index.html
https://doc.qt.io/qt-6/qtspatialaudio-index.html
https://docs.oracle.com/javase/8/javase-clienttechnologies.htm
https://openjfx.io/
https://docs.python.org/3/library/tkinter.html
https://www.riverbankcomputing.com/software/pyqt/intro
https://pyartnet.readthedocs.io/en/latest/pyartnet.html
https://www.openlighting.org/ola
https://www.openlighting.org/ola
https://doc.qt.io/qt-6/qthread.html
https://react.dev/

3. State of art

Figure 3.12: GUI built with PyQt for LED and servo control via Arduino.
Screenshot from: DonskyTech, YouTube https://www.youtube.com/watch?v=5uqwzu8w
T3A.

pendency 43. This simplifies distribution, updates, and compatibility across heterogeneous
systems 44.

When choosing between web-based and native frameworks, it is important to consider
factors such as latency tolerance, the target environment, graphical complexity and long-
term maintainability.

Usability Principles in Lighting Control Interfaces

Jakob Nielsen’s usability heuristics [Nie94] offer a solid foundation for designing lighting
control interfaces, particularly in real-time contexts. These principles are particularly im-
portant for ensuring precision, low latency and adaptability in LED installations of different
sizes. The most pertinent principles are:

• System Status Visibility: Real-time feedback on animations, colour values, and active
channels enhances control and situational awareness.

• Match Between System and the Real World: Interfaces should use familiar visual
metaphors (e.g., sliders, timelines) and terminology (e.g., scene, fade) for intuitive
interaction.

• User Control and Freedom: Users should be able to edit, pause, or undo actions
safely, with options to save and restore presets during live use.

• Error Prevention: Validation mechanisms should avoid misconfigurations, such as
channel overlaps or out-of-range values.

• Recognition Rather Than Recall: Visible, labelled options should be favoured over
memorised commands, with tooltips or tags used when helpful.

43https://www.electronjs.org/docs
44https://rocketbuild.com/native-app-vs-web-app/

34

https://www.youtube.com/watch?v=5uqwzu8wT3A
https://www.youtube.com/watch?v=5uqwzu8wT3A
https://www.electronjs.org/docs
https://rocketbuild.com/native-app-vs-web-app/

Software Engineering Applied to Lighting Control Systems

• Flexibility and Efficiency of use: Both novice and expert users should be able to
customise layouts and shortcuts.

• Help and Documentation: Integrated help buttons, hover guides, and visual aids im-
prove user autonomy.

• Low latency and immediate response: Immediate visual feedback ensures smooth
interaction, requiring efficient backend and frontend coordination.

• Visual scalability: Interfaces should scale to different LED setups, supporting zoom-
ing, grouping, and layered views.

• Dark mode and high contrast: High legibility is essential in dark technical environ-
ments to reduce visual fatigue.

Examples of Effective Interfaces in Specialised Software

Various software tools apply usability principles to support intuitive control of LED anim-
ations. While prominent solutions like MadMapper and QLC+ have already been discussed
(see Sections 3.2.3 and 3.2.3), the following examples illustrate additional specialised inter-
faces designed for efficient lighting configuration and deployment:

• xLights: A free, open-source tool for designing music-synchronised light shows, espe-
cially in festive contexts. Its timeline-based interface supports animation sequencing,
audio integration, and network configuration via protocols like Art-Net and sACN 45.
A built-in simulator allows previewing installations before deployment.Figure 3.13
illustrates the interface, showing the animation editor, audio waveform, and layout
preview.

Figure 3.13: The xLights interface, with timeline editor and audio waveform.
Source: DrZzs & GrZzs, YouTube https://www.youtube.com/watch?v=p7wV6A26Gak.

• LED Matrix Studio: This is a minimalist but effective editor for designing static or
animated LED patterns. Users can draw pixel by pixel and export data in formats com-

45https://xlights.org

35

https://www.youtube.com/watch?v=p7wV6A26Gak
https://xlights.org

3. State of art

patible with Arduino and similar platforms, making it ideal for educational purposes
and prototyping 46. Figure 3.14 shows the interface alongside the resulting output on
a physical LED matrix.

Figure 3.14: LED Matrix Studio interface and physical LED output.
Screenshot from: Boaztheostrich, YouTube https://www.youtube.com/watch?v=fHhK
f1lGWx0.

• Lightkey: A macOS application for scenic and architectural lighting, supporting DMX,
Art-Net, and MIDI 47. It offers a visual, user-friendly interface for managing devices
and effects, as shown in Figure 3.15.

Figure 3.15: Lightkey interface in a worship environment.
Screenshot from: Felty Studios, YouTube https://www.youtube.com/watch?v=y_ZebL
1PAeU.

Low-level tools such as FastLED or rpi_ws281x (see Section 3.2.3) are suited to firmware-
level control, while graphical platforms like xLights or Lightkey (see
Section 3.3.2) offer intuitive interfaces for live use. Both types play complementary roles
and are often integrated in hybrid lighting setups.

46https://sourceforge.net/projects/led-matrix-studio/
47https://lightkeyapp.com/en/specs

36

https://www.youtube.com/watch?v=fHhKf1lGWx0
https://www.youtube.com/watch?v=fHhKf1lGWx0
https://www.youtube.com/watch?v=y_ZebL1PAeU
https://www.youtube.com/watch?v=y_ZebL1PAeU
https://sourceforge.net/projects/led-matrix-studio/
https://lightkeyapp.com/en/specs

Chapter 4

Methodology

IN this chapter, it is explained how and why this project has followed an agile methodo-
logy [Som16]. Furthermore, the final section of the chapter defines the specifications of

the used hardware and software resources.

4.1 Development methodology
Software engineering offers various methodological approaches for managing and imple-

menting projects [Som16]. Among these, agile methodologies have emerged as a flexible al-
ternative to traditional models, such as the Waterfall model, which require predefined phases
and the full specification of requirements from the outset.

Given the exploratory nature of this project and the use of unfamiliar technologies (Art-
Net, Flask, pyartnet library), an agile approach was considered more appropriate than a
traditional one. The project requires a high degree of flexibility as well as the ability to adapt
the implementation strategy in response to new technical constraints or design opportunit-
ies. Throughout the development, a number of architectural decisions might be re-evaluated
in order to enhance performance and ensure system responsiveness. Such decisions may
include coordination between LED playback and video frames, as well as the internal data
handling mechanisms. These adjustments will be guided by continuous testing and feedback
during weekly review sessions. Agile methodologies promote incremental development,
continuous feedback, and iterative decision making, which makes them particularly well
suited for solo development in dynamic and partially defined environments.

The final product is intended to be part of a larger system, and its design will be shaped
by trial, feedback, and technical discoveries. That is why the project will be developed
following an agile mindset, with a Scrum-inspired structure tailored to the specific needs of
an internship.

4.1.1 Project management: Scrum framework
Scrum is an agile project management framework that involves working in short cycles,

known as Sprints, which last between one and four weeks [SS20]. Although it was originally
designed for teams, its principles have been adapted for individual developers.In this case,

37

4. Methodology

weekly iterations were chosen to align with the rhythm of academic meetings. This approach
maximises learning opportunities while also limiting the cost of change. Shorter sprints
provide quicker feedback loops and reduce the risks associated with long-term planning in
uncertain environments [SS20].

To initiate the workflow, the internship is scheduled to begin with two initial meetings: the
first to clarify the project’s objectives and the second to introduce the technical infrastructure,
including the LED lecterns and the current setup. From that point onwards, development
is organised around short-term goals reviewed weekly, enabling continuous adaptation of
priorities as new challenges arise.

In this structure, the tutor, David Vallejo, takes on a role similar to that of the Scrum
Master, providing guidance and helping to define strategies. Meanwhile, Francisco Manuel
García, a colleague with in-depth knowledge of the company’s systems, acts as the Product
Owner, providing technical insight and functional validation. Although formal Scrum events
like daily stand-ups, planning poker or retrospectives are not done, the pillars of transparency,
inspection, and adaptation are still respected. Occasional feedback from Carlos González,
a co-founder of Furious Koalas S.L., who acts as the client throughout the project, will
reinforce the collaborative nature of the process.

4.1.2 Software development: agile practices
The development approach followed in this project is aligned with the four core values of

the Agile Manifesto 1:

• Individuals and interactions over processes and tools: As a solo developer, my
workflow will involve continuous interaction with a tutor and a technical colleague
from Furious Koalas S.L. Rather than relying on rigid procedures, decisions will be
taken and adapted to emerging challenges.

• Working software over comprehensive documentation: Throughout the develop-
ment, the primary focus will be building a functioning system capable of rendering
video content on addressable LEDs rather than producing extensive documentation at
an early stage. Technical reports and design descriptions will be prepared once the
prototype is stable.

• Customer collaboration over contract negotiation: The direction of the work will
not dictate by contractual specifications, but rather by ongoing collaboration with the
client. Together with the project tutor, they are expected to provide continuous feed-
back that helps validate technical decisions and ensures that the system evolves ac-
cording to the actual needs of the quiz platform.

1https://agilemanifesto.org/

38

https://agilemanifesto.org/

Development methodology

• Responding to change over following a plan: Several design changes might be in-
troduced during the project as technical constraints became clearer. The process must
remain flexible enough to accommodate these decisions without compromising the
project’s overall coherence.

4.1.3 Work planning
Although there is no fixed initial planning, the project is structured into a set of work

packages that guide its development. These packages are progressively defined based on
feedback, technical exploration, and implementation needs. Each unit of work corresponds
to a functional milestone that contributes to the gradual construction of the system.

1. System exploration and tool research. The initial phase involves a thorough analysis
of the architecture of the existing quiz platform, as well as an examination of the
relevant protocols and technologies. These include Art-Net, the PIX CONTROL 16
controller, and Python-based web development tools such as Flask.

2. LED control logic and content mapping. Once the system is understood, the next
step focusses on implementing the logic for controlling the LED lecterns and develop-
ing mapping algorithms to project static and dynamic content onto the physical LED
layout.

3. Back-end development and API design. A web server is developed using Flask to
expose endpoints for video playback and LED control. The API is designed to support
different playback modes and facilitate communication with external components.

4. User interface and video preview. A front-end interface is implemented so that users
can preview and select videos for projection.

5. System integration and coordination. The LED control system is integrated with the
quiz main system by adapting request formats and containerising the solution.

6. Refinement, optimisation and validation. The final phase involves performance
tuning, synchronisation adjustments, and system validation under realistic conditions.
Continuous testing ensures that the solution behaves reliably and meets its functional
goals.

These stages are also represented graphically on the Gantt chart in Figure 4.1, which provides
an overview of the expected duration and sequencing of each work package throughout the
16-week development period.

39

4. Methodology

Project Timeline (in weeks)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

System exploration and tool research

LED control logic and content mapping

Back-end development and API design

User interface and video preview

System integration and coordination

Refinement, optimisation and validation

Figure 4.1: Estimated work plan for the project

4.2 Development workflow
Throughout the project, the version control system used will be Git 2, with the remote

repository hosted on Bitbucket 3. The branching model to be adopted will be inspired by the
Git Flow methodology but simplified for the needs of a single developer. The main structure
includes a "main" branch containing the first stable release of the system. In parallel, the
’develop’ branch can be used to integrate ongoing work. Several feature branches will be
created from the ’develop’ branch, each dedicated to a specific functionality or module (e.g.
video processing, video previewing, user interface). Once completed, these feature branches
will be merged back into the ’develop’ branch as required.

Although no strict commit message convention will be enforced, the use of feature branches
will help maintain clarity and modularity in the development process. This workflow provides
enough flexibility and organisation for individual projects, ensuring the clean integration of
new functionalities while keeping the production branch stable.

4.3 Hardware and software resources
This section describes the hardware components, operating systems, programming lan-

guages, tools, and libraries that have been used throughout the development of the pro-
ject.

4.3.1 Hardware resources
• My Personal Computer: The project will be fully developed on my laptop, which

is powerful enough to run several threads simultaneously. It has an Intel Core i7-
14650HX processor and 32 GB of RAM.

2https://git-scm.com
3https://bitbucket.org

40

https://git-scm.com
https://bitbucket.org

Hardware and software resources

• ITSI computer: This computer will be used to understand the entire system I am
given, including how to start up the hardware and software components, control the
LEDs with Madmapper and analysing the universe mapping of the LED strips. The
desktop computer belongs to Furious Koalas S.L., whose offices are located in the
Instituto de Tecnologías y Sistemas de la Información (ITSI) building.

• Deskontroller 16: This controller supports up to 16 universes and a maximum of 8,192
Art-Net channels. The device receives lighting instructions via the Art-Net protocol
over a network and converts them into SPI (TTL) signals suitable for addressable LED
strips.

• Addressable RGB LED Strips (LED RGB DIG 30PIX, 12V): The lighting elements
the system is currently using are addressable LED strips based on the WS2811 chip,
which operate at 12V and are designed to control groups of RGB LEDs through an
external driver. The WS2811 chip controls three LEDs per pixel, but the strips are
commercially referred to as having 30 addressable "pixels" per metre. They are com-
patible with controllers that use digital signalling protocols, such as SPI or Art-Net, via
the appropriate interface. In total, there are 1,170 LEDs, distributed equally between
three lecterns.

4.3.2 Operating systems
• Windows 11: Both the development and testing environments will be based on Win-

dows 11. As there is no specific requirement for an alternative operating system, I
opted for Windows 11 because I am more familiar with it. All hardware components,
drivers, and software tools will be throughout the project were fully compatible with
Windows 11, ensuring a stable and efficient workflow.

4.3.3 Software resources
Programming languages

• Python: This is the language I will use to develop the system’s back-end. I chose
Python for several reasons: its simplicity and readability facilitate rapid development;
the Flask framework is based on Python; and there are specific libraries available for
Art-Net communication, such as OLA (Open Lighting Architecture) 4 and pyartnet.

• TypeScript: This language will be used to develop the logic of the user interface.
This is due to recent experience with TypeScript in previous projects, as well as the
need to organise the system with a clear distinction between front-end and back-end
code. Although both parts are going to be located in the same repository, they will
be organised into separate folders within the project. Flask will manage the back-end
and provide the API, while the front-end will be built using Node.js and TypeScript
for better modularity and development efficiency.

4https://www.openlighting.org/ola/

41

https://www.openlighting.org/ola/

4. Methodology

• HTML: HyperText Markup Language will be used to structure the content of the
front-end web pages. It will determine the layout and elements displayed to users in
the graphical interface of the LED animation management.

• CSS: Cascading Style Sheets will be used to define the visual appearance of the front-
end interface, including colour schemes, spacing, fonts, and responsive design. This
ensures a consistent and user-friendly visual experience.

Development tools

• Visual Studio Code: It is a cross-platform source code editor developed by Microsoft.
Its key features include a lightweight design, extensibility through plugins, and support
for multiple programming languages. In this project, it will be used as the primary
editor for both the back-end (Python) and the front-end (TypeScript, HTML, and CSS).

• Git: It is a free, open source version control system that allows you to save and track
changes to source code. It also enables you to access the entire history of those changes
and create branches to isolate feature development. Git will be used throughout this
project to maintain a consistent development workflow.

• Bitbucket: Bitbucket is a Git-based repository hosting service. It offers additional
features, such as issue tracking and access control. For this project, Bitbucket is going
to be the only repository for managing the source code, providing version control and
backups throughout the development process.

• Docker 5: Docker is a containerisation platform which uses Linux kernel features,
such as namespaces and cgroups, to create containers, that are lightweight, isolated
environments. In this project, Docker will be used to encapsulate the LED control
system in its own container, enabling it to connect to the internal network of the main
contest server, which also runs in a separate container.

• Node.js: Node.js is a JavaScript runtime environment built on the V8 engine. In this
project, it will be used to manage and compile the front-end code written in TypeScript.
It also provides access to a wide range of packages via its default package manager,
npm, which is crucial for installing and configuring the front-end toolchain.

Project planning and design tools

• Microsoft Planner: This is a web-based task management application that is integ-
rated into Microsoft 365. It will be used to track project progress, define tasks, and
maintain visibility of the overall development timeline. It facilitates personal organ-
isation and task prioritisation throughout the different stages of the project.

• Visual Paradigm: This software design and modelling tool supports the creation of
UML diagrams, flowcharts, and system architecture models. In this project, it will be

5https://www.docker.com

42

https://www.docker.com

Hardware and software resources

used to design system diagrams and illustrate architecture, data flow, and component
interactions.

• Figma: It is a collaborative design platform primarily used for prototyping user inter-
faces. In this project, it will be used to design and preview the layout and behaviour
of the web interface prior to implementation. Using Figma helps validate the user
experience (UX) and refine the visual structure of the front-end.

Software libraries and frameworks

• Flask (v3.1.0): This is a lightweight Python web framework that will be used to im-
plement the back-end server. Provides a REST API that enables external clients or
user interfaces to activate LED animations and interact with the system.

• pyartnet (v1.0.1): This is a Python library that facilitates the transmission of lighting
control data via the Art-Net protocol. It will be used to communicate with the PIX
CONTROL 16 controller, enabling LED strips to be controlled in real time.

• numpy (v2.2.3): It is a library for numerical computation and array manipulation.
It will be to handle RGB data arrays extracted from video frames and to perform
operations on them efficiently.

• opencv-python (v4.11.0.86): This is a widely used computer vision library. In this
project, it will be used to load videos and extract individual frames for LED colour
mapping.

• pillow (v11.1.0): This is a Python imaging library used for handling and manipulating
static images. In this project, it will be to extract a single frame from a video and
convert it into a static image.

• pytest (v8.3.5): It is a testing framework used to implement unit and integration tests.
It will allow for automated verification of the system’s internal components and API
routes.

• pytest-asyncio (v0.26.0): This is a plugin for pytest that supports the testing of
asynchronous code. It is essential for testing coroutines and async def functions that
will be used in the system.

• pytest-flask (v1.3.0): This is an extension of pytest made for Flask applications.
It will be used to test the behaviour and accuracy of the web routes defined in the
back-end.

• pytest-cov (v6.1.1): This is a plugin for measuring code coverage during testing. It
will be used to determine which parts of the application are covered by the test suite
and to identify any untested code paths.

43

4. Methodology

Documentation tools

• Overleaf: It is a widely used collaborative online LaTeX editor for writing technical
and scientific documents. In this project, Overleaf will be used to write the entire final
thesis, ensuring correct referencing, a consistent document structure, and high-quality
typography.

44

Chapter 5

Architecture

IN this chapter, a technical discussion of the system’s internal structure is provided. It
details its main components and explains how they interact to ensure synchronised play-

back of audiovisual content on LEDs. First, a general overview of the system is given, and
then the most important subsystems are described more in depth. These descriptions high-
light the most relevant design decisions and their impact on the efficiency, robustness, and
scalability of the system.

5.1 General overview
This system addressed in this project is a functional subsystem within a larger question-

based quiz control system, the Quiz Main System. Although this project focuses exclus-
ively on the design and development of the LED Management Subsystem, it is important to
highlight that its functionalities are used in a larger framework, developed by the company
Furious Koalas S.L., where it operates in coordination with other subsystems.

The interaction and integration between this subsystem and the rest that compose the Quiz

System are described more deeply in the deployment and communication sections (see Sec-
tion 5.7).

Figure 5.1 provides a high-level view of the overall architecture of the Quiz Main System.
It shows the different subsystems involved in quiz coordination and visual presentation, and
highlights the position of the LED Management Subsystem within the entire infrastructure.
This architecture is composed of specialised modules that coordinate to provide real-time
interaction and visual feedback during quiz sessions.

The LED Management System, developed in this project, is responsible for video play-
back, LED control, and media preview functionalities projected onto the lecterns. It op-
erates in synchrony with other components such as the Moving Heads Control System,
which manages scenic lighting animations via DMX, and the Question Viewer, which dis-
plays questions and auxiliary content on screen. The Quiz Maker and Simple-Quiz Server
handle question management and execution logic. The last one allows the audience to parti-
cipate by voting from their mobile devices: when a question is launched, it opens a survey,
collects answers in real time, and generates a public ranking based on their responses. The

45

5. Architecture

Figure 5.1: High-level component diagram of the Quiz Main System. The LED Management
System is one of the coordinated subsystems alongside question display, score management
(Simple-Quiz Server), and moving-head lighting control.

Quiz Converter acts as an intermediary layer to unify question formats. All of them are
coordinated by the central Main Quiz Server, which governs the quiz state, scoring, view
synchronisation, and external interactions.

In this subsection, the focus will be on the internal architecture of the LED management
system and its division into two core components: front-end and back-end.

Front-End. The front-end enables users to manage available videos and its associated
actions. It is possible to create a preview that is proportional to the actual dimensions of the
LED lecterns, making it easy to check the result before running the projection. Addition-
ally, the provided interface enables users to send playback commands directly to the system
without requiring the main quiz server to be active, thereby providing the lighting system
with functional autonomy.

Back-End. The back-end provides the logical core of the lighting system. Its main func-
tionality is to process the video content, map the resulting RGB values to the correct LED
layout, and dispatch synchronised DMX signals to the hardware controller. It is responsible
for receiving commands from the user interface or from the main quiz server and executing
them by orchestrating all the internal components.

The system has three logical subsystems to clarify its internal structure. All functionalities
are part of a unified back-end service. This logical separation makes it easy to understand
responsibilities and design decisions related to video processing, buffer management and
communication with the controller. These subsystems are explained below.

46

Order coordination and business logic (back-end)

Figure 5.2: Layered architecture of the LED Management System. The components are
grouped into presentation, domain, and persistence layers according to their functional re-
sponsibilities.

• Video processing and actions: This subsystem is responsible for the extraction, re-
arrangement, and storage of the RGB frames required for each lectern. Moreover, it
establishes the link between each video and its associated action, so that the user can
have predefined behaviours.

• Buffer loading and synchronisation: This subsystem handles the orderly transfer
of RGB data to the corresponding buffer. Asynchronous techniques are employed to
maintain temporal synchronisation between the video frames and the visual output
displayed on the LEDs.

• Communication with the Art-Net controller: This subsystem is in charge of ensur-
ing a stable and responsive lighting output. It must respect the strict timing constraints
imposed by the controller and minimise packet loss. It uses the pyartnet library to
transmit Art-Net packets to the controller.

An overview of the layered structure of the LED management system is shown in Fig-
ure 5.2.

5.2 Order coordination and business logic (back-end)
The back-end is the logical core of the system. Its main function is to orchestrate the

flow of information between the user interface and the subsystems responsible for video pro-
cessing and hardware control. It has been developed using the Flask framework in Python.
Since the main quiz server is also developed in Python, using Flask ensured consistency

47

5. Architecture

and compatibility between the two systems. Furthermore, Flask provides a lightweight and
flexible framework for developing web applications.

Internal structure and architectural approach
The back-end has been designed using a layered architecture inspired by Clean Archi-

tecture principles [Mar17]. This promotes the separation of responsibilities and decoupling
between components. This structure improves maintainability and facilitates unit testing, as
well as allowing the system to be scaled progressively [Pil17]. The code is organised into
four distinct conceptual layers:

• Interface Adapters Layer: It includes the HTTP endpoints handlers that receive in-
coming requests from the front-end. These modules perform initial validation and con-
vert data into formats suitable for the application layer. All HTTP routes are defined
using Blueprints.

• Application Layer: It contains the coordination logic through VideoController and
DMXController. These classes act as intermediaries between the API endpoints and
the core services of the domain layer. They are responsible for directing the execu-
tion flow by invoking the relevant methods according to the type of request received,
without carrying out any validation or processing logic themselves. This design main-
tains a clear separation of concerns, ensuring that orchestration tasks are decoupled
from domain models and business logic, both of which are handled by lower layers.

• Domain Layer: It defines the fundamental system entities (Video, Frame, Wide-
Frame and FrameBuffer) and the associated business logic services, such as video
processing, buffer synchronisation and sending data to hardware. These functionalit-
ies are accessed through structured service classes (VideoService and DMXService)
that follow the principles of the facade pattern [Mar17], offering a simplified interface
to higher layers while encapsulating complex internal operations.

• Persistence Layer1: It manages access to external resources, such as the file system,
videos, cover images and the actions_list.json configuration file, using compon-
ents like VideoRepository and VideoFileLoader.

Figure 5.9 shows a simplified class diagram of the back-end.

This final structure was not present from the beginning. Initially, the development focused
on experimental validation: turning on a single LED, displaying an image, and later pro-
jecting a video on the LED lecterns. All of these tests were implemented within a single
module, as the priority was to verify basic functionality rather than applying architectural
principles. As development progressed, the system underwent several iterations, driven by

1Also referred to as the Infrastructure layer in Clean Architecture. In this system, it includes access to the
file system rather than a database.

48

Order coordination and business logic (back-end)

Figure 5.3: Logical structure of the back-end organised in four conceptual layers: present-
ation, application, domain, and persistence. Each class is grouped according to its role and
dependency level within the system.

the progressive refinement of requirements and the emergence of unexpected constraints.
These changes required a gradual restructuring of the back-end. This ultimately led to a
modular and maintainable design.

In the initial design, all responsibilities (video processing, data buffering and DMX trans-
mission) were concentrated in a single module. At that stage, it was essential to carry out
preliminary tests and resolve any uncertainties regarding the control of the underlying hard-
ware. While this enabled a quick functional prototype to be created, the structure exhibited
high coupling, low maintainability and poor code clarity. These limits became clear as the
system grew more complex.

The first reorganisation introduced a basic modular structure by splitting the functionality
into two classes: The VideoService processes and prepares video data for transmission, and
the LEDService sends the data to the hardware. While this change achieved an initial level
of functional decoupling, it also revealed a performance bottleneck. Each video frame was
processed and transmitted sequentially, which introduced latency and degraded the system’s
responsiveness under load.

49

5. Architecture

The current architecture addresses these limitations through a clear division of respons-
ibilities into three logical stages: (1) video processing, which is performed once at server
startup; (2) intermediate memory buffering using a double-buffering mechanism, and (3)
continuous transmission of RGB data to the Art-Net controller. A dedicated set of classes
is responsible for implementing each stage, following the principle of single responsibil-
ity [Mar17]. This approach improves modularity, enhances maintainability, and facilitates
testing and future extensions of the system.

Receipt and Management of Orders
In the initial version of the system, separate routes were defined for each order type,

e.g./OneOn, /Wide, /Different resulting in a rigid and unscalable structure. In a later
stage, these routes were unified. They were put under a single URL: /api/play. This accepts
POST requests that have a flexible structure. This allows you to specify which videos and
on which lectern should be played.

To enable integration with the main quiz server, an alternative route was enabled via POST:
/playJSON, which accepts orders in the standard format (action, device). The system
uses the action identifier to access the action_list.json configuration file to determine
which video should be played and how. This same path is also used with the GET method to
enable communication between the system and the OBS software, which is responsible for
event relay.

5.3 Communication with hardware subsystem (Art-Net)
The main objective of this subsystem is to establish and maintain communication between

the lighting control system and the hardware that activates the physical LEDs. The trans-
mission of DMX data over an IP network is made possible by the Art-Net protocol, which
is the basis of this communication. The conversion of Art-network packets into real SPI
signals distributed by universes is carried out by the physical controller Deskontroller
16 [Des17].

The module must ensure reliable, lossless data transmission at a constant refresh rate and
correct alignment of the DMX channels with the physical arrangement of the LEDs on each
lectern.

Implementation details
The communication process with the Art-Net driver is given by the pyartnet library, a

lightweight API written in Python. This library enables interaction with Art-Net nodes and
the transmission of DMX data to designated universes and channels. 2 Upon initiation of the
system, a connection is established with the node corresponding to the IP of the controller,

2https://pyartnet.readthedocs.io/en/latest/index.html

50

https://pyartnet.readthedocs.io/en/latest/index.html

Communication with hardware subsystem (Art-Net)

designated as Deskontroller 16. The required universes are then defined in accordance
with the physical distribution of the LEDs across the three lecterns.

Each universe is represented by a single object, which contains a set of DMX channels.
The maximum number of channels that can be accommodated is 512, with each channel ar-
ranged in a block of three channels per RGB pixel. The data of the read buffer is continuously
read by this subsystem and sent sequentially to the configured channels.

In the system’s preliminary design, OLA (Open Lighting Architecture) was considered a
solution with wide application in professional lighting control environments. 3 The selection
of pyartnet was ultimately determined by the following factors: its superior simplicity
of use, its native integration within Python, and its utilisation in the remaining back-end
components. While OLA offers greater flexibility and support for multiple protocols and
simultaneous nodes, pyartnet was more suitable for a closed and controlled system such
as the one proposed in this project, where scalability requirements are limited and reliability
can be ensured by direct control of the data flow.

Refresh rate and stability
In order to maintain visual stability and avoid both flickering and latency, it is vital that

data transmission to the DMX universes is carried out continuously, even when no video is
being displayed. This strategy enables the LEDs to be maintained in a constant state, thus
preventing intermittent power outages that could potentially lead to the generation of visual
artefacts during the playback process.

The transmission of data occurs in regular cycles, using a dedicated asynchronous loop
that iterates over the reading buffer of each lectern and transmits the RGB values to the
corresponding channels. Initially, the configuration of the system was set to deliver 50 frames

per second (FPS), representing the maximum capability of the Deskontroller 16 driver.
However, this frequency was later reduced to 30 FPS as an efficiency measure. Since the
videos played rarely exceed 24 FPS, maintaining a rate lower than maximum allows reducing
the system load without compromising visual fluidity.

During the preliminary testing phase, it was observed that the LEDs exhibited erratic be-
haviour, characterised by intermittent flickering 4, even when the data submitted were tech-
nically correct. Using analytical tools, including Wireshark 5, allowed the validation of the
hypothesis that the controller would discard DMX packets if multiple consecutive transmis-
sions had identical content. This behaviour was especially evident in videos featuring slow
transitions or static scenes, where the RGB values remained constant over several frames.

3https://www.openlighting.org/ola/
4This phenomenon manifested as intermittent illumination with sporadic colour variations, partial deactiv-

ation, and unexpected activation of the LEDs. It is evident that these effects did not correspond to the content
of the video, and were produced in a non-deterministic way.

5https://www.wireshark.org/

51

https://www.openlighting.org/ola/
https://www.wireshark.org/

5. Architecture

Figure 5.4: The allocation of LEDs by DMX universes and their physical distribution

To mitigate this effect, a slight controlled variation was introduced in the sent data: at
each iteration, the value of the red channel of the first LED in the universe 0 is modified by
alternating between adding or subtracting one unit. This minimal variation does not affect
visual perception, but ensures that each package is interpreted as distinct, thus avoiding its
disposal by the controller. The implementation of this solution, based on a Boolean variable,
has proven to be effective and stable in all scenarios tested.

Channel and universe allocation
The allocation of DMX channels is dependent on the physical configuration of each lectern

and the distribution of its LED strips. Each area of the lectern (upper, left and middle)
corresponds to a specific sequence of channels within a designated universe.

This correspondence is established during the initialisation phase and remains unchanged
throughout the system execution. The logical mapping of pixels (internal memory order)
corresponds exactly to the physical mapping of LEDs (actual channels in the controller),
facilitating efficient transmission and accurate projection with no need of intermediate cal-
culations. Figure 5.4 shows how the universes and channels are distributed in each area of
the lectern.

Robustness and error tolerance
The communication system does not implement an active mechanism for verifying the

status of the network or the packets sent. Instead, it continues to send data periodically
across the defined universes, under the assumption that the receiving node will process them
if available. Despite the absence of specific retries in case of transmission error, the design
exhibits robust resilience against temporary disconnections. The absence of confirmations
does not result in system crashes if the controller is disconnected or not responding.

52

Buffer loading and synchronisation subsystem

Figure 5.5: Simplified class diagram of the hardware communication subsystem. It includes
the classes responsible for buffer loading (PlaybackService), double-buffer management
(DoubleFrameBufferService), and RGB data transmission (LEDService).

Furthermore, it is possible to manually force the complete shutdown of the LEDs by send-
ing a frame with all RGB values set to zero. This functionality is advantageous in critical
failure situations and enables the controlled termination of a projection session.

Internal structure
Figure 5.5 illustrates the interaction between the playback logic, the double-buffer mech-

anism, and the LED emission service involved in the communication with the Art-Net con-
troller.

5.4 Buffer loading and synchronisation subsystem

This subsystem coordinates the playback of pre-processed videos on physical displays and
ensures that colour data (RGB) is transmitted in the correct order and with accurate timing.
It functions as an intermediary between the storage of the pre-prepared Frame objects and
the module responsible for transmitting the data to the Art-Net controller, using dedicated
buffers. It serves two purposes: firstly, it maintains the temporal correspondence between the
video content and its display on the LEDs; secondly, it ensures that data loading and trans-
mission to the hardware are carried out efficiently and without interference from concurrent
tasks.

Buffer management per lectern
Each lectern has a pair of fixed buffers (read and write) that are managed by the Double-

FrameBufferService class. When a playback task loads a new frame, it does so in the
write buffer. Once this process is complete, the roles of the buffers are swapped, so that the
controller always accesses the read buffer without risk of collisions or inconsistencies.

Unlike the video processing phase, this subsystem does not use dynamic structures such as
deque (double-ended queue) at runtime. Instead, a fixed list of 390 RGB values is contained

53

5. Architecture

Stage Main Characteristics Drawbacks / Advantages
Initial
Design

Real-time processing and direct
sending from VideoService to
LEDService.

Drawbacks: High CPU usage,
latency, desynchronisation between
lecterns.

Intermediate
design with
JSON

Frames written to a shared JSON
file and read continuously by the
sending module.

Advantage: Functional decoupling.
Drawbacks: Race conditions, disk
overhead, and performance degrad-
ation due to the use of synchronisa-
tion mechanisms such as locks.

Preload in
memory

Videos fully processed and stored
in memory upon server boot.

Advantage: Improved stability and
speed.
Drawback: Still relies on file read-
ing to access RGB frames.

Double
Buffering

Concurrent access via active/pass-
ive buffers using DoubleFrame-
BufferService.

Advantage: High consistency, no
locks, optimal synchronisation,
real-time performance.

Table 5.1: Summary of the architectural evolution towards a buffer-based real-time playback
model.

in each FrameBuffer, corresponding to the total number of LEDs per lectern. This decision
allows direct access by index. It also provides greater temporal stability. This minimises the
computational overhead and possible errors for concurrent access.

This behaviour follows the classic double-buffering pattern [HAM02], in which two buf-
fers are used per lectern: one for writing and one for reading. Controlled exchanges occur
after each update. This technique ensures that the controller always accesses a fully consist-
ent data state, thus avoiding race conditions. A race condition arises when two concurrent
operations access a shared resource simultaneously and at least one of them performs a write
operation, leading to unpredictable results depending on the timing of execution [HLea15].
In concurrent systems, such issues can cause severe desynchronisation, data corruption, or
latency peaks. Although mechanisms such as locks or semaphores are often used to handle
race conditions, they introduce significant complexity in the management of concurrency,
including the risk of deadlocks or contention [Tan09]. In this system, the use of double
buffering removes the need for such synchronisation primitives, ensuring deterministic and
conflict-free access to the data.

To better understand the reasons behind the current design, Table 5.1 summarises the
different architectural strategies explored for transferring video data to the Art-Net controller,
from the initial design to the current implementation of the Double Buffer pattern.

Double Buffer pattern
The final version of the system implements the Double Buffer pattern, a widely adopted

technique in multimedia systems and real-time rendering [HAM02]. The pattern relies on

54

Buffer loading and synchronisation subsystem

maintaining two buffers: one dedicated to writing (active) and another to reading (passive).
Both operations never act on the same structure at once. Once the writing of a frame is
complete, a swap takes place, allowing the reading process to access a stable and updated
data set.

This approach has been shown to be effective in multimedia systems where synchronisa-
tion of data flows is critical. Studies have showed its effectiveness in preserving the quality
of service in continuous video transmissions on low-speed networks [OOea13].

In our system, each lectern is assigned two FrameBuffer objects, managed by the Double-
FrameBufferService class. The playback task loads frames into the write buffer, while the
emission task retrieves RGB data from the read buffer and sends it to the appropriate DMX
universes. This design guarantees consistency, determinism, and responsiveness even if there
are multiple lecterns receiving orders concurrently. A simplified diagram illustrating how the
pattern operates within the system is shown in Figure 5.6.

Figure 5.6: Diagram illustrating the double-buffering mechanism. The PlaybackService
writes frames to the active buffer, managed by DoubleFrameBufferService. Upon com-
pletion, a swap operation takes place, making the written buffer available for reading. The
LEDService continuously reads from the passive buffer to transmit RGB data to the Art-Net
controller.

Projection modes and playback logic
The system has four projection modes (see Figure 5.7), each of them with a different

running logic:

• Individual: One video is projected onto a single lectern. A single asynchronous task
associated with the corresponding buffer is launched.

• Different: Three different videos are played, one per lectern. The process is divided
into three independent asynchronous tasks, with each one managing its own Frame-
Buffer. They do not need to coordinate with each other.

55

5. Architecture

• AllLecterns: A single video is shown simultaneously on the three lecterns. An
asynchronous task iterates over the video frames and updates the three buffers with
the same content in each iteration. This approach ensures synchronisation without the
need for multiple cores.

• Wide: Each panoramic video is divided into three zones (left, middle and right) dur-
ing the pre-processing phase. The playback task’s function is simply to extract each
WideFrame and update the three buffers with their respective sections. Segmentation
at runtime is not performed as part of the task’s function.

Figure 5.7: Visual representation of the four playback modes supported by the system. From
top-left to bottom-right: Individual, Different, AllLecterns, and Wide. Each config-
uration determines how the video content is distributed and synchronised across the three
lecterns.

Timing and task control
In this system, visual synchronisation depends directly on accurate frame timing. Any

deviation in the playback rhythm can cause noticeable visual mismatches, especially when
projecting animations across multiple devices. To address this, the system must manage
frame delivery intervals with high precision.

In this implementation, playback speed is controlled using high-precision timers based on
time.perf_counter(), which offer greater resolution and stability than traditional meth-
ods such as time.time(). Each playback task operates its own timing loop to calculate
the exact moment when each frame should be delivered. If a frame is detected as delayed
beyond tolerance, it is skipped to maintain synchronisation and avoid the accumulation of
mismatches.

56

Buffer loading and synchronisation subsystem

Figure 5.8: The buffer loading and synchronisation subsystem simplified. It shows which
classes involved from the reception of an order (video or action) until the processed RGB
frame is written to the corresponding FrameBuffer.

Furthermore, when a new playback command is received, any previous active tasks on
the corresponding lectern are automatically cancelled. This ensures that each lectern only
reflects the most recent order, avoiding the accumulation of pending orders or overlay pro-
jections.

Asynchronous coroutines6 manage all this mechanism, allowing concurrency mainten-
ance without resorting to multiple threads. This approach eliminates the need for complex
synchronisation primitives, such as locks or semaphores.

Internal structure
The internal workflow of the buffer loading and synchronisation subsystem is illustrated in

Figure 5.8. This class diagram summarises the interaction between key components involved
in handling a playback or action request from its reception via the Art-Net controller to the
final delivery of RGB data into the appropriate FrameBuffer.

6Asynchronous coroutines are special functions in Python defined with async def, which allow non-
blocking execution by yielding control during long I/O operations or delays. They are executed within
an event loop and facilitate concurrency without the need for traditional multithreading. See: https:
//docs.python.org/3/library/asyncio-task.html

57

https://docs.python.org/3/library/asyncio-task.html
https://docs.python.org/3/library/asyncio-task.html

5. Architecture

5.5 Video processing and management subsystem
The video processing subsystem is designed to take the visual content of a video and

turn it into a structured RGB data stream. This is so that the information can be accurately
and reliably represented when it’s projected onto the LED strips. The transformation is
adapted to the physical layout of the lecterns and takes place before they are transmitted to
the hardware.

In addition to this pre-processing, the module manages the system’s audiovisual resources.
In particular, it is responsible for:

• Receiving, storing and organising videos uploaded from the web interface, as well as
their cover images (covers).

• Maintaining the system resource directory structure, specifically the folders resour
ces/videos and resources/covers, where the necessary files are located for later
access and use.

• Managing the action_list.json configuration file, which associates action identi-
fiers with specific videos and specifies whether they should be played in a loop and
in what mode in case they are sent to the three lecterns simultaneously (panoramic or
multiple).

• Providing mechanisms for adding, editing, and deleting videos and actions, ensuring
consistency between the stored data and visible elements in the interface.

This subsystem acts as both a conversion engine for visual content and a central point
for managing and storing the multimedia resources used by the system. The decoupling of
these tasks from the synchronisation, timing and sending logic, which are handled by other
independent subsystems, is made possible by its modular design.

Image extraction and resizing
The first step in processing a video file is to sequentially extract its frames. For this

purpose, the OpenCV (cv2) library has been used, as it is widely used in image and video
processing due to its efficiency and versatility. 7 Earlier versions of the system also evaluated
the use of Pillow, although it proved more suitable for processing static images (covers) than
video sequences.

Each extracted frame is automatically resized to a fixed resolution depending on the selec-
ted projection mode. For projection onto a single lectern, the target resolution is 15 pixels
wide by 26 pixels high, corresponding to the number of LEDs actually placed on each
lectern. For panoramic videos (Wide mode), the frame is adjusted to a resolution of 45
pixels wide by 26 pixels high, which is then divided into three vertical zones, with one zone
per lectern measuring 15 pixels in width.

7https://opencv.org/

58

Video processing and management subsystem

Reducing the resolution establishes a direct correspondence between video pixels and
physical LEDs, eliminating the need for interpolation or complex mapping. The system’s
computational load is also reduced by this, since the amount of information that must be
processed and rearranged in each frame is decreased. This is achieved without significantly
compromising the visual quality perceived in the LED matrix.

Pixel spatial rearrangement
Once the frames have been extracted and resized, the resulting data structure must be

transformed to reflect the physical arrangement of the LEDs on the lecterns. By default,
frames are stored as pixel arrays in a Cartesian format, from left to right and from top to
bottom. However, this arrangement does not coincide with the order of the physical LED
connections, so the data must be completely reorganised.

Figure 5.4 illustrates the physical arrangement of the LEDs on each lectern. It distin-
guishes between the horizontal (top) and vertical (bottom) areas and shows the connection
direction and the Art-Net universe assigned to each strip. This setting forms the basis of the
pixel reordering algorithm, which is described in the next section.

Pixel rearrange algorithm
The implemented algorithm rearranges the pixels in each frame according to the physical

layout of the LEDs on the lecterns. First, the frame is resized to an array of 15×26 pixels.
Three lists are then generated from this: one for the upper horizontal strip (upLEDs), and two
for the vertical strips (leftLEDs and middleLEDs).

The key steps are:

1. Extract the first two rows for the top area and apply alternating inversion (zigzag).

2. Rotate the image 90º to process the columns vertically.

3. Go through the columns by grouping pixels in serpentine mode (from bottom to top
and vice versa) to build lists corresponding to the sides.

The result is not a single structure, but three deque lists that reflect the actual order in
which the physical LEDs should be lit.

Below is a simplified version of the pseudocode algorithm:

1 function reorder_pixels (frame):

2 resized_frame = resize (frame , width= constants .WIDTH , height

= constants . HEIGHT)

4 // Top side of the lectern

5 top_leds = deque ()

6 top_leds . extend (pixels from first row)

59

5. Architecture

7 top_leds . extendleft (pixels from second row) // Inverse

order

9 // Rotation for working with vertical strips

10 rotated_frame = rotate_90_clockwise (resized_frame)

11 data = flatten (rotated_frame)

13 // Vertical zigzag process

14 left_leds = deque ()

15 middle_leds = deque ()

16 for strip in [left_leds , middle_leds]:

17 direction = up

18 while len(strip) < constants . LONG_STRIP_LENGTH :

19 if direction == up:

20 strip. extend (next_column_top_to_bottom (data))

21 else:

22 strip. extend (next_column_bottom_to_top (data))

23 data = remove_used_column (data)

24 direction = toggle (direction)

26 // Completion of the top if there are remaining LEDs

27 while len(top_leds) < constants . TOP_STRIP_LENGTH :

28 data = flip(data) // inverts the matrix on the x-axis

29 top_leds . extendleft (next_row (data))

30 data = remove_used_row (data)

32 return top_leds , left_leds , middle_leds

Code listing 5.1: Algorithm for Pixel Rearrangement

Once the algorithm has been applied to all the frames in a video, the deque of Frames is
added as an attribute to the Video object. In panoramic mode, this process is repeated three
times. The frame is divided into three vertical zones measuring 15×26, generating a total of
nine rearranged deques. This data is stored in a WideFrame object, which is then added to a
deque and stored in the same Video object. This avoids the need for additional segmentation
or transformation during execution.

Use of efficient structures

In the early versions of the system, rearranged data for each frame was stored in stand-
ard Python lists (list), due to their simplicity of use and intuitive representation of RGB
sequences. However, as the system evolved and more demanding timing mechanisms were

60

Video processing and management subsystem

Figure 5.9: Class diagram of the Video processing and management subsystem. It shows
which classes are used by this subsystem

integrated, the need to improve performance arose. To achieve this, I adopted the deque
data structure provided by the standard Python collections library. This structure allows
insertion and removal operations to be carried out at both the start and end of the sequence.
This is particularly useful in the context of LED projection, as the data for each frame is
consumed in order. No intermediate access is required.

This decision was in line with the principle of sequential access that had already been
adopted when pixels were rearranged into one-dimensional lists. Thus, each Frame object
contains three deques representing the RGB data to be sent to a specific lectern. This data
can be efficiently consumed by the synchronisation and sending system without the need for
additional transformations.

The use of deque, therefore, not only optimises system performance, but simplifies memory
management by avoiding costly operations associated with traditional lists, such as erasing
multiple items or internal reordering.

Internal structure
Figure 5.9 provides a structural overview of the classes involved in the video processing

and management subsystem. The diagram highlights how user requests are handled through
the VideoController, and how responsibilities such as video decoding, action association,
and storage are distributed across components.

61

5. Architecture

Figure 5.10: Early-stage prototype of the LED Manager interface, designed in Figma. It
shows the planned layout for video selection, projection mode configuration, and playback
control.

5.6 Web interface (Front-End)
The web interface is the main point of access for users to the system. It allows to man-

age the available videos, assign actions to each one, select the target lectern, preview the
animations, and run the projection on the LEDs. Several interface concepts were evaluated
using visual prototypes before implementing the final version. Figure 5.10 shows one of
the early design drafts developed in Figma, which helped to define the initial distribution of
components and the main interaction flows.

Split decision between Back-End and Front-End
In the early stages of development, server-side rendering using Jinja2 templates was

adopted as a practical choice. At that time, the system was quite simple, and adding HTML
rendering directly to the Flask back-end meant that it was possible to create a prototype
more quickly and test its functionality immediately. However, as the interface became more
complex, it became clear that this approach had important limitations. The close integration
of logic and presentation made it difficult to create a modular design and restricted the ability
to evolve the user interface independently.

Therefore, I chose to completely decouple the front-end, developing it with HTML, CSS
and TypeScript, which was later compiled into JavaScript. To manage this environment,

62

Web interface (Front-End)

Node.js was used, allowing the front-end to be compiled, served, and debugged autonom-
ously. The same root project is used for both environments, but they are organised in separate
folders. This makes for a more maintainable and scalable architecture.

This decision has made it possible to add new visual features, improve the design, and
develop the interface in modules without affecting the Flask server’s logic.

Main interface functionalities
The interface is divided into two main sections: one for video management and the other

for configuring actions. The aesthetic is coherent in both cases, and reusable elements such
as buttons and modes allow the user to interact intuitively with the system. The implemented
functionalities that stand out are:

• Upload new videos.

• Association of videos to custom actions.

• Edit and delete existing videos and actions.

• Preview animations with a size proportional to the actual dimensions of the lecterns.

• Select the projection mode: individual, simultaneous, or panoramic.

Each projection order can be sent directly from the interface. This means that the main
quiz server is not needed. This gives the system an autonomous operational capacity, which
is for independent tests or demonstrations.

Visual preview
A key feature of the front end is the preview viewer, which is designed to enable users to

check how an animation will be projected before sending it to the LEDs. At first, the idea
was to use an HTML <canvas> element, as this gives a lot more control over how frames
are rendered. This would have enabled direct manipulation of the video pixels, resizing, de-
formation, and simulation of the physical arrangement of the LEDs via graphical operations
programmed in JavaScript.

Nevertheless, this solution was more complex to implement. It would have been necessary
to capture each frame of the video, convert it into an image or a pixel buffer, and then draw
it manually on the canvas. All of this had to be done while maintaining a consistent refresh
rate. Given the functional purpose of the preview, which was simply to show the video at a
reduced scale, this computational and development load was considered unnecessary. There-
fore, a simpler solution was chosen that was equally valid for the purpose of the interface:
the HTML <video> element. This component makes integration easy, manages playback
automatically and offers acceptable performance to represent a preview of content. Playback
can be performed for either a single video or three simultaneously, one per lectern.

63

5. Architecture

Front-End structural evolution
During the early stages of development, all front-end logic was centralised in a single

TypeScript file, which was manageable for a small project. However, as new features like
action and video management were added, the code got bigger and more complicated, which
made it hard to maintain.

In view of this situation, it was decided to restructure the front-end by dividing it according
to functionality. Each system module is now encapsulated in an independent file, each of
which is responsible for a specific task (video handling, action management, interface control
and sending requests, among others). This organisation improves readability and enables
more ordered and modular work.

Furthermore, improvements were made with the user experience in mind. These included
the addition of visual feedback to highlight selected items, minimal validations to avoid
errors in usage (e.g. the mandatory selection of a video and a lectern before being sent), and
a clear and accessible distribution of buttons and information.

5.7 Deployment architecture and integration with the quiz server
This section focuses on the technical integration between the LED management system

and the main quiz server. It describes the deployment environment based on Docker con-
tainers and the validation mechanisms implemented to ensure correct behaviour during the
event.

Dockerisation and network compatibility
In the course of the integration process with the primary quiz system, the system was

containerised with a view to facilitating deployment in controlled and reproducible environ-
ments, as well as ensuring compatibility with existing network infrastructure.

At this stage, conflicts related to network ports occupied by other services hosted in dif-
ferent containers were detected. The solution to this issue was to modify the default port
of the back-end and connect its container to the internal network defined by Docker. This
modification allowed for the establishment of direct and stable communication between the
different components of the system.

Validation and control mechanisms
In order to ensure the maintenance of functional consistency during the event, validation

mechanisms were incorporated to ensure compliance with the rules of the competition sys-
tem. The following aspects stand out:

• Control of mode settings: The system uses the all_Lecterns attribute defined in
each action to determine how an action should be projected between the three lecterns.
Despite the absence of any logical restriction that would prevent the simultaneous

64

Deployment architecture and integration with the quiz server

reproduction of a single animation on multiple lecterns, this configuration functions as
a consistency mechanism. In essence, it ensures that the commands transmitted adhere
to the mode designed by the user.

• Structural order validation: The system avoids accumulation or delayed execution
of multiple actions through the use of a list indexed by lectern, where each position
maintains exclusively the active playback task at that instant. Upon receiving a new
order, the existing order is overwritten, thereby ensuring that the most recent action is
always projected, and unwanted execution queues are avoided.

These validations are based on a system of actions, the definition of which is provided in
a JSON configuration file (action_list.json). Each action determines the key attributes of the
expected behaviour in a declarative way. These include the video to be played, the looping of
the video, and the playback logic to be applied to all three lecterns (Wide, AllLecterns or
Different). This model achieves a flexible integration between the back-end and the main
server of the quiz by abstracting the presentation logic into a configurable and decoupled
layer from the control code.

65

Chapter 6

Results

IN this chapter, the LED control system developed from the architecture discussed is
presented. This system has been validated through three complementary approaches:

(i) iterative and incremental testing during development, (ii) systematic automated testing to
guarantee internal consistency, and (iii) deployment in a real-world contest scenario. These
validations confirm that the system meets the functional objectives initially proposed, and
that it behaves robustly under interactive and time-sensitive conditions. The source code is
available at the following URL:

https://github.com/carmencbog/leds-management-project

6.1 Development Context
The system aims to enable the synchronised control of LED lighting using video content

as the source of dynamic visual data. This section will briefly outline the functional scope
of the system from the user’s perspective, as illustrated in the use case diagram showed in
Figure 6.1.

Figure 6.1: Use case diagram of the LED Management System. It shows the interactions
between the System User and the Main Quiz Server with the LED module. Internal cases
such as Send Video to Lecterns are handled by the system at a lower level of abstraction.

67

https://github.com/carmencbog/leds-management-project

6. Results

A detailed description of the iterative progress can be found in Appendix B, where each
development week is documented in terms of activities, technical decisions, challenges en-
countered, and solutions adopted. This chronological overview helps trace the system’s
design evolution and reflects the practical decisions taken to ensure its stability, modular-
ity, and compatibility. Figure 6.2 provides a visual summary of the main activities carried
out in each iteration, grouped chronologically by week.

Project Iterations

1 2 3 4 5 6 7 8 9 10 11 12

Setup and environment validation

LED control and RGB data tests

Pixel mapping and first projections

FPS sync and panoramic mode

Web server and API integration

Frontend preview and interface logic

Data-processing split (JSON)

Double buffer implementation

Integration with main server

Docker deployment and testing

Physical setup and live event

Refinements and testing suite

Figure 6.2: Chronological overview of the development iterations and main milestones.

6.2 Incremental validation, systematic testing
Throughout development, the system’s functionalities were progressively tested in close

alignment with the evolving requirements. These empirical tests not only ensured the correct
execution of each feature, but also served as a foundation to verify the system’s respons-
iveness and robustness under diverse operational conditions. Special attention was given to
aspects such as synchronisation precision, performance stability, and correct task manage-
ment during concurrent execution.

Playback synchronisation and timing accuracy

One of the system’s most important features is the synchronised playback of videos on
LED lecterns, which maintains fluidity and visual correspondence with the original frames.
During the initial tests, significant misalignments were evident: discrepancies in the time

68

Incremental validation, systematic testing

taken to read the frames, process them and send them to the DMX channels resulted in
jumps, flickering and colour distortion in the lecterns.

The use of time.perf_counter() for high-precision timing loops significantly improved
playback smoothness. Moreover, the strategy of preloading video data at startup eliminated
runtime delays caused by pixel read and transformation operations.

Latency reduction by using the Double-Buffer pattern

The implementation of the Double-Buffer mechanism substantially improved visual fluid-
ity. Independent buffers at each lectern enabled frames to be delivered in parallel and without
interference.

Significant improvements in playback fluidity were observed after implementing this pat-
tern. Tests carried out with panoramic videos and in Different mode showed a drastic
reduction in perceived latency and a near-complete disappearance of visual errors. Even un-
der conditions where resources were limited, such as with laptops without direct power, the
system maintained virtually stable playback throughout the test sequence.

Additionally, random flickering caused by static frames was mitigated by introducing min-
imal controlled variation in the data sent, a fix verified through iterative testing.

Dynamic management of playback

The system was tested to ensure that it could interrupt an ongoing animation and start a
new one on demand. This behaviour is crucial in interactive environments. Initial designs
based on threads caused race conditions, later resolved through the adoption of asynchronous
coroutines using asyncio.

Tests confirmed that the system responded correctly to requests from both the main contest
system and the graphical interface. It executed new actions without any conflicts or the need
to restart components. This dynamic responsiveness improves the system’s reliability in
interactive and demonstration environments.

Systematic testing

Automated testing was gradually introduced as development progressed to ensure main-
tainability and prevent regressions. In order to do this, a suite of automated tests was imple-
mented covering both unit and integration levels:

• Unit tests: Focused on verifying the expected behaviour of the classes in isolation.

• Integration tests: Validated the coordination between endpoints, controllers and ser-
vices, ensuring that requests from the front-end or quiz server triggered the appropriate
internal workflows.

69

6. Results

6.3 Physical assembly of the LED lecterns
LED projection was integrated into custom-built lecterns designed to meet the event’s

needs. Each lectern contains internal wiring and LED strips with connectors distributed
across three illuminated surfaces. The following images show one of the lecterns, both inside
and out, and the overall external appearance of the lecterns used during the Olympiads. The
physical design and assembly of these lecterns was carried out by Furious Koalas S.L.

(a) Internal wiring of a lectern, showing
power supplies and signal routing.

(b) External panel of the same lectern,
with arranged LED strips.

(c) Front view of the three custom-built lecterns used during the
Olympiads.

Figure 6.3: Physical assembly of the LED lecterns: internal components, external LED
distribution, and overall visual design.

70

Web interface for testing and configuration

As shown in Figure 6.3a, the internal structure of each lectern consists of several key
components. The circular device located at the top centre corresponds to the internal wiring
for the buzzer button, which allows participants to signal when taking their turn. The red and
black wire emerging from the top right corner connects to the external contestant microphone
mounted on the lectern surface.

Multiple power supplies, adapters, and signal switchers are installed to ensure proper en-
ergy distribution and interface compatibility among components. In addition, a compact
monitor is mounted inside the lectern to display the contestant’s current score. It is connec-
ted via an HDMI cable and powered through the internal distribution system.

Finally, the LED wiring is routed through the bottom edge of the lectern. These con-
nections enable individual control of the LED strips visible on the external front panel (see
Figure 6.3b).

6.4 Web interface for testing and configuration

To support the development, debugging and validation of the LED control system outside
the constraints of the live contest environment, a dedicated web interface has been imple-
mented. This interface enables developers and testers to manage videos, configure playback
actions and send animation commands to specific lecterns independently of the main quiz
control infrastructure.

As illustrated in Figure 6.4, the interface supports a wide range of features that proved
essential during the iterative development phase. These include video management (up-
loading, previewing and deleting videos), configuring actions (defining playback logic per
lectern) and controlling animations in real time. Users can preview the outcome of any con-
figuration without triggering projection, identify synchronisation issues in advance, and test
animations individually or in coordinated patterns across lecterns.

The tool also supports looped playback and multi-mode actions, such as playing the same
video on all lecterns or different videos on each lectern. It also provides a complete set of
controls to interrupt or restart animations individually or globally. This flexibility enabled
the backend logic and video pipeline to be refined efficiently before deployment.

In the long term, it is expected that this interface will scale with the system. If the LED
infrastructure grows, for example by introducing new projection modes, the web interface
can serve as the operational centre for orchestration and testing. Its modular architecture
and decoupled design will facilitate integration with automated testing tools or higher-level
scheduling systems in the future.

Further details and user guidance are available in the user manual (see Annex C).

71

6. Results

Figure 6.4: Web interface for testing and configuring animation projections. It enables the
selection of target lecterns, definition of playback modes, and triggering of animations.

6.5 Production deployment: XVIII Castilla-La Mancha Informatics
Olympiads

The system was deployed and used during the closing act of the XVIII Castilla-La Man-
cha Informatics Olympiads 1, held on Friday, April 25, 2025, in the hall of the Superior
School of Informatics (ESI) of Ciudad Real. Organised by the University of Castilla-La Man-
cha, this event brought together teams of students from the ESO (secondary school), upper
secondary and Higher Level Education Cycle programmes from all the region’s provinces.
They competed in several phases involving programming challenges, databases and operat-
ing systems.

On the final day, the three teams with the highest scores in each category advanced to a live
stage competition inspired by televised quiz shows. The developed LED projection system
was fully integrated into this final event as a key visual element, accompanying each phase
with synchronised lighting and animations.

Unlike isolated demonstrations, this deployment required the LED system to operate in
coordination with several live elements. Some of which are audio from the presenter’s and
contestants’ microphones, background music, timed question displays, audience interaction
tools, and real-time updates to the scoreboard and mobile app rankings. The system was also
required to remain in sync with the use of jokers: The Wise One, Fifty-Fifty, and Audience

1Official article of the event available at: https://esi.uclm.es/index.php/2025/04/30/cierre-d
e-las-xviii-olimpiadas-en-informatica-de-clm/

72

https://esi.uclm.es/index.php/2025/04/30/cierre-de-las-xviii-olimpiadas-en-informatica-de-clm/
https://esi.uclm.es/index.php/2025/04/30/cierre-de-las-xviii-olimpiadas-en-informatica-de-clm/

Production deployment: XVIII Castilla-La Mancha Informatics Olympiads

Joker by the contestants. Their activation had to be tightly coordinated with visual feedback
on the main screen and the internal game logic (e.g. disabling two incorrect answers or
displaying public statistics).

The time constraints were also challenging. When a contestant pressed the buzzer, the
central server initiated a countdown that was visible to the audience and players. Meanwhile,
the LEDs responded immediately with contextual animations. This entire sequence had to
remain tightly synchronised in real time, with no margin for visual desynchronisation or
delay.

The LED control server received real-time commands from the main quiz server via HTTP
and responded with seamless playback across the three lecterns, either individually or in pan-
oramic mode. Furthermore, the system remained stable and performed consistently through-
out the event, even under challenging lighting and acoustic conditions.

Use Cases at the Olympiads

The functionalities of the LED system required during the event were as follows:

• Projection of synchronised panoramic videos on the three lecterns using Wide mode.

• Video projection on the lecterns individually.

• Real-time reception of orders from the main quiz server via HTTP.

• Stable and flicker-free LED behaviour throughout the event.

The system worked continuously throughout the event with no incidences. The experience
confirmed both the robustness of the system and its suitability for real-world scenarios. This
goal was achieved in front of a substantial audience and under the conditions of theatrical
lighting.

73

6. Results

Visual evidence of deployment

The following are some images from videos recorded during the event, where you can see
the live installation and use of the system in real time:

(a) LED lecterns active during a live round. (b) Audience during the contest final.

(c) Presenter coordinating the final round. (d) Question display after using the audience
joker during the constest.

Figure 6.5: Images of the XVIII Castilla-La Mancha Informatics Olympiads.

This video shows highlights from the XVIII Castilla-La Mancha Informatics Olympiads,
where the developed LED projection system was deployed live during the final stage:

https://www.youtube.com/watch?v=Ihtwd-TnYl0

74

https://www.youtube.com/watch?v=Ihtwd-TnYl0

Chapter 7

Conclusions

IN this chapter, the development of the project is assessed from a reflexive perspective.
First, the extent to which the initial objectives have been fulfilled is evaluated. Next, the

competences acquired during the process are analysed. The text then moves on to a personal
reflection, in which the challenges faced and lessons learned are highlighted. Finally, it pro-
poses several directions for future improvements and possible extensions to the system.

7.1 Reached objectives
The LED control system developed during this project has successfully met the initial

objectives at both the general and specific levels.

The creation of a custom system capable of controlling programmable LEDs integrated
into quiz lecterns has been achieved. The implemented system supports synchronised opera-
tion with the main quiz system and ensures smooth interaction throughout the entire lighting
sequence. This was shown at the XVIII Castilla-La Mancha Informatics Olympiads, which
was held on April 25, 2025 where the system was used as part of a system deployed on
production.

Regarding the specific objectives, their degree of achievement is discussed below.

• Facilitate system usability for non-technical users: This objective has been achieved
by developing a lightweight web interface designed using HTML, CSS and TypeScript.
This interface enables users to preview animations in a visual modal before triggering
them on the LED lecterns with a single interaction. Furthermore, it enables the man-
agement of actions and video and display user feedback directly on the interface.

• Ensure visual fidelity and synchronisation: Minimising latency and ensuring that the
LED output closely matched the original video content proved to be a significant tech-
nical challenge. Although no formal latency measurements were recorded, qualitative
testing revealed a significant decrease in frame delay and enhanced synchronisation
with each successive iteration. This was successfully addressed by implementing a
double buffering system that separates the writing and reading of frames. A smooth
projection that preserves visual fidelity even under high demand conditions has been

75

7. Conclusions

enabled by this mechanism, coupled with time-relative synchronisation strategies us-
ing time.perf_counter().

• Integrate the system with the quiz platform: Commands originally transmitted
through sockets can now be responded to by the system, which is fully integrated
with the main server via HTTP requests. A mapping between internal actions and
video routes has been created using a JSON configuration file. Moreover, the server
was containerised using Docker to enable integration within the internal network of
the quiz platform.

• Validate the system in a real-world context: This goal was achieved by deploying
the prototype at the XVIII Castilla-La Mancha Informatics Olympiads, where it ran
continuously throughout the contest. Its behaviour was checked and enhanced dur-
ing testing sessions before the event, which showed that it was ready to be used on
production environments.

• Contribute to cost reduction and platform competitiveness: The previously used
licenced software for LED control software (MadMapper) was successfully replaced,
proving that the required technical functionalities are provided by the developed solu-
tion. This means that the company will not need to rely on external tools and will have
more control over its technical infrastructure.

7.2 Addressed competences
This section focuses on the specific competences developed throughout the project, based

on the guidelines of the Degree in Computer Engineering, in the Software Engineering spe-
cialisation.

• [IS1] Ability to develop, maintain, and evaluate software services and systems
that meet user requirements, behave reliably and efficiently, are affordable to
maintain, and comply with quality standards: This competence was developed
through the implementation of a complete software solution from start to finish, cov-
ering everything from identifying requirements to real-world deployment. The system
was validated at the XVIII Castilla-La Mancha Informatics Olympiad, where it proved
to be stable under event conditions. The architecture was structured in layers to ensure
reliability, enabling independent testing of modules and reducing coupling between
them. Moreover, code documentation and modular design principles contributed to
the system’s long-term maintainability.

During the process, the development workflow was in line with real-world practices
used at Furious Koalas S.L., where agile methodologies and iterative feedback cycles
played a key role. This dynamic allowed for progressive refinement and adaptation to
evolving requirements, which reinforced the robustness and extensibility of the system.

76

Personal conclusion

• [IS3] Ability to solve integration problems according to available strategies, stand-
ards, and technologies: One of the main technical challenges was integrating the LED
control module with the main quiz platform. At first, it was made as a Python applic-
ation on its own. However, it was changed to receive requests from the main server
using HTTP-based APIs instead of raw sockets.

The solution involved using Docker to containerise the application, thereby simplify-
ing its deployment within the existing infrastructure. Clear internal interfaces were
also designed to manage the video-to-action mapping logic. These integration tasks
involved dealing with system-level dependencies, network configuration and other ex-
ternal constraints.

7.3 Personal conclusion
This project has been the most demanding and transformative stage of my undergraduate

studies so far. From the start, the aim of creating a real-time LED control system able to
interact with external hardware and adapt to a live quiz environment, felt ambitious and
perhaps slightly beyond reach. Nonetheless, this initial uncertainty gradually evolved into a
structured process of exploration, experimentation, and consolidation.

One of the things I value most about this experience is that it forced me to use unfamiliar
tools and protocols without any predefined instructions. Working with Art-Net, managing
asynchronous video streaming and integrating everything into the main quiz system meant I
had to learn to make informed decisions based on observation, performance and constraints,
rather than just theory.

The process was not linear. There were frustrating moments caused by unexpected latency
and incompatibilities between components, as well as architectural decisions that later had to
be reconsidered. However, it was precisely these challenges that offered the greatest learning
opportunities. Each obstacle introduced a new layer of complexity, requiring me to take a
step back and reconsider my assumptions.

The project has taught me much more than how to deliver a functional system. It has
transformed my approach to software development, helping me to think more independently,
structure code more professionally and find solutions before seeking assistance.

Although I had not previously worked closely with hardware, I found real satisfaction in
the visual feedback that came with each step forward. Seeing the LEDs react to the code I
had written made each small advance feel like a tangible result, almost like a reward. This
made progress visible in a very literal sense and kept me motivated, even through the most
frustrating stages.

77

7. Conclusions

Even though the system could still be improved, I feel genuinely proud of what I achieved.
Seeing the system work in real time during the contest made all the effort worthwhile and
proved that I can overcome complex challenges independently.

7.4 Future work
Throughout the development and testing phases of the system, several areas for improve-

ment and extension have been identified. The current implementation fulfils its intended
purpose under the given conditions. Nonetheless, adjustments or enhancements to the ar-
chitecture may be required to support more demanding scenarios or improve long-term us-
ability. These suggestions are categorised below as either structural constraints or potential
functionality upgrades.

Potential architectural and performance-related improvements
• Scalability in multi-lectern environments: The system currently handles three lecterns

concurrently without issues, but scaling it to larger setups could stress the current
asynchronous model. Performance degradation or desynchronisation may occur due
to packet saturation. However, such scenarios are unlikely to be experienced within
the expected use cases of Furious Koalas S.L., which typically involve a fixed num-
ber of three lecterns. Future iterations might consider either distributing tasks across
processes or using lightweight microservices to mitigate these risks.

• Frame rate saturation: Playback performance deteriorates when the system attempts
to process videos exceeding 30 FPS. This is in part due to an intentional cap imposed
to preserve the controller’s durability and in part due to a hardware limitation: the
Art-Net controller cannot reliably handle more than 50 FPS. For applications requiring
higher refresh rates, although unlikely, this represents an insuperable barrier that would
require alternative hardware or architectures.

• Universe and channel limitations: Deskontroller 16 supports up to 16 universes
(8,192 channels), nine of which are already occupied in the current configuration. This
restricts the maximum number of controllable LEDs unless additional controllers are
deployed or the distribution of universes is further optimised.

• Format compatibility: Currently, the system only supports MP4 and MOV formats
due to incompatibilities with other codecs at an early stage. Adding automatic format
validation or integrating a conversion pipeline could improve flexibility and user ex-
perience.

• Security foundations: As the current deployment is strictly local and limited to in-
ternal use by FK employees, no specific security measures were adopted for the initial
version. However, future deployments in broader or more exposed environments may
benefit from the implementation of security aspects.

78

Improvements could include serving the application over HTTPS using Nginx, en-
abling basic authentication for sensitive endpoints and validating user input to prevent
script injection or data corruption. Furthermore, the implementation of technical meas-
ures such as static code analysis, firewall rules, and CORS restrictions for trusted local
IP addresses could reduce the attack surface and improve isolation. Finally, applying
secure HTTP headers (such as Content-Security-Policy or Strict-Transport-
Security) and enabling access logs may provide useful mechanisms for protection
and traceability in shared environments.

Functional upgrades and usability features
• Real-time visualisation: Adding a real-time view of the LED states to the web inter-

face, could provide valuable feedback to users if the lecterns are not in their field of
vision when projecting an animation.

• Action import: Allowing the direct import of actions from JSON files via the inter-
face would simplify complex setups. This feature should include validation to detect
malformed or incompatible files before changes are applied.

• User-defined organisation: Future versions could enable users to organise videos and
actions into folders within the interface, which would improve clarity when using the
software on a large scale. Other small details, such as enabling custom image covers
for each item, could also enhance usability, particularly in collaborative or multi-user
environments.

79

Appendices

81

Appendix A

Appendix A

A.1 User Stories

The key functionalities have been defined in the form of user stories, as set out in the fol-
lowing tables, which reflect the main functional objectives validated during the development
and testing phases.

Id US01 - Video Playback on LEDs

Rol As system user

Funcionality I want to select a video and send it to the lecterns

Utility To play it back synchronously on the LEDs

Acceptance
criteria • The video must be projected while preserving the original FPS.

• There must be no delays or flickering in the LEDs.

• The image must be adapted to the physical proportions of the
lectern.

Id US02 – Sending Videos to Individual Lecterns

Rol As system user

Funcionality I want to send a specific video to a single lectern

Utility To experiment with independent lighting effects

Acceptance
criteria • Each lectern must be able to receive a video command individually.

• Videos must play back in a stable and synchronised manner.

83

Id US03 – Panoramic Video Playback

Rol As system user

Funcionality I want to play a panoramic video across the three lecterns

Utility To generate a continuous image

Acceptance
criteria • The video must be automatically resized and segmented.

• Playback must be simultaneous and synchronised across all lecterns.

Id US04 – Intuitive Graphical Interface

Rol As system user

Funcionality I want a clear user interface

Utility To view all available actions and videos

Acceptance
criteria • Actions must be clearly labelled.

• It must allow uploading videos, selecting lecterns, and sending play-
back commands.

Id US05 – Integration with the Main Quiz System

Rol As system user

Funcionality I want the system to work along with with the main quiz system

Utility To send projections from a single control point

Acceptance
criteria • The application must expose HTTP routes to trigger projections.

• The system must remain operational independently if no external
command is received.

84

Id US06 – Video Preview Before Launch

Rol As system user

Funcionality I want to see how the video resized before projection

Utility To verify it does not become too deformed

Acceptance
criteria • The system must allow uploading and previewing videos through

the interface.

• The preview ratio must simulate the actual format of the lecterns.

Id US07 – Controlled Interruption of Ongoing Projection

Rol As system user

Funcionality I want to interrupt the playback of a video

Utility To play a new animation without waiting for the current one to end

Acceptance
criteria • The projection must stop upon receiving a new command.

• No concurrency errors or loss of synchronisation must occur.

• The new video must start immediately after the interruption.

Id US08 – Management of Available Videos

Rol As system user

Funcionality I want to be able to add and remove videos through the interface

Utility To easily organise the system’s multimedia resources

Acceptance
criteria • The interface must allow the addition of .mp4 or .mov files from a

specific folder.

• Files in unsupported formats must be rejected.

• Videos must be displayed in a list that updates in real time.

85

Id US09 – Action Management

Rol As system user

Funcionality I want to be able to define, modify and delete actions

Utility To organise the available commands and associate them with specific
videos

Acceptance
criteria • The ID of each action must be unique and validated before creation.

• It must be possible to assign a representative name to each action.

• Each action must be linked to zero, one, or three videos existing in
the system.

• The interface must only allow modifying and deleting actions that
have already been defined.

86

Appendix B

Appendix B

B.1 Evolution through iterations

Iteration 1 – February 3 to 7

Main activity General understanding of the contest system and the LED con-
troller. Initial setup of pyartnet and validation of the envir-
onment through connectivity tests.

Related User Stories -

Obstacles and solutions Art-Net packets were being sent to an incorrect IP address,
preventing communication with the controller. The issue was
resolved by reviewing and correcting the network configura-
tion.

Key outcomes Successful connection to the DMX controller and first LEDs
switched on via Python code. Initial understanding of
the pyartnet library. Feasibility of LED control without
MadMapper confirmed.

Table B.1: Summary of results – Iteration 1

87

Iteration 2 – February 10 to 14

Main activity Further exploration of the pyartnet library and analysis of
the system’s behaviour when attempting to light up a specific
LED. Initial design decisions regarding RGB data representa-
tion and transmission.

Related User Stories -

Obstacles and solutions Incomplete packet transmission was causing random LED ac-
tivations. This was resolved by generating all the channels of
each universe, even those not actively used. The refresh rate
was also adjusted until a stable value was found (0.02s).

Key outcomes A single LED was successfully switched on in a precise and
controlled manner. Further understanding of the controller’s
architecture was achieved, and design alternatives for data or-
ganisation were considered (lists vs arrays, lists vs deques).

Table B.2: Summary of results – Iteration 2

Iteration 3 – February 17 to 21

Main activity Development of the pixel rearrangement algorithm to adapt
images to the physical layout of the LEDs. First tests with
video files. Transition towards using deque-based structures.

Related User Stories US01, US02

Obstacles and solutions The order of the pixels retrieved from the image did not match
the physical LED layout. This was solved by applying an al-
gorithm to divide it into zones consistent with the physical
topology.

Key outcomes Successful projection of images and first videos across the
three lecterns. The rearrangement algorithm proved viable.
The need to synchronise playback speed between the original
video and the LED output was recognised.

Table B.3: Summary of results – Iteration 3

88

Iteration 4 – February 24 to 28

Main activity Implementation of playback speed control to match the ori-
ginal video’s FPS. Projection of panoramic video (wide
mode). Initial development of the Flask web server and first
architectural decisions (separation of frontend and backend).

Related User Stories US01, US2, US03

Obstacles and solutions Playback delays persisted when using time.time(), which
were mitigated by switching to time.perf_counter(). Ad-
ditional LED flickering issues due to controller overload and
packet loss were identified using Wireshark. The use of
threads and asyncio tasks was evaluated as a potential solu-
tion.

Key outcomes Smoother playback achieved with synchronisation adjusted
to the original FPS. The first panoramic projection was
completed. The structural separation between frontend and
backend was established as a long-term architectural decision.

Table B.4: Summary of results – Iteration 4

Iteration 5 – March 3 to 7

Main activity Initial implementation of the Flask server and first functional
design of the frontend. Reception of commands through spe-
cific routes and later refactoring into a single POST route for
greater flexibility.

Related User Stories US01, US02, US03, US04

Obstacles and solutions Difficulties arose in executing coroutines due to lack of full
control over the event loop1. This was resolved by either cre-
ating new loops or reusing existing ones as appropriate. A
setter was also introduced in the controller to manage active
tasks when receiving new commands.

Key outcomes First fully functional workflow from the web interface to LED
video playback. Successful refactoring into a single POST
route /play, optimising control logic.

Table B.5: Summary of results – Iteration 5

89

Iteration 6 – March 10 to 14

Main activity Design of the video previewer in the frontend using
TypeScript and Node.js. Implementation of a playback modal
with behaviour adapted to the number of videos sent. Im-
provement of the visual feedback provided to the user.

Related User Stories US04, US06

Obstacles and solutions Synchronising three independent videos proved challenging,
especially when using the playback bar. The issue was re-
solved by handling seeking events to avoid loops between
stop and play. However, in future versions this synchronisa-
tion is removed, as I found it unnecessary.

Key outcomes A more refined frontend ready for real testing scenarios.
Functional visual previewer incorporated, along with select-
ive video sending to individual lecterns.

Table B.6: Summary of results – Iteration 6

1See asyncio event loops documentation in https://docs.python.org/3/library/asyncio-event
loop.html

90

https://docs.python.org/3/library/asyncio-eventloop.html
https://docs.python.org/3/library/asyncio-eventloop.html

Iteration 7 – March 17 to 21

Main activity Separation between data processing and transmission. Imple-
mentation of a workflow in which the VideoService writes
the frames to a JSON file and the LEDService reads them
continuously.

Related User Stories US01

Obstacles and solutions Concurrent access to the JSON file was causing exceptions
and frame loss. A lock mechanism was introduced to en-
sure that reading did not occur during writing. Strategies for
preloading videos were also considered to prevent real-time
processing bottlenecks.

Key outcomes Effective separation between content generation and emission,
enabling asynchronous control. The Video and Frame classes
were introduced, and the system was prepared for a future
transition to more efficient memory-based buffers.

Table B.7: Summary of results – Iteration 7

Iteration 8 – March 24 to 28

Main activity Replacement of the JSON-based system with a DoubleBuffer
pattern. Each lectern now has its own independent read and
write buffer. Active task cancellation is also managed.

Related User Stories US01, US02, US07

Obstacles and solutions Tasks accessing the same buffer simultaneously were causing
visual artefacts and data fragmentation. This was resolved by
assigning an independent double buffer to each lectern, elim-
inating conflicts. Frame loss issues due to shared video objects
were also addressed using deepcopy.

Key outcomes Optimised buffer system without the need for disk writing.
Each task now handles its own data flow, with immediate in-
terruption capability. The system became more stable, accur-
ate, and modular.

Table B.8: Summary of results – Iteration 8

91

Iteration 9 – March 31 to April 4

Main activity Redesign of the system to support standard commands from
the main server using the (action, device) format. An in-
termediate JSON file was created to map actions to videos.
Looping playback was also implemented for selected actions.

Related User Stories US01, US05

Obstacles and solutions Difficulty in correctly translating socket-based commands to
the REST model used by the LED server. This was resolved
by creating a /playJSON route and an action_list.json
file containing metadata for each action.

Key outcomes The system was integrated with the main server and became
compatible with external action commands. It gained the abil-
ity to loop videos until a new command was received. Internal
task and shared resource handling was improved.

Table B.9: Summary of results – Iteration 9

Iteration 10 – April 7 to 11

Main activity Full integration of the LED system into the Docker environ-
ment of the main server. Real-world testing was made. Flick-
ering issues were resolved.

Related User Stories US01, US05

Obstacles and solutions Network issues between Docker containers were resolved by
configuring a shared internal network. Persistent flickering
was mitigated by introducing minimal continuous changes to
a single LED, preventing extended inactivity.

Key outcomes The system became fully operational within the final deploy-
ment environment. Critical issues were proved under real con-
ditions. The LED server’s robustness and reliability improved
significantly in response to simultaneous commands and uni-
form video playback.

Table B.10: Summary of results – Iteration 10

92

Iteration 11 – April 21 to 25

Main activity Physical installation of the LED system on the event stage. In-
tegration with additional hardware (StreamDeck) and coordin-
ation with the main server. Rehearsals were carried out, along
with live support during the XVIII Informatics Olympiads.

Related User Stories US01, US05

Obstacles and solutions Errors occurred when pressing multiple buttons simultan-
eously. This was resolved by improving the task queuing sys-
tem, thereby avoiding overlaps and loss of order.

Key outcomes The system operated successfully during the event. An-
imations were projected synchronously and reliably, even
when multiple commands were issued simultaneously. The
backend’s robustness and the system’s modularity were valid-
ated in a real-world setting.

Table B.11: Summary of results – Iteration 11

Beyond the structured development iterations, additional work was carried out throughout
the month of May to consolidate and prepare the system for long-term maintainability. This
included the refactoring of the backend into modular components using Flask Blueprints,
the development of unit and integration tests for the main services, and the extension of
the frontend interface with tools for adding, editing and deleting LED actions (US04, US
08, US09). These tasks strengthened the reliability, testability, and usability of the system,
ensuring its readiness for future adaptations and deployments.

93

Appendix C

Appendix C

C.1 Deployment Instructions
System Requirements

Before running the LED control system, ensure that the following components are in-
stalled:

• Python 3.11 or higher (only for manual execution)

• Docker and Docker Compose (for containerised deployment)

• Web browser to access the frontend

Execution Modes
The system can be launched in two ways:

• Integrated Mode: running as part of the main quiz server network

• Standalone Mode: running independently for local control

Running with the Main Server (Integrated Mode)

1. Open a terminal and navigate to the Docker project folder:

cd leds-management-project/led_management_docker

2. Remove any existing container (if needed):

docker rm led_management_app

3. Build the Docker image:

docker build -t led_management_app .

95

4. Launch the container within the main server network:

docker run -d --name led_management_app \
--network=yoroppa-main-system-server_default \
-p 4000:4000 led_management_app

5. Confirm both containers are on the same Docker network:

docker network inspect yoroppa-main-system-server_default

6. You can access to the interface searching http://localhost:4000 on your web
browser.

Note: yoroppa-main-system-server must be already built in Docker.

Running Independently (Standalone Mode)

There are two alternatives for running the system locally without the main server:

A) Using Docker (recommended)

1. Open a terminal and navigate to the Docker project folder:

cd leds-management-project/led_management_docker

2. Build the Docker image:

docker build -t led_management_app .

3. Run the container, exposing port 4000 to the host:

docker run -d --name led_management_app -p 4000:4000 led_management_app

4. Open your browser and navigate to http://localhost:4000

B) Running Manually with Python (for development)

1. Open a terminal and navigate to the Docker project folder:

cd leds-management-project/led_management_docker

96

2. Create and activate a virtual environment:

python -m venv ledenv
source ledenv/bin/activate # On Windows: ledenv\Scripts\activate

3. Install the required dependencies:

pip install -r requirements.txt

4. Run the Flask server:

python .\app.py

5. Open your browser and go to http://localhost:4000

C.2 User Manual
User Interface Overview

The system provides a web interface accessible from any browser. This interface allows
the user to manage and trigger LED animations associated with quiz actions or video con-
tent.

Main Features
• Video Management: Users can add or delete videos from the interface.

• Action Management: Users can add, edit or delete actions directly from the interface.

• Animation Preview: Users can preview available videos and actions from the inter-
face.

• Animation Playback: Users can send videos and actions to the LEDs.

Visual Guidance
Video Management

The system allows users to manage the available videos used for LED projection. This in-
cludes uploading and deleting files, previewing them, and sending them to specific lecterns.

Adding a New Video

To add a video, the user must click the New Video button, as shown in Figure C.1.

• Only files with extension .mp4 or .mov are accepted.

97

• It is not allowed to upload videos with a name that already exists in the system, regard-
less of the file extension. For example, if a.mp4 has already been added, it will not be
possible to upload a.mov (Figure C.2).

• After a successful upload, a confirmation modal will be displayed (see Figure C.3),
which disappears automatically after 5 seconds.

Figure C.1: Button to add a new video to the system (top-right of the screen)

Figure C.2: Modal shown after successful video upload

98

Figure C.3: Modal shown after successful video upload

Deleting a Video

To delete a video from the system, the user must click the delete icon associated with the
desired file, as shown in Figure C.4.

Figure C.4: Delete button associated with each uploaded video

The behaviour of the system varies depending on whether the video is currently linked to
any configured actions:

• If the video is not associated with any action: a confirmation modal will be displayed
asking the user to confirm the deletion (As seen in Figure C.5).

• If the video is associated with one or more actions: the system will prevent deletion
and display a modal indicating that the video cannot be removed. This modal also
shows the list of associated actions, as illustrated in Figure C.6.

99

Figure C.5: Warning modal shown when attempting to delete a video linked to one or more
actions

Figure C.6: Warning modal shown when attempting to delete a video linked to one or more
actions

Action Management

The system allows users to create, edit, and manage actions that can later be triggered
from the main interface or by external systems.

Adding or Editing an Action

To add a new action, the user must click on the New Action button, which is placed at
the top right of the screen. To edit an existing one, the edit icon of the action must be
used. Both options open the same modal form. The placement of the buttons is illustrated in
Figure C.7.

100

Figure C.7: Action Mode, highlighting add and edit action buttons.

Depending on the type of action, the modal shows different input configurations:

• Single Video Action: An action assigned to all lecterns or to a wide projection mode
(AllLecterns or Wide). This action is associated with a single video. The user can
also enable or disable looping for this video. See Figure C.8a.

• Different Action: A special type of action that allows each lectern to play a different
video simultaneously. In this case, the modal displays three fields, one per lectern. The
set of videos can be configured to be in loop mode. See Figure C.8b.

• Empty Action: An action that is initially created without any video associated. This
configuration allows defining an interruptive action. See Figure C.8c.

101

(a) Single Video action with one video for all
lecterns.

(b) Different action with one video per lectern.

(c) Action without any associated video.

Figure C.8: Modal view for the configuration of actions, showing different assignment types.

102

The system enforces the following constraints:

• Unique ID: Each action must have a unique identifier. The system prevents saving an
action whose ID is already in use.

• Video requirements: When saving an action of type Single Video or Different,
it is mandatory to select the appropriate number of associated videos.

Note: All actions with associated videos can be send to a specific lectern. Choosing between
AllLecterns, Wide and Different will define how the video will be played when sending
the action to all lecterns.

Deleting an Action

To delete an existing action, the user must click on the corresponding delete icon, as shown
in Figure C.9.

Figure C.9: Delete button associated with each action

When you click, a confirmation modal will appear, asking you to confirm the deletion:

Figure C.10: Confirmation modal for deleting an action

103

Preview and Playback Controls

The system allows users to either preview the selected video(s) before sending them to
the LED lecterns, or directly trigger playback on one or more lecterns. This functionality is
identical in both Video Mode and Action Mode.

Selection Requirements

To use either the preview or playback options, the user must first configure the follow-
ing:

• In Video Mode: The user must choose the projection type and a video. In case of
selecting Different, three videos must be chosen.

• In Action Mode: The user must choose both a target lectern and an action previously
defined in the system.

Previewing a Video

Once the configuration is complete, pressing the Preview button opens a modal that shows
a visual representation of the selected content before it is sent to the LEDs. This helps the
user verify the result without triggering a live projection.

Figure C.11: Modal for video preview before LED projection

Sending a Video or Action to the Lecterns

Once the selection is correctly set, clicking the Play button will send the chosen video(s)
or action to the specified lectern(s).

104

Looping Option: For video mode, the user may enable a loop option via a checkbox.
When enabled, the selected video(s) will repeat indefinitely until stopped manually. In case
of the actions, looping is defined when the action is created or modified.

Interrupting Playback: Clean Buttons
The system includes control buttons that allow the user to interrupt the ongoing projection

at any moment. There are individual controls for each lectern as well as a global one:

• Clean 1: Stops playback on Lectern 1

• Clean 2: Stops playback on Lectern 2

• Clean 3: Stops playback on Lectern 3

• Clean All: Stops playback on all lecterns at once

A full example of a selected configuration with the associated playback and clean controls
is shown in Figure C.12.

Figure C.12: Selection of video and action, with preview/play buttons and clean controls
highlighted

105

Light Mode Option

The interface also supports a light theme for improved visibility in bright environments.
Users can switch between dark and light modes using the theme toggle button located in the
top-right corner of the interface.

Figure C.13: Example of the interface in light mode

106

References

[88L17] 88Light. LED SD Card Controller T1000S - Datasheet. https://www.88li
ght.com/Datasheet/88L-%20SD%20Card%20CONTROLLER%20T1000S%20DA
TASHEET%20-170217.pdf, 2017.

[AEC16] Ltd. APA Electronic Co. APA102 Addressable RGB LED Datasheet, 2016.

[AFea18] Dahlan Abdullah, F Fajriana, y et al. Application of Interpolation Image by
using Bi-Cubic Algorithm. En Journal of Physics: Conference Series, volume
1114, página 012066. IOP Publishing, 2018.

[Art24] Artistic Licence. Specification for the Art-Net 4 Ethernet Communication Pro-
tocol, 2024.

[Bab12] Seyed Morteza Babamir. Real-Time Systems: Architecture, Scheduling, and

Application. IN-TECH, 2012.

[BEea07] Oliver Bimber, Andreas Emmerling, y et al. Passive-Active Geometric Calibra-
tion for View-Dependent Projection. Journal of Virtual Reality and Broadcast-

ing, 4(1), 2007.

[BS14] Massimo Banzi y Michael Shiloh. Getting Started with Arduino. Maker Media,
Inc., edición 3rd, 2014.

[CJ09] Lei Chen y Yunde Jia. A Parallel Reconfigurable Architecture for Real-Time
Stereo Vision. En 2009 International Conference on Embedded Software and

Systems, 2009.

[CXea21] Yixi Cai, Wei Xu, y et al. ikd-Tree: An Incremental K-D Tree for Robotic
Applications, 2021.

[DDea11] Sebastian Deterding, Dan Dixon, y et al. From Game Design Elements to
Gamefulness: Defining Gamification. En Proceedings of the 15th Interna-

tional Academic MindTrek Conference: Envisioning Future Media Environ-

ments, MindTrek 2011, volume 11, 2011.

107

https://www.88light.com/Datasheet/88L-%20SD%20Card%20CONTROLLER%20T1000S%20DATASHEET%20-170217.pdf
https://www.88light.com/Datasheet/88L-%20SD%20Card%20CONTROLLER%20T1000S%20DATASHEET%20-170217.pdf
https://www.88light.com/Datasheet/88L-%20SD%20Card%20CONTROLLER%20T1000S%20DATASHEET%20-170217.pdf

[Des17] Deskontrol Electronics. Deskontroller 16 – User Manual, 2017. url: https:
//www.deskontrol.net/descargas/manuales/deskontroller-8X2-1
6-user-manual.pdf.

[DK08] Russell D. Dupuis y Michael R. Krames. History, Development, and Applica-
tions of High-Brightness Visible Light-Emitting Diodes. Journal of Lightwave

Technology, 26(9):1154–1163, 2008.

[DOOC15] Ltd. Dongguan OPSCO Optoelectronics Co. SK6812RGBW LED Datasheet.
https://cdn-shop.adafruit.com/product-files/2757/p2757_SK6812
RGBW_REV01.pdf, 2015.

[Dun15] Richard E. Dunham. Stage Lighting: Fundamentals and Applications. Rout-
ledge, 2015.

[EKea] Martin Ester, Hans-Peter Kriegel, y et al. A Density-Based Algorithm for Dis-
covering Clusters in Large Spatial Databases with Noise.

[Ent18] Entertainment Services and Technology Association (ESTA). ANSI E1.31 –
2018: Lightweight streaming protocol for transport of DMX512 using ACN,
2018.

[EST24] ESTA – Entertainment Services and Technology Association. ANSI E1.11
– 2024 Entertainment Technology—USITT DMX512-A Asynchronous Serial
Digital Data Transmission Standard for Controlling Lighting Equipment and
Accessories. Technical report, ESTA, 2024.

[FBea15] Euan Freeman, Stephen Brewster, y et al. Interactive Light Feedback: Illu-
minating Above-Device Gesture Interfaces. En Human-Computer Interaction

– INTERACT 2015, Cham, 2015. Springer International Publishing.

[Gar24a] GarageCube & 1024 Architecture. Introduction to the User Interface, 2024.
Official MadMapper Guide.

[Gar24b] GarageCube & 1024 Architecture. Modules Guide, 2024. Official MadMapper
Guide.

[Gar24c] GarageCube & 1024 Architecture. Realtime Reactive Visuals, 2024. Official
MadMapper Guide.

[Gar24d] GarageCube & 1024 Architecture. Scenes and Cues Guide, 2024. Official
MadMapper Guide.

108

https://www.deskontrol.net/descargas/manuales/deskontroller-8X2-16-user-manual.pdf
https://www.deskontrol.net/descargas/manuales/deskontroller-8X2-16-user-manual.pdf
https://www.deskontrol.net/descargas/manuales/deskontroller-8X2-16-user-manual.pdf
https://cdn-shop.adafruit.com/product-files/2757/p2757_SK6812RGBW_REV01.pdf
https://cdn-shop.adafruit.com/product-files/2757/p2757_SK6812RGBW_REV01.pdf

[GBea24] Estelle Guerry, Élodie Bécheras, y et al. The Use of LED Technology in Stage
Lighting. A Literature Review. En 2024 IEEE Sustainable Smart Lighting

World Conference Expo (LS24), páginas 1–4, 2024.

[GW20] Rafael C. Gonzalez y Richard E. Woods. Digital Image Processing. Pearson,
edición 4th, 2020.

[GWea02] S. Guthe, M. Wand, y et al. Interactive rendering of large volume data sets. En
IEEE Visualization, 2002. VIS 2002., 2002.

[HAM02] Eric Haines y Tomas Akenine-Möller. Real-Time Rendering. CRC Press LLC,
Boca Raton, Florida, edición 1st, 2002.

[HKea14] Juho Hamari, Jonna Koivisto, y et al. Does Gamification Work? – A Literature
Review of Empirical Studies on Gamification. En 2014 47th Hawaii Interna-

tional Conference on System Sciences, 2014.

[HLea15] Shan He, Sizhao Li, y et al. Uncertainty Analysis of Race Conditions in Real-
Time Systems. En 2015 IEEE International Conference on Software Quality,

Reliability and Security, 2015.

[iSk24] iSkyDance Lighting LTD. SPI Controllers – Installation Guide, 2024.

[JMea99] A. K. Jain, M. N. Murty, y et al. Data clustering: a review. ACM Computing

Surveys, 31, 1999.

[KDB16] F. Khodadadi, A. V. Dastjerdi, y R. Buyya. Internet of Things: Principles and
Paradigms. En R. Buyya y A. V. Dastjerdi, editors, Internet of Things: Prin-

ciples and Paradigms. Morgan Kaufmann, 2016.

[KSea07] Michael R. Krames, Oleg B. Shchekin, y et al. Status and Future of High-Power
Light-Emitting Diodes for Solid-State Lighting. Journal of Display Technology,
3(2):160–175, 2007.

[LED23] LED Lighting Hut. K-8000C RGB DMX LED Controller Manual, 2023. url:
https://www.ledlightinghut.com/files/K-8000C.PDF.

[LG07] Hugo Ledoux y Christopher M. Gold. The 3D Voronoi Diagram: A Tool for the
Modelling of Geoscientific Datasets. En GéoCongrès, Québec, Canada, 2007.

[Li24] Yiyuan Li. An Exploration of Touchdesigner’s Applications in the Digital In-
novation of Ink Art. EAI, 2024.

[LO11] Phillip A. Laplante y Seppo J. Ovaska. Real-Time Systems Design and Analysis:

Tools for the Practitioner. Wiley, United Kingdom, edición 4th, 2011.

109

https://www.ledlightinghut.com/files/K-8000C.PDF

[LRea20] Yanhong Li, Beat Rossmy, y et al. Tangible Interaction with Light: A Review.
Multimodal Technologies and Interaction, 4:72, 2020.

[Maj04] A. Majumder. Camera based evaluation of photometric compensation meth-
ods on multi-projector displays. En 2004 International Conference on Image

Processing, 2004. ICIP ’04., volume 5, 2004.

[Mar17] R.C. Martin. Clean Architecture: A Craftsman’s Guide to Software Structure

and Design. Robert C. Martin Series. Pearson Education, 2017.

[Mic03] Microchip Technology Inc. Getting Started: SPI – Overview and Use of the
PICmicro Serial Peripheral Interface, 2003. url: https://ww1.microchip.
com/downloads/en/DeviceDoc/spi.pdf.

[MSea19] Abhimitra Meka, Mohammad Shafiei, y et al. Real-Time Global Illumination
Decomposition of Videos. arXiv preprint arXiv:1908.01961, 2019.

[Nie94] Jakob Nielsen. Ten Usability Heuristics for User Interface Design, 1994.

[oL23] University of Leicester. QLC+ Raspberry Pi Jessie Guide. https://www.st
udocu.com/en-gb/document/university-of-leicester/introducito
n-to-computing/qlc-raspberry-pi-jessie-guide/75067066, 2023.
Used in the course "Introduction to Computing", MA2252.

[OOea13] Ayodeji Oluwatope, Abiodun Odedoyin, y et al. Buffer Occupancy of Double-
Buffer Traffic Shaper in Real-Time Multimedia Applications across Slow-
Speed Links. Communications and Network, 05, 2013.

[PHMea22] Dewi Anggraini Puspa Hapsari, Sarifuddin Madenda, y et al. A Novel Ap-
proach to Video Compression using Region of Interest (ROI) Method on Video
Surveillance Systems. International Journal of Advanced Computer Science

and Applications, 13(6):126–132, 2022.

[Pil17] Anand Balachandran Pillai. Software Architecture with Python: Design and

Architect Highly Scalable, Robust, Clean, and High Performance Applications

in Python. Packt Publishing, Birmingham, UK, 2017.

[PM17] Kaushick Parui y Arun Emil Minj. Image Interpolation techniques in digital
image processing. ResearchGate, 2017.

[PP93] Nikhil R. Pal y Sankar K. Pal. A review on image segmentation techniques.
Pattern Recognition, 26(9):1277–1294, 1993.

110

https://ww1.microchip.com/downloads/en/DeviceDoc/spi.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/spi.pdf
https://www.studocu.com/en-gb/document/university-of-leicester/introduciton-to-computing/qlc-raspberry-pi-jessie-guide/75067066
https://www.studocu.com/en-gb/document/university-of-leicester/introduciton-to-computing/qlc-raspberry-pi-jessie-guide/75067066
https://www.studocu.com/en-gb/document/university-of-leicester/introduciton-to-computing/qlc-raspberry-pi-jessie-guide/75067066

[RD00] Richard Ryan y Edward Deci. Self-Determination Theory and the Facilitation
of Intrinsic Motivation, Social Development, and Well-Being. The American

psychologist, 55, 2000.

[Rou07] Henry Joseph Round. A note on carborundum. Electrical World, 49:309, 1907.

[SBea00] Margaret Suozzo, Nils Borg, y et al. LED Traffic Lights: Signaling a Global
Transformation. En Proceedings of the 2000 ACEEE Summer Study on Energy

Efficiency in Buildings. American Council for an Energy-Efficient Economy,
2000.

[SBea17] Neus Sabater, Guillaume Boisson, y et al. Dataset and Pipeline for Multi-View
Light-Field Video. En Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) Workshops, July 2017.

[SCea23] Jirawat Sookkaew, Nakarin Chaikaew, y et al. Interactive Light Art: The Illu-
mination of Art and Technology Merging. International Journal of Engineering

Trends and Technology (IJETT), 71(12):308–323, 2023.

[Sch03] E. Fred Schubert. History of light-emitting diodes. En Light-Emitting Diodes.
Cambridge University Press, Cambridge, 2003.

[Som16] Ian Sommerville. Software Engineering. Pearson Education Limited, edición
10th, 2016.

[SS20] Ken Schwaber y Jeff Sutherland. The Scrum Guide – The Definitive Guide to
Scrum: The Rules of the Game, 2020.

[Su 08] Su Holmes. The Quiz Show. Edinburgh University Press, 2008.

[SVea20] Pallavi S., Priyanka V., y et al. Design and Verification of Serial Peripheral
Interface (SPI) Protocol. International Journal of Recent Technology and En-

gineering (IJRTE), 8(6):793–797, 2020.

[Tan09] Andrew S. Tanenbaum. Sistemas operativos modernos. Pearson, edición 3rd,
2009.

[Tek14] Tektronix, Inc. A Guide to MPEG Fundamentals and Protocol Analysis, 2014.
url: https://download.tek.com/document/25W-11418-10.pdf.

[Tex12] Texas Instruments. Serial Peripheral Interface (SPI) for KeyStone Devices –

User’s Guide, 2012. url: https://www.ti.com/lit/ug/sprugp2a/sprug
p2a.pdf.

111

https://download.tek.com/document/25W-11418-10.pdf
https://www.ti.com/lit/ug/sprugp2a/sprugp2a.pdf
https://www.ti.com/lit/ug/sprugp2a/sprugp2a.pdf

[The25] The NumPy Community. NumPy User Guide. NumPy Developers, edición
2.2.0, January 2025. url: https://numpy.org/doc/2.2/numpy-user.pdf.

[Tsa05] Jeff Y. Tsao. Solid-stage lighting: Lamps, chips, and materials for tomorrow.
IEEE Circuits and Devices Magazine, 21(3):27–37, 2005.

[TVS06] Andrew S. Tanenbaum y Maarten Van Steen. Distributed Systems: Principles

and Paradigms. Pearson Prentice Hall, edición 2nd, 2006.

[VNea20] Abner Velazco, Magnus Nord, y et al. Evaluation of different rectangular scan
strategies for STEM imaging, 2020.

[WMea21] Liping Wang, Jianshe Ma, y et al. High-Resolution Pixel LED Headlamps:
Functional Requirement Analysis and Research Progress. Applied Sciences,
11(8), 2021. url: https://www.mdpi.com/2076-3417/11/8/3368.

[Wor13] World Semi. WS2812 Intelligent Control LED Integrated Light Source, 2013.

[XSea18] Neal N. Xiong, Yang Shen, y et al. Color sensors and their applications based
on real-time color image segmentation for cyber physical systems. EURASIP

Journal on Image and Video Processing, 2018(1):23, 2018.

[XTea22] Xiaoyu Xiang, Yapeng Tian, y et al. Learning Spatio-Temporal Downsampling
for Effective Video Upscaling. En European Conference on Computer Vision

(ECCV), 2022. url: https://www.ecva.net/papers/eccv_2022/papers
_ECCV/papers/136780159.pdf.

[Xu24] Huili Xu. Study of Lighting Design for Interior Spaces. Journal of Education

and Educational Research, 8(1):97–101, 2024.

[Yu13] Jyh-Cheng Yu. Design of LED Edge-Lit Light Bar for Automotive Taillight Ap-
plications. En Proceedings of SPIE - LED-based Illumination Systems, volume
8835. SPIE, 2013.

[Zou20] Xuedan Zou. PIXEL: Interactive Light System Design Based On Simple Ges-
ture Recognition, 2020.

112

https://numpy.org/doc/2.2/numpy-user.pdf
https://www.mdpi.com/2076-3417/11/8/3368
https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136780159.pdf
https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136780159.pdf

Este documento fue editado y tipografiado con LATEX empleando
la clase esi-tfg (versión 0.20181017) que se puede encontrar en:

https://bitbucket.org/esi_atc/esi-tfg

113

https://bitbucket.org/esi_atc/esi-tfg

	Abstract
	Resumen
	Acknowledgement
	Contents
	List of Tables
	List of Figures
	List of code listings
	Introduction
	Context
	The popularity of quiz-based formats across media and platforms
	Gamification and its benefits for interactive events
	Furious Koalas' infrastructure

	Project proposal
	Architectural overview

	Document structure

	Objectives
	General objectives
	Specific objectives

	State of art
	LED Lighting Control Technologies
	Introduction to Programmable LED Lighting
	Communication Protocols for LED Control
	Controllers and Hardware for LED Management

	Video Processing for LED Animations
	Video Analysis Techniques for Lighting
	Video-to-LED Mapping: Approaches and Algorithms
	Software Tools for Video-to-LED Mapping

	Software Engineering Applied to Lighting Control Systems
	Software Architectures in Real-Time Control Systems
	Development of User Interfaces for LED Animation Configuration

	Methodology
	Development methodology
	Project management: Scrum framework
	Software development: agile practices
	Work planning

	Development workflow
	Hardware and software resources
	Hardware resources
	Operating systems
	Software resources

	Architecture
	General overview
	Order coordination and business logic (back-end)
	Communication with hardware subsystem (Art-Net)
	Buffer loading and synchronisation subsystem
	Video processing and management subsystem
	Web interface (Front-End)
	Deployment architecture and integration with the quiz server

	Results
	Development Context
	Incremental validation, systematic testing
	Physical assembly of the LED lecterns
	Web interface for testing and configuration
	Production deployment: XVIII Castilla-La Mancha Informatics Olympiads

	Conclusions
	Reached objectives
	Addressed competences
	Personal conclusion
	Future work

	Appendix A
	User Stories

	Appendix B
	Evolution through iterations

	Appendix C
	Deployment Instructions
	User Manual

	References

