

 http://www.cepis.org

CEPIS, Council of European Professional Informatics

Societies, is a non-profit organisation seeking to improve and
promote high standards among informatics professionals in

recognition of the impact that informatics has on
employment, business and society.

CEPIS unites 37 professional informatics societies over
33 European countries, representing more than 400,000

ICT professionals.

CEPIS promotes

http://www.eucip.com http://www.ecdl.com

http://www.upgrade-cepis.org

* This monograph will be also published in Spanish (full version printed; summary, abstracts, and some
articles online) by Novática, journal of the Spanish CEPIS society ATI (Asociación de Técnicos de In-
formática) at <http://www.ati.es/novatica/>.

UPGRADE is the European Journal for the Infor-
matics Professional, published bimonthly

at <http://www.upgrade-cepis.org/>

Publisher
UPGRADE is published on behalf of CEPIS (Council of European Professional
Informatics Societies, <http://www.cepis.org/>) by Novática <http://www.ati.
es/novatica/>, journal of the Spanish CEPIS society ATI (Asociación de Técnicos
de Informática, <http://www.ati.es/>)

UPGRADE monographs are also published in Spanish (full version printed;
summary, abstracts and some articles online) by Novática

UPGRADE was created in October 2000 by CEPIS and was first published by
Novática and INFORMATIK/INFORMATIQUE, bimonthly journal of SVI/FSI
(Swiss Federation of Professional Informatics Societies, <http://www.svifsi.
ch/>)

UPGRADE is the anchor point for UPENET (UPGRADE European NETwork),
the network of CEPIS member societies’ publications, that currently includes
the following ones:
• Informatik-Spektrum, journal published by Springer Verlag on behalf of the
CEPIS societies GI, Germany, and SI, Switzerland

• ITNOW, magazine published by Oxford University Press on behalf of the
British CEPIS society BCS

• Mondo Digitale, digital journal from the Italian CEPIS society AICA
• Novática, journal from the Spanish CEPIS society ATI
• OCG Journal, journal from the Austrian CEPIS society OCG
• Pliroforiki, journal from the Cyprus CEPIS society CCS
• Pro Dialog, journal from the Polish CEPIS society PTI-PIPS

Editorial Team
Chief Editor: Llorenç Pagés-Casas, Spain, <pages@ati.es>
Associate Editors:
François Louis Nicolet, Switzerland, <nicolet@acm.org>
Roberto Carniel, Italy, <carniel@dgt.uniud.it>
Zakaria Maamar, Arab Emirates, <Zakaria. Maamar@ zu.ac.ae>
Soraya Kouadri Mostéfaoui, Switzerland,
<soraya.kouadrimostefaoui @gmail.com>
Rafael Fernández Calvo, Spain, <rfcalvo@ati.es>

Editorial Board
Prof. Wolffried Stucky, CEPIS Former President
Prof. Nello Scarabottolo, CEPIS Vice President
Fernando Piera Gómez and Llorenç Pagés-Casas, ATI (Spain)
François Louis Nicolet, SI (Switzerland)
Roberto Carniel, ALSI – Tecnoteca (Italy)

UPENET Advisory Board
Hermann Engesser (Informatik-Spektrum, Germany and Switzerland)
Brian Runciman (ITNOW, United Kingdom)
Franco Filippazzi (Mondo Digitale, Italy)
Llorenç Pagés-Casas (Novática, Spain)
Veith Risak (OCG Journal, Austria)
Panicos Masouras (Pliroforiki, Cyprus)
Andrzej Marciniak (Pro Dialog, Poland)
Rafael Fernández Calvo (Coordination)

English Language Editors: Mike Andersson, David Cash, Arthur Cook, Tracey
Darch, Laura Davies, Nick Dunn, Rodney Fennemore, Hilary Green, Roger
Harris, Jim Holder, Pat Moody, Brian Robson

Cover page designed by Concha Arias Pérez
"Exit of Room 101" / © ATI 2007
Layout Design: François Louis Nicolet
Composition: Jorge Llácer-Gil de Ramales

Editorial correspondence: Llorenç Pagés-Casas <pages@ati.es>
Advertising correspondence: <novatica@ati.es>

UPGRADE Newslist available at
<http://www.upgrade-cepis.org/pages/editinfo.html#newslist>

Copyright
© Novática 2007 (for the monograph)
© CEPIS 2007 (for the sections UPENET and CEPIS News)
All rights reserved under otherwise stated. Abstracting is permitted with credit
to the source. For copying, reprint, or republication permission, contact the
Editorial Team

The opinions expressed by the authors are their exclusive responsibility

ISSN 1684-5285

Monograph of next issue (February 2008)
"ICT Governance"

(The full schedule of UPGRADE is available at our website)

 Vol. VIIII, issue No. 6, December 2007

2	 Presentation. Free Software: Scientific and Technological Innova-
tion — Andrea Capiluppi, José-Rafael Rodríguez-Galván, Manuel
Palomo-Duarte, and Israel Herraiz-Tabernero

5	 The Need for Libre Software Research in Europe — Israel Herraiz-
Tabernero, José-Rafael Rodríguez-Galván, and Manuel Palomo-
Duarte

8	 From the Cathedral to the Bazaar: An Empirical Study of the Lifecycle
of Volunteer Community Projects — Andrea Capiluppi and Martin
Michlmayr

18	 The Commons as New Economy and what this Means for Research
— Richard P. Gabriel

22	 Libre Software for Research — Israel Herraiz-Tabernero, Juan-José
Amor-Iglesias, and Álvaro del Castillo-San Félix

27	 Technological Innovation in Mobile Communications Developed with
Free Software: Campus Ubicuo — Javier Carmona-Murillo, José-Luis
González-Sánchez, and Manuel Castro-Ruiz

34	 The Case of the University of Cádiz’s Free Software Office Among
Spanish Universities — José-Rafael Rodríguez-Galván, Manuel
Palomo-Duarte, Juan-Carlos González-Cerezo, Gerardo Aburruzaga-
García, Antonio García-Domínguez, and Alejandro Álvarez-Ayllón

40	 On Understanding how to Introduce an Innovation to an Open Source
Project — Christopher Oezbek and Lutz Prechelt

45	 3D Distributed Rendering and Optimization using Free Software —
	 Carlos González-Morcillo, Gerhard Weiss, David Vallejo-Fernández,

Luis Jiménez-Linares, and Javier Albusac-Jiménez

54	 Identifying Success and Tragedy of FLOSS Commons: A Prelimina-
ry Classification of Sourceforge.net Projects — Robert English and
Charles M. Schweik

60	 From Novatica (ATI, Spain)
	 ICT Security
	 Security of Electronic Passports — Václav Matyáš, Zdeněk Říha, and

Petr Švéda

UPENET (UPGRADE European NETwork)	

Monograph: Free Software: Research and Development
(published jointly with Novática*)
Guest Editors: Manuel Palomo-Duarte, José-Rafael Rodríguez-Galván, Israel Herraiz-Tabernero,
and Andrea Capiluppi

2 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

In recent years we have seen how free software has
evolved from being a software development model (with
all its ethical and technical implications) to playing a key
role in the development strategies of companies, institu-
tions, regions, and even entire countries. Examples such
as the Brazilian Government’s support of Free Software
[1][2] or the Andalusian Regional Government’s adop-
tion of free licensing for all its developments [3][4][5],
have caused more and more institutions and associations
to study the long term implications of adopting the free
software model.

One of the most important milestones was the “Study
on the economic impact of open source software on in-
novation and the competitiveness of the Information and
Communication Technologies (ICT) sector in the EU”
[6] developed for the European Commission by UNU-
MERIT. It concludes that Free Software offers one of the

 Presentation

Free Software: Scientific and Technological Innovation
Andrea Capiluppi, José-Rafael Rodríguez-Galván, Manuel Palomo-Duarte, and Israel Herraiz-Tabernero

 	
best chances for the European ICT sector to become a
worldwide player and promote RDI (Research, Develop-
ment & Innovation) initiatives.

In the framework of this scenario we have published
this special issue of Novática and UPGRADE on “Free
Software: research and development”, almost an annual
event for the IT community. As usual, most of its content
is published under a free license.

After a brief introductory article entitled “The Need for
Libre Software Research in Europe” by the guest editors
of the monograph, we kick off with the paper “From the
Cathedral to the Bazaar: an Empirical Study of the Life-
cycle of Volunteer Community Projects” which presents
a comparison between the development communities of
two prestigious free software projects, Wine and Arla. In
particular the article compares the number of developers
who have contributed to the project during its lifecycle.

The Guest Editors

Andrea Capiluppi obtained his Ph.D. from the Politecnico di
Torino, Italy. In October 2003 he was a visiting researcher in the
Grupo de Sistemas y Comunicaciones of the Universidad Rey
Juan Carlos, Madrid, Spain. From January 2004 to the present
he has been a visiting researcher in the Department of Maths and
Computing at the Open University, UK, working in collaboration
with Drs. Juan Ramil, Neil Smith, Helen Sharp, Alvaro Faria,
and Sarah Beecham. This appointment has been renewed until
December 2008. In January 2006, he joined the University of
Lincoln as a Senior Lecturer. <acapiluppi@lincoln.ac.uk>.
José-Rafael Rodríguez-Galván works as a lecturer in the
Department of Mathematics at the Universidad de Cádiz.
Since 2004 he has chaired OSLUCA (Libre Software Office
of the Universidad de Cádiz), organizing several projects
including the 1st, 2nd, and 3rd Free Software Conferences at
the Universidad de Cádiz and the 1st FLOSS International
Conference (FLOSSIC 2007). He has been invited as a speaker
to many meetings and symposiums relating to libre software
and University. He is also member of UCA researching group
FQM-315, where he develops his research in numerical
simulation of equations for partial derivatives applied to fluid
mechanics. <rafael.rodriguez@uca.es>.
Manuel Palomo-Duarte received his M.Sc. degree in
Computer Science from the Universidad de Sevilla (2001). He
works as a full-time lecturer in the Department of Computer
Languages and Systems at the Universidad de Cádiz where he
teaches subjects related to operating systems and videogame
design using libre software. He is also an Erasmus Coordinator
for the B.Sc degree in Computer Science “Ingeniería Técnica

en Informática de Sistemas” He is a member of the “Software
Process Improvement and Formal Methods” research group
and he is pursuing his Ph.D. on quality in BPEL web services
compositions. Since he joined the Universidad de Cádiz he has
collaborated with the Free Software Office, mainly in relation
to the following conferences: 3rd Free Software Conference
at the Universidad de Cádiz (JOSLUCA3) and the 1st FLOSS
International Conference (FLOSSIC 2007). <manuel.palomo@
uca.es>.
Israel Herraiz-Tabernero is a Ph.D. student at the Universidad
Rey Juan Carlos, Madrid, Spain. His research is related to the
evolution of libre software projects. In particular, he is using
time series analysis and other statistical methods to characterize
the evolution of software projects. He has participated in
several research projects funded by the Framework Programme
of the European Commission (QUALOSS, FLOSSMetrics,
QUALIPSO, CALIBRE). He has also collaborated on other
projects funded by companies such as Vodafone and Telefonica.
He has participated in the writing of manuals about managing
and starting libre software projects. For example, together with
Juan José Amor and Gregorio Robles he wrote a manual for the
Universitat Oberta de Catalunya’s Master Programme in Free
Software. He has been a reviewer for the IEEE Africon 2007
among other conferences and for the journal IEEE Transactions
on Software Engineering. He is currently a research and
teaching assistant at the Universidad Rey Juan Carlos, pursuing
his PhD on the evolution of libre software. He also coordinates
the programme of the Libre Software Master offered by the
Universidad Rey Juan Carlos, in collaboration with Igalia and
Caixa Nova. <www.herraiz@gsyc.escert.urjc.es>.

UPGRADE Vol. VIII, No. 6, December 2007 3© Novática

Free Software: Research and Development

Based on these metrics and an analysis of information
available from the project (such as ChangeLogs), the
author concludes that the cathedral and bazaar models are
not mutually exclusive during the lifecycle of a volunteer
community project. While remaining in a cathedral phase
does not necessarily imply failure (because the project may
be meeting its goals), transition to a bazaar model would
move the project on to a phase in which the development
community would continue to grow. And it is the develop-
ment community who can make this change happen.

Next up is one of the most interesting articles published
in the “Workshop on Emerging Trends in FLOSS Research
and Development 2007” (FLOSS 2007) [7], “The Commons
as New Economy and what this Means for Research”. This
paper looks at how the ICT world would change if compa-
nies were to adopt and develop free software en masse. It
analyses some of the consequences, such as a drastic drop
in the cost of licenses or the reduction of the risk and cost
of software experimentation. This would lead to a really
interesting scenario and would open up new avenues in ICT
teaching since the latest source code would be available
to be studied and improved on by students. Programming
would change radically, and it would become a matter of
finding and integrating code rather than a creating new
code from scratch Also the monetary and human resources
needed to develop and deploy Ultra-Large Scale Systems
would be reduced.

The paper “Libre Software for Research” by the Sys-
tems and Communications Group, Universidad Rey Juan
Carlos (Spain), demonstrates how research groups can
benefit from the adoption of a free software methodology.
This methodology and its associated protocols can improve
communication between globally distributed members and
increase the visibility of reports, products, and internal in-
formation. All, naturally, in a free software environment.

The next paper is focused on telecommunications: “Tech-
nological Innovation in Mobile Communications Developed
with Free Software: Campus Ubicuo”. It describes the
results of a collaboration between the GITACA research
group and a company supported by the Extremadura re-
gional government (Spain). This project has developed a
solution (Campus Ubicuo) for the increasing demand for
services and the need for mobility that has changed the
traditional model of Internet connectivity based solely
on access via fixed networks. Campus Ubicuo has been
developed using free/libre software and aims to offer user
ubiquity through advanced communications services over
wireless networks.

Another paper showing the results of an investment in
free software by a public institution is “The Case of the Uni-
versity of Cádiz’s Free Software Office among Spanish Uni-
versities”. The paper describes the work done by the Free
Software Office of the University of Cadiz (Spain) since it
was set up in 2004. One of the most important features of
an institution attached to a university is its broad scope of
action. Several kinds of initiatives have been developed in
the fields of teaching, research, management, support of the

development and dissemination of free software, and col-
laborations with external institutions.

The next paper, also related to RDI and free software,
is “On Understanding how to Introduce an Innovation to
an Open Source Project”. Like one of the earlier articles,
this paper was first published in FLOSS 2007. It describes
a methodology for incorporating software engineering in-
ventions into free software projects. This not only benefits
researchers by allowing them to test their tools, methods,
and process designs in real-life settings, but it also ben-
efits the free software community by allowing them to
apply the latest academic innovations to their projects.
But introducing a new artefact into a community which
has been working without it for a long time is no simple
task. The steps to be taken to ensure successful adoption
differ widely depending on the kind of innovation and on
the structure and size of the community.

From another Free Software Conference, FLOSSIC
2007 we have selected the paper, “3D Distributed Render-
ing and Optimization using Free Software”. This paper
received an award as the best paper of the conference. It is
the result of a research effort by two European institutions:
the Universidad de Castilla La Mancha (Spain) and the
Software Competence Center at Hagenberg (Austria). The
papers deals with a classical computing problem, image
generation: in particular how 2D photorealistic images can
be obtained from the abstract definition of a 3D scene. The
use of free software tools and state-of-the-art distributed
techniques and algorithms reduces the computational cost
of the process. The free software tools used for distributed
rendering optimization in this particular case were Yafrid
and MagArRo, both developed at the Universidad de
Castilla-La Mancha

For our final article we have taken another interesting
paper from FLOSS 2007, “Identifying Success and Trag-
edy of FLOSS Commons: a Preliminary Classification of
Sourceforge.net Projects” It researches why some free
software projects succeed or fail (a tragedy). Although suc-
cess or failure is very difficult to measure, the authors use
collective action (CVS changes, stable versions released
in the past year, downloads, etc) as criteria for classifying
projects. They develop a different kind of classification of
success or tragedy in projects, based on their number of
developers, project size, and other metrics.

We would like to conclude our presentation by thank-
ing the staff of Novática and UPGRADE for entrusting us
with this special issue. And, of course, we would like to
thank everyone whose work has contributed to the publi-
cation of this issue: authors, reviewers, translators and, in
general, the whole community that makes Free Software
and Knowledge a reality.

4 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

The following references, along with those included
in the articles this monograph consists of, will help our
readers to dig deeper into this field.

[1] 	 <http://www.nytimes.com/2005/03/29/technology/
29computer.html>.

[2] 	 <http://news.bbc.co.uk/1/hi/business/4602325.
stm>.

[3] 	 Decree 72/2003 on Measures for Advancing the
Knowledge Society in Andalusia, of March 18, 2003
(BOJA 55, March 21, 2003)

[4] 	 <http://www.20minutos.es/noticia/91463/0/progra-
mas/ordenador/pueden/>.

[5] 	 <http://www.juntadeandalucia.es/repositorio/>.
[6] 	 <http://ec.europa.eu/enterprise/ict/policy/doc/2006-

11-20-flossimpact.pdf>.
[7] 	 <http://cross.lincoln.ac.uk/floss2007/>.

Institutions Supporting Free Software

n	 Free Software Foundation <http://fsf.org>.
n	Open Source Initiative <http://opensource.org>.
n	 Cenatic <http://www.cenatic.es/>.
n	OSLUCA <http://www.uca.es/softwarelibre>.

News Sites

n	 Slashdot <ttp://slashdot.org>.
n	Digg <ttp://digg.com>.
n	 Blog de Ricardo Galli (in Spanish) <http://ricar-

dogalli.com>.
n	Meneame (in Spanish) <http://meneame.net>.
n	 Barrapunto (in Spanish) <http://barrapunto.

com>.
Books

n	 Eric S. Raymond. The Cathedral and the Bazaar:
Musings on Linux and Open Source by an Ac-
cidental Revolutionary, O’Reilly, 2001, ISBN:
0596001088. http://www.catb.org/~esr/writings/
cathedral-bazaar/.

n	 Richard M. Stallman, Lawrence Lessig, and
Joshua Gay (Editor). Free Software, Free Society:
Selected Essays of Richard M. Stallman, Free
Software Foundation, 2002, ISBN: 1-882114-98-1.
<http://www.gnu.org/philosophy/fsfs/rms-essays.
pdf>.

n	 Lawrence Lessig. Code 2.0. Basic Books, 2006.
ISBN-13: 978–0–465–03914–2. <http://codev2.
cc/>.

n	 Eric Von Hippel. Democratizing Innovation. MIT
Press, 2006. ISBN-13: 9780262002745. <http://
web.mit.edu/evhippel/www/democ1.htm>.

n	 Ron Goldman and Richard P. Gabriel. Innovation
Happens Elsewhere: Open Source as Business
Strategy. Morgan Kaufman/Elsevier, 2005, ISBN:
1-55860-889-3. <http://dreamsongs.com/IHE/>.

n	 Peter Wayner. Free for All: How Linux and the
Free Software Movement Undercut the High-Tech

Titans. Peter Wayner , 2000. ISBN 0-06-662050-3.
<http://www.rau-tu.unicamp.br/nou-rau/software-
livre/document/?code=138>.

n	O’Reilly Open Books project. <http://www.oreilly.
com/openbook/>.

n	 Lawrence Rosen. Open Source Licensing: Soft-
ware Freedom and Intellectual Property Law.
Prentice Hall, 2004. ISBN-13: 978-0131487871.
<http://www.rosenlaw.com/oslbook.htm>.

n	 Joseph Feller, Brian Fitzgerald, Scott A. Hissam, and
Karim R. Lakhani. Perspectives on Free and Open
Source Software. ISBN-13: 978-0-262-06246-6.
MIT Press, 2006. <http://mitpress.mit.edu/cata-
log/item/default.asp?tid=10477&ttype=2>.

n	Karl Fogel. Producing Open Source Software:
How to Run a Successful Free Software Project.
Karl Fogel, 2005. <http://producingoss.com/>.

n	 Linux Torvalds and David Diamond. Just for Fun,
The story of an accidental revolutionary. Harper-
Collins, 2001. ISBN-13: 978-0066620725.

n	Glyn Moody. Rebel Code: Linux and the Open
Source Revolution. Perseus Books Group, 2002.
ISBN-13: 978-0738206707

n	A. Abella, M. A. Segovia. White book on Free
Software in Spain (in Spanish). 2007. <http://www.
libroblanco.com>.

Other Interesting Links

n	 Economic and Game Theory: Against Intellectual
Monopoly. <http://levine.sscnet.ucla.edu/general/
intellectual/againstnew.htm>.

n	 FLOSSIC 2007 Free documentation compilation.
<http://flossic.loba.es/>.

n	 Free Resources created for Free Software post-
graduated courses at UOC (in Spanish). <http://
www.uoc.edu/masters/esp/web/materiales_libres.
html>.

n	 European Interoperability Framework for pan-Eu-
ropean eGovernment Services. European Commu-
nities, 2004. ISBN 92-894-8389-X. <http://europa.
eu.int/idabc/en/document/3761>.

n	How to Collaborate with the KDE project (in
Spanish). <http://www.kdehispano.org/colabo-
rar_KDE>.

n	Debian project. <http://www.debian.org>.
n	Guiactiva: guide to creating Free Software Compa-

nies (in Spanish). CEIN, S.A., 2005. Legal deposit
no.: NA 1078-2005. <http://www.cein.es/web/es/
documentacion/ideas/2005/7831.php>.

n	 Linux Knowledge Base and Tutorial. <http://
sourceforge.net/projects/linkbat>.

n	Mitsubishi Research Institute, Inc. An Introduction
to Open Source Software. 2006. <http://oss.mri.
co.jp/i2oss/download/en/text.pdf>.

n	Alessio Damato. Why The Future Of Science Must
Be In Free Software. <http://scientificcomputing.
net/debian/why.pdf>.

Useful References on Free Software

UPGRADE Vol. VIII, No. 6, December 2007 5© Novática

Free Software: Research and Development

Keywords: Framework Programme, Research.

1 Libre Software in Europe
Libre software was born as a result of communities of

volunteers, joining forces to develop software. The main
motivations to work in the projects were personal. How-
ever, libre is now recognised as an important economic
phenomenon causing the giants of software to adopt a
strategy towards libre software: some regard it as a threat
to their businesses, while others see it as an opportunity
to open new markets and reinforce their competitiveness.
Libre software respects standards, allows interoperability

The Need for Libre Software Research in Europe
Israel Herraiz-Tabernero, José-Rafael Rodríguez-Galván, and Manuel Palomo-Duarte

The European Commission, by means of the Framework Programme, is funding several research projects on libre software.
In the sixth edition of this programme, the sum of 25.13 million Euros has been dedicated to fund these research projects.
Is this investment worthwhile? Can libre software help the development of Europe? In this editorial, we expose the rea-
sons that justify this research , and how the research projects can foster the social and economic development of Europe.
Finally, we include a summary of the main research projects funded in the scope of the Framework Programme.

Authors

Israel Herraiz-Tabernero is a Ph.D. student at the Universidad
Rey Juan Carlos, Madrid, Spain. His research is related to the
evolution of libre software projects. In particular, he is using
time series analysis and other statistical methods to characterize
the evolution of software projects. He has participated in
several research projects funded by the Framework Programme
of the European Commission (QUALOSS, FLOSSMetrics,
QUALIPSO, CALIBRE). He has also collaborated on other
projects funded by companies such as Vodafone and Telefonica.
He has participated in the writing of manuals about managing
and starting libre software projects. For example, together with
Juan José Amor and Gregorio Robles he wrote a manual for the
Universitat Oberta de Catalunya’s Master Programme in Free
Software. He has been a reviewer for the IEEE Africon 2007
among other conferences and for the journal IEEE Transactions
on Software Engineering. He is currently a research and
teaching assistant at the Universidad Rey Juan Carlos, pursuing
his PhD on the evolution of libre software. He also coordinates
the programme of the Libre Software Master offered by the
Universidad Rey Juan Carlos, in collaboration with Igalia and
Caixa Nova. <www.herraiz@gsyc.escert.urjc.es>.

José-Rafael Rodríguez-Galván works as a lecturer in the
Department of Mathematics at the Universidad de Cádiz. Since
2004 he has chaired OSLUCA (Libre Software Office of the

Herraiz, Rodriguez and Palomo, 2007. This article is distributed under the “Attribution-Share Alike 2.5
Generic” Creative Commons license, available at <http://creativecommons.org/licenses/by-sa/2.5/ >.

among (and within) public and private institutions and
avoids monopolies in the access to information. It also re-
inforces a neutral education, insome cases supplanting the
commercial products used for educational purposes. Thus,
universities and research centres, that were involved in the
libre software movement since its beginning (in parallel
with the development of the internet), are focusing on
libre software, by promoting it for the daily tasks of these
centres (research, education, management, etc), and by
studying it as a matter of research. Its study is becoming
more important because software is a fundamental agent
in the economy. It is present everywhere: in offices, in mo-
bile phones, in cars, in the public systems that manage our

Universidad de Cádiz), organizing several projects including the
1st, 2nd, and 3rd Free Software Conferences at the Universidad de
Cádiz and the 1st FLOSS International Conference (FLOSSIC
2007). He has been invited as a speaker to many meetings and
symposiums relating to libre software and University. He is
also member of UCA researching group FQM-315, where he
develops his research in numerical simulation of equations
for partial derivatives applied to fluid mechanics. <rafael.
rodriguez@uca.es>.

Manuel Palomo-Duarte received his M.Sc. degree in
Computer Science from the Universidad de Sevilla (2001). He
works as a full-time lecturer in the Department of Computer
Languages and Systems at the Universidad de Cádiz where he
teaches subjects related to operating systems and videogame
design using libre software. He is also an Erasmus Coordinator
for the B.Sc degree in Computer Science “Ingeniería
Técnica en Informática de Sistemas” He is a member of the
“SoftwareProcess Improvement and Formal Methods” research
group and he is pursuing his Ph.D. on quality in BPEL web
services compositions. Since he joined the Universidad de
Cádiz he has collaborated with the Free Software Office, mainly
in relation to the following conferences: 3rd Free Software
Conference at the Universidad de Cádiz (JOSLUCA3) and
the 1st FLOSS International Conference (FLOSSIC 2007).
<manuel.palomo@uca.es>.

6 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

personal data, etc. However, there is not yet a true Engi-
neering that provides the tools to build it. It is obvious that
Software Engineering does exist, but the Brook’s Mythical
Man Month [1] is still present: We cannot predict how long
a software project will take, exactly what the final features
will be, what defects will be present or how much money
will finally have to be invested. Furthermore, the results
of long projects are usually complex products, difficult to
maintain. Sometimes, it is even better to start a new project
from scratch rather than use a previous existing product
as a base. The software that is the main trunk of the cur-
rent economic system is not made out in our economic
frontiers:  is not written by European engineers, neither it
is sold by European companies. We could therefore say
that a crucial industry for the European economy is not in
the hands of Europe. It is also recognised that Software
Engineering is not a truly scientific discipline. Many re-
search paper authors have to sign non-disclosure agree-
ments in order to gain access to data sources. In some
cases, it is not even known which are the case studies in-
cluded in the paper. These case studies are often labelled
under obscure names such as A,BC or X,Y, etc. Thus,
repetition and verification of the results is impossible. We
will never achieve equality with the development stage
of other scientific disciplines with all these obstacles. We
will never overcome the software crisis using a scientific
discipline that discourages innovation by means of obsta-
cles (such as non-disclosure agreements). Libre software
can help to overcome all these difficulties. First of all,
regarding economic impact, libre software is controlled
by no one (or,from other point of view, it is controlled
by everyone). Currently, libre software has an important
impact in the European economy. The recently published
report The impact of Free/Libre/Open Source Software
on innovation and competitiveness of the European Un-
ion [2] mentions that 20% of the European investment on
software is made on libre software (this amount is similar
for the USA), and that in 2010, the global impact of libre
software will account for 4% of the GID. Because of its
characteristics, from the research point of view libre soft-
ware does not impose any obstacle to the advancement of
science, because all the data sources are public. Further-
more, the report mentioned in the above paragraph also
states that many libre products are market leaders in their
niches. In other words, those products present a quality
level that is good enough to overtake other solutions that
have been developed in-house in industrial environments.
This means that in spite of the lack of a scientific base on
how we develop software, quality products are being pro-
duced. What is even better is that the development proc-
ess in libre software leaves some trails (documentation,
source code, change log records, e-mail communications,
etc), and all those trails are publicly available. Therefore,
libre software constitutes a true research laboratory in
studying how to overcome the problems addressed by
Brooks and which we are still facing. In this sense, in

the scope of the 6th Framework Programme (6FP), 11
research projects were launched, with a global budget of
more than 25 million Euros (see Table 1). Within the 7th
edition of the Framework Programme, some additional
research projects on the same topic are being funded as
well. Focusing on the 6FP, the description and goals of
the projects vary:
n	Qualipso
This is the largest research project on libre software

that has been funded by the European Commission. The
first year of this project has resulted in the celebration of
the Qualipso conference in January 2008 in Rome (Italy),
with companies from all over Europe participating.
The main goal of Qualipso is to define and implement the
technologies, processes and policies to facilitate the develop-
ment and use of libre software components, with the same
level of trust traditionally offered by proprietary software.
n	 TOSSAD
TOSSAD is a coordinated activity with the purpose of

diffusing libre software in the public and private sectors,
and hopes to create a consortium for this purpose. It will
try to identify synergies in order to foster innovation by
adopting libre software.
n	 SELF
This project is similar to TOSSAD, but it is more fo-

cused on educational resources. The main idea is to take
advantage of libre software features (availability of re-
sources, provider independence, low cost of licenses, etc)
in the educational sector.
n	 FLOSSWorld
This project studied the situation of libre software in

the different world regions: Europe, Asia, Africa, North
America and Latin America. The main goal was to make
sure that Europe leads research on open source in the
world, as well as determine the current situation regarding
libre software development, industry, standards, interop-
erability and e-government in the different world regions.
n	 FLOSSMetrics
This project is collecting metrics and information about

a large set of libre software projects (in the order of thou-
sands). The goal is to create a database that could be used
by third parties such as researchers, companies and even
libre software projects themselves. This project is trying
to coordinate with other projects from the 6FP,that need to
collect metrics for their particular purposes (for instance,
there is a close collaboration with the QUALOSS project).
n	 TEAM
This project is developing a knowledge sharing envi-

ronment, based on libre software. The final system will be
released as libre software as well.
n	 EDOS
Libre software distributions (such as Red Hat, Debian,

Ubuntu, Suse, etc) face many common problems. Most of
the problems are related to dependencies among the dif-
ferent packages of the distribution. Even today it is com-
mon to crash a running system by installing an upgrade of

UPGRADE Vol. VIII, No. 6, December 2007 7© Novática

Free Software: Research and Development

the packages, because of this dependencies issue. Further-
more, the development and maintenance of those distribu-
tions is becoming more and more complex because of the
growing interactions among packages (these interactions
grow with the square of the number of packages). In or-
der to address these problems, this project tried to provide
tools to manage packages installation and distributions
maintenance.

n	CALIBRE

This project tried to be a meeting point between sec-
ondary sector companies i.e. those companies that do not
develop software but whose businesses crucially depend on
software. As a result of this project, an industrial forum was
created, called CALIBRATION, which many European com-
panies belong to (Philips, Telefónica and Vodafone among
others).
n	 SQO-OSS
This project is trying to develop a model for the

evaluation of the quality of libre software, by means of
empirical methods. It uses the public data sources of
some libre software projects. Among these sources, we
may find source code version control repositories, mail-
ing list archives, bug tracking systems, source code, etc.
Its main aim is very close to QUALOSS.
n	 PYPY
With the goal of porting Python (a well known

programming language) to more platforms, thereby
making it more flexible for adaptation to new systems,
this project is creating a new implementation of Python.
An interesting point of this project is that it is using
agile methods in the software development tasks, and
the consortium is organized following the schemes of a
libre software community. All the development process
is being monitored, with the goal of making research the
impact of agile software development in the development
process.

n	QUALOSS
The main goal of QUALOSS is to create an evalua-

tion model for the quality of libre software projects. For
this purpose, several publicly available data sources are
being used. This project will study 50 different software
projects, and will try, wherever possible, to reuse the
information and databases provided by FLOSSMetrics.

In summary, libre software has an important impact
on the economy of Europe. This impact will grow in the
following years. Furthermore, libre software offers a very
good opportunity to gain more knowledge on the software
development process, with the final goal of getting the
scientific base for a true Software Engineering. Currently
there exist many research projects that are trying to ad-
dress and overcome these problems, with the financial
aid of the European Commission through the 6th and 7th
editions of the Framework Programme. We think that the
European Commission should keep this aid in subsequent
editions.

 References
[1] 	 Fred Brooks. “The Mythical Man-Month: Essays

on Software Engineering”. Addison-Wesley. 1995.
ISBN 0-201-83595-9.

[2] 	 Rishab A. Ghosh et al. “The impact of Free/Libre/
Open Source Software on innovation and competi-
tiveness of the European Union”. European Com-
mission, 2007. <http://flossimpact.eu>.

Project Start date Duration (months) EC budget (m€) Total budget (m€)
Qualipso Nov-06 48 10.42 17.29
TOSSAD Feb-05 25 0.78 0.79
SELF July-06 24 0.98 0.98
FLOSSWorld May-05 26 0.66 0.67
FLOSSMetrics Sept-06 30 0.58 0.58
TEAM Sept-06 30 2.95 4.16
EDOS Oct-04 33 2.22 3.45
CALIBRE June-04 28 1.50 1.65
SQO-OSS Sept-06 24 1.64 2.47
PYPY Dec-04 28 1.35 2.29
QUALOSS Sept-06 30 2.05 2.95

Total: 25.13 37.28

Table 1: Research Projects on Libre Software Funded under the Scope of the 6th Framework Programme (source: <http://
cordis.europa.eu/ist/st/projects.htm>).

8 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

From the Cathedral to the Bazaar: An Empirical Study of the 
Lifecycle of Volunteer Community Projects

Andrea Capiluppi and Martin Michlmayr

This article was previously published in IFIP International Federation for Information Processing Volume 234 (2007),
eds. J. Feller, B. Fitzgerald, W. Scacchi, A. Sillitti, pp. 31-44. It is reproduced with kind permission of Springer Science,
Business Media and the authors.

Some free software and open source projects have been extremely successful in the past. The success of a project is often
related to the number of developers it can attract: a larger community of developers (the “bazaar”) identifies and corrects
more software defects and adds more features via a peer-review process. In this paper two free software projects (Wine and
Arla) are empirically explored in order to characterize their software lifecycle, development processes and communities.
Both the projects show a phase where the number of active developers and the actual work performed on the system is
constant, or does not grow: we argued that this phase corresponds to the one termed “cathedral” in the literature. One
of the two projects (Wine) shows also a second phase: a sudden growing amount of developers corresponds to a similar
growing output produced: we termed this as the “bazaar” phase, and we also argued that this phase was not achieved
for the other system. A further analysis revealed that the transition between “cathedral” and “bazaar” was a phase by
itself in Wine, achieved by creating a growing amount of new modules, which attracted new developers.

Keywords: Open Source, Software Developers, Soft-
ware Evolution, Software Process, Stages.

1 Introduction
Prominent free software (or open source software,

OSS) projects such as Linux [32], Apache [27] and Free-
BSD [18] have been extremely successful. Anecdotal evi-
dence has been used in the past to characterize successful
OSS projects: users/developers acting as “more eyeballs”
in the correction of bugs, developers implementing new
features independently, skillful project managers dealing
with a mostly flat organization, and the resulting coordi-
nation costs [28].

Previous studies have provided empirical evidence
on the process of successful OSS projects: the definition
of various types of developers has been discussed for
the Mozilla and the Apache projects, justifying different
levels of effort [27], and claiming that the first type (core
developers) contribute to the success of a system.

Also, social network analyses have shown communi-
cation and coordination costs in successful OSS projects
[21].

In all these cases, successful projects are studied and
characterized, but an analysis in their earlier inception is
not given. Therefore, empirical studies on whether the
project always benefited of a large number of developers,
or built instead its bazaar through several years, are still

missing. In order to tackle this missing link, this paper
explores the evolution and development processes of two
OSS systems, the Wine (a free implementation of Windows
on Unix) project and the Arla file system. The first system
has been widely adopted and developed by many develop-
ers. Arla, on the other hand, is still in a “cathedral” phase

Authors

Andrea Capiluppi obtained his Ph.D. from the Politecnico di
Torino, Italy. In October 2003 he was a visiting researcher in the
Grupo de Sistemas y Comunicaciones of the Universidad Rey
Juan Carlos, Madrid, Spain. From January 2004 to the present
he has been a visiting researcher in the Department of Maths and
Computing at the Open University, UK, working in collaboration
with Drs. Juan Ramil, Neil Smith, Helen Sharp, Alvaro Faria,
and Sarah Beecham. This appointment has been renewed until
December 2008. In January 2006, he joined the University of
Lincoln as a Senior Lecturer. <acapiluppi@lincoln.ac.uk>.

Martin Michlmayr has been involved in various free software
projects for over 10 years. He used to be the Volunteer Coordina-
tor for the GNUstep Project and acted as Publicity Director for
Linux International. In 2000, Martin joined the Debian Project,
and he was later elected Debian Project Leader (DPL) as which
he acted for two years. Martin holds Master degrees in Philoso-
phy, Psychology and Software Engineering, and earned a PhD
from the University of Cambridge. He’s working for HP as an
Open Source Community Expert. <martin@michlmayr.org>.

UPGRADE Vol. VIII, No. 6, December 2007 9© Novática

Free Software: Research and Development

when compared Wine: fewer developers are currently
collaborating towards its development.

The aim of this paper is to empirically detect and
characterize the phases achieved by these two systems,
to illustrate whether one phase consequently follow the
other, and to establish one of these phases as a “success”
for an OSS project. If this is the case, sharing the empiri-
cal guidelines on how to achieve this transition could help
developers to work on the benefits of the bazaar phase.

Structure of the paper: in Section 2, a theoretical back-
ground will be given, as well as two research questions,
based on OSS communities. Also, a description of the ap-
proach used to acquire and analyses the data employed will
be presented. The data will be used to test the presented
questions. Section 3 will describe the phases observed in
the two systems from the point of view of the activities of
developers. This section will also give a detailed descrip-
tion of the activities that underpin the success of a OSS
system, as observed in the proposed case studies. Section
4 will deal with related work in this (and other) areas,
identifying the main contributions of this paper, and will
discuss a number of questions raised in this paper that need
further empirical exploration. Finally, Section 5 will give
conclusions on the overall process and lifecycle of OSS
systems, as well as possible future research directions.

2 Background Research
One of the authors, in a previous work [29], presented

a theoretical framework for the activities and phases
of the lifecycle of OSS projects. The objective was to

provide a more systematic approach for the development
of OSS projects, to increase the likelihood of success in
new projects. In this paper, the objective is to empirically
evaluate the theory contained in that work through two case
studies, and to report on best practices of actually success-
ful OSS projects. Since previous studies have shown that
many OSS projects must be considered failures [3][7], it is
argued that the latter ones lack some of the characteristics
as described in [29], notably the transition between the
closed (or “cathedral”) and the open (or “bazaar”) styles.
In his popular essay “The Cathedral and the Bazaar”, Eric
S. Raymond [28] investigates development structures in

OSS projects in light of the success of Linux. The terminol-
ogy of the “cathedral” and the “bazaar” introduces both a
closed approach, found in most commercial entities, where
decisions on large software projects are taken by a central
management; and an open one, where an entire community
is in charge of the whole system.

Instead of viewing these approaches as diametrically
opposed, as originally proposed by Raymond, this paper
considers these as complimentary events within the same
OSS software project. Figure 1 illustrates three basic
phases, which this research argues a successful OSS
project undergoes. The initial phase of an OSS project does
not operate in the context of a community of volunteers.
All the characteristics of cathedral style development
(like requirements gathering, design, implementation and
testing) are present, and they are carried out in the typical
style of building a cathedral, that is, the work is done by
an individual or a small team working in isolation from
the community [5]. This development process shows tight
control and planning from the central project author, and is
referred to as “closed prototyping” by Johnson [17].

In order to become a high quality and useful product,
[29] argued that an OSS project has to make a transition
from the cathedral phase to the bazaar phase (as depicted
by the arrow in Figure 1). In this phase, users and develop-
ers continuously join the project writing code, submitting
patches and correcting bugs. This transition is associated
with many complications: it is argued that the majority of
free software projects never leave the cathedral phase and
therefore do not access the vast resources of manpower and

skills the free software community
offers [7].

2.1 Research Questions
In this paper, historical data on

code modifications and additions
of large (subsystems) or small scale
(modules) sections of a software
system are analyzed in order to track
how the studied systems evolved
over time. Two research questions
are presented here: the historical
data will be then tested against them,
and the results will be evaluated in
the next section. The first is based

on output obtained from input provided, the second on
what new developers tend to work on when joining an
OSS project. The research questions can be formulated
as follows (metrics used to assess each question are also
provided):

1) Research question 1: the “bazaar” phase involves a
growing amount of developers, who join in a self-sustain-
ing cycle. The output obtained in a bazaar phase follows
a similar growing trend. OSS projects, while still in the
“cathedral” phase, do not benefit from a growing trend in
input provided and output achieved.

2) Research question 2: new developers, when join-

Figure 1: OSS Development Lifecycle.

10 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

ing a software project, tend to work on newest modules
first, either by creating the modules themselves, or by
contributing to a new module. This can be rationalized
saying that new developers might not need insights on all
the preexisting functionalities of a system thus preferring
to develop something new. This research question will be
used to gather further insights on how Wine could achieve
a bazaar phase.

2.2 Empirical Approach
The empirical approach involves the extraction of all

changes embedded in sources of information of both input
(effort provided by developers) and output (that is, addi-
tions or changes of subsystems and modules). In the fol-
lowing analysis, the ChangeLog file, recording the whole
change history of a project, has been used rather than an
analysis of the projects’ CVS repositories. From previous
research it is known [10][22] that different development
practices have an influence on the best data source, and
the ChangeLog file offers more reliable information in the
selected case projects [6][12][30].

The steps to produce the final data can be summarized
in: parse of raw data, and extraction of metrics. As part of
the first step, automated Perl scripts are written to parse
the raw data contained in the ChangeLog and to extract
predefined data fields.

 The data fields which will be considered in this study
are: name of the system, name of the module, name of
the subsystem containing that module, date of creation or
change and unique ID (name and email) of the developer
responsible for the change.

2.2.1 Raw Data Extraction
The analyzed ChangeLog files follow very regular

annotating patterns, thereby allowing a straightforward
analysis of the history of changes in a project in a semi-
automated way. The following steps have been performed
during the extraction of the raw data:

1 – Identification of dates: it was observed in the stud-
ied cases that each touch was delimited by a date, using
the following or a similar pattern: for example, YYYYM-
MDD, as in “20001231”. Each touch can be associated
with one or more than one developers; also, each touch
can be associated with one or more than one modules. For
each touch there is one and only one date.

2 – Affected modules and subsystems: each touch
affects at least one file, and is recorded with a plaintext
description. In some cases the same touch affects many
files: these modifications are referred to the same date. Sub-
systems are extracted as the folder containing the affected file.

3 – Details of developers: All touches concern at least
one developer, displayed in various forms inside of the
description of the touch. If more than one developer are
responsible for a touch, they are recorded together within
the touch.

4 – Derivation of metrics: Counts were derived of both,

effort provided by developers and work produced creating
new modules and amending existing ones.

2.2.2 Metrics Choice and Description
The analysis of the two OSS systems involved three

types of metrics, used differently to discuss the research
questions. A list is proposed in the following:

1) Input metrics: the effort of developers was evalu-
ated by counting the number of unique (or distinct, in a
SQLlike terminology) developers during a specific inter-
val of time. The chosen granularity of time was based on
months: different approaches may be used, as on a weekly
or on a daily basis, but it is believed that the month repre-
sented a larger grained unit of time to gather the number
of active developers. This metrics was used to evaluate the
first research question. For instance, in February 2006 it
was found that the Wine system had 73 distinct developers
who wrote code for this system in that month.

2) Output metrics: the work produced was evaluated
by counting the touches to modules or subsystems during
the same interval of time. Smaller-grained metrics, like
lines of code, were not considered in this study: evaluating
how many lines of code are produced by OSS developers
could be subject to strong limitations . In the following
section this metric will be used also as an indicator of par-
allel development work performed in successful projects.
This metrics was also used to evaluate the first research
question. As above, in February 2006 it was detected that
the Wine system had 820 distinct modules which were
touched in that month.

3) New Input and Output metrics: the newly-added
effort was evaluated counting the new developers joining
the project. The work produced by these new developers
was also isolated: the objective is to determine how much
of this work has been focused on existing parts of the
system, and how much goes to new parts. This metrics
served to evaluate the second research question, i.e. to
explore if new developers tend to work either on old or
new parts of the system. As above, in February 2006 it was
detected that the Wine system had 73 new developers (i.e.
not detected in any of the previous touches). It was also
empirically detected that these new developers worked
in part on old modules, and in part on new modules, i.e.
added in the same month. It was observed that 75% of
their work concerned newer modules, and 25% on exist-
ing modules.

2.3 Case Studies
The choice of the case studies was based on the rec-

ognized, objective success of one of the systems (Wine),
while the second analyzed system (Arla) seems to have
suffered from an inability of recruiting new developers,
and achieved a much smaller overall size. Both of them
have been used in the past for other empirical case studies,

1	 Lines of code produced are biased by the skills of the developer,
the programming language and, in general, the context of the
modifications.

UPGRADE Vol. VIII, No. 6, December 2007 11© Novática

Free Software: Research and Development

and their development style and growth pattern have been
extensively studied.

The authors recognize that the two systems have two
very different application domains: Wine is a tool to
run Windows applications on Linux and other operating
systems, while Arla is a networked file system. The main
objective of the present study was not to evaluate the ex-
ogenous reasons behind successfully recruiting projects
(like the presence of recognized “gurus” in a project, the
good reputation of the existing community, etc. [9]). On the
contrary, this study focuses on evaluating the presence of
three different stages in successful projects. The research
presented here proposes a theoretical framework for OSS
projects, independently from their domain, and empiri-
cally evaluates the mechanisms of forming a community
around OSS projects.

The choice of the information sources was restricted to
two classes of items, the CVS commits and the ChangeLog
records. The CVS repository of Arla was found to be in-
complete, since it does not contain the complete evolution
history of the project. This is probably due to the fact that
the CVS has been adopted at some point after the project’s
first inception. It was also observed that the CVS server of
Wine is inaccurate: a query for active developers shows
only 2 committers, against a much larger number of de-
velopers found in the ChangeLog records. That probably
means a restriction in the write access to the Wine CVS.
ChangeLogs were therefore preferred over CVS logs.

As a means to characterize the two systems, Table 1
displays some basic information about their ChangeLog
files, the time span, and the amount of distinct developers
which were found actively contributing to the project.

3 Results and Discussion of the Phases
In the following section, the two research questions

are discussed, and the three phases (cathedral and bazaar,
separated by a transition phase) as presented in [29] are
evaluated, based on the empirical data from the case studies.
Apart from this evaluation, it is also planned to identify some
practical actions that OSS developers should consider in
order to enhance the evolutionary success of their projects,
and to ease the transition between the cathedral and the
bazaar phases.

3.1 The Cathedral Phase
One of the main differences between closed, traditional

software and OSS development is the ownership of the code.
In the first environment, the development is typically driven

by a team of individuals, while users do not contribute to, nor
access the source code. In the latter, potentially everyone has
the right to access and modify the source code underlying
an application. It is argued that a typical OSS system will
follow a cathedral approach in its first evolution history.

Arla system – input: Figure 2 (left) shows the distri-
bution of distinct developers per month in the Arla system.
Even though a sum of over 80 developers have contributed
code, patches and fixes to the project (see Table 1), the
number of distinct developers working on the development
each month is much lower: on average only about five
distinct developers work on the code base each month. As
stated above, the first research question is not confirmed
by the empirical findings: in the Arla project, the evolution
of distinct, active developers in a month shows a regular,
constant pattern.

Arla system – output: Figure 2 (right), on the contrary,
shows the amount of distinct modules and subsystems that
Arla developers have worked on since its inception: the
distribution is fairly regular, and that could mean that new
developers, when joining the project, are not expanding
it into new areas, but that they rather work on existing
functionality, together with the core developers. This will
be tested in the section dedicated to the transition phase.
These output findings, i.e. a constant, not growing pattern
in output produced, confirm that the first research question
does not apply for the Arla system.

While these findings do not necessarily imply that Arla
is a failure compared to Wine (as in the overall amount of
developers from Table 1), it raises some interesting ques-
tions: for instance, it should be studied why only a small,
but constant, number of developers is contributing code. As

 a possible explanation of its (reduced) success in recruit-
ing new developers, one could argue that the system could
be perceived as mature already [8], and that little further
work was needed. Similar problems have been observed
in the past for the OpenOffice.org and Mozilla systems:
they represent two extremely complex applications and
required a huge investment in the study, before developers
could actually contribute directly.

In the next sections, practical guidelines will be evalu-
ated on how an OSS system could tackle the issues faced
by the Arla project, and in order to benefit of the efforts
of a larger pool of developers.

3.2 Bazaar Phase
The aim of many OSS projects is to reach a stage

Attribute/System Arla Wine
Earliest found entry October 1997 July 1993
Latest studied entry March 2006 March 2006
Change or creation points 7.000 88.000
Global, distinct developers 83 880

Table 1: Summary of Information in the two Systems.

12 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

where a community of users can actively contribute to
its further development. Some of the key characteristics
of the bazaar phase are visualized in Figure 3, and can be
summarized as follows:

n	 Contributions: the bazaar style makes source code
publicly available and contributions are actively
encouraged, particularly from people using the
software. Contributions can come in many differ-
ent forms and at any time. Non-technical users can
suggest new requirements, write user documenta-
tion and tutorials, or point out usability problems
(represented as low-level “ itches” in Figure 3);

technical users can implement features, fix defects
and even extend the design of the software (the
high-level “itches” of Figure 3).

n	 Software quality: increased levels of quality comes
from thorough, parallel inspections of the software,
carried out by a large community of users and
developers. These benefits are consistent with
software engineering principles: the “debugging
process” of an OSS project is synonymous with
the maintenance phase of a traditional software
lifecycle.

n	 Community: a network of users and developers
review and modify the code associated with a

Figure 2: Development Input (left) and Output Produced (right) in Arla.

Figure 3: Detailed Bazaar Phase.

UPGRADE Vol. VIII, No. 6, December 2007 13© Novática

Free Software: Research and Development

software system. The old adage “many hands make
light work” is appropriate in describing the reasons
for the success of some OSS projects [27].

Wine system – input: From the empirical standpoint,

Figure 4 (left) shows the distribution of distinct developers
per month in the Wine system. In total, over 800 developers
have contributed code, patches and fixes (Table 1). Even
though this project has a longer time span, which could
have facilitated the growth of a developers basis, a clear
distinction between a first phase (cathedral) and a later
phase (bazaar) can be identified in the number of develop-
ers. Around July 1998, the Wine system has undergone a
massive evolution in the number of distinct developers in-
volved in the project. The sustainability of this new bazaar
phase is demonstrated by the further, continual increasing
number of new distinct developers in the Wine system.
The first research question finds an empirical evidence
analyzing the Wine system, a growing pattern of active
developers signals the presence of the bazaar phase. The
sustainability of the input process is visible in the ever-
changing amount of distinct developers which participate
in the evolution of the system.

Wine system –output: The bazaar phase is character-
ized by an open process in which input from volunteers
defines the direction of the project, including the require-
ments. The initial implementation is mainly based on the
requirements of the project author. In the bazaar phase,
projects benefit from the involvement of a diverse range
of users (with different requirements) who work together
to increase the functionality and appeal of the software.
This parallel development behaviour is achieved success-
fully in the Wine project. During the investigation of this
system, the evolving scope of the project became apparent
through the amount of distinct modules which developers
work on each month. Figure 4 (right) shows the amount
of distinct modules and subsystems that developers have
worked on since its inception: the distribution is growing
abruptly around the same time when an increase of distinct

authors is observed. This means that the project, with new
developers joining constantly, is actively expanding it
into new areas. The growing pattern of active developers
sustains a growing pattern of output produced: as above,
the first research question helps signaling the presence of

the bazaar phase when such a growing pattern occurs.

3.3 Transition Phase: Defining new Avenues of
Development

The theoretical framework represented in Figure 1
assigns a fundamental role to the transition phase, since
it requires a drastic restructuring of the project, especially
in the way the project is managed. One important aspect
is commencing the transition at the right time. This is a
crucial step and a hurdle many projects fail to overcome
[11]. Since volunteers have to be attracted during the
transition, the prototype needs to be functional but still in
need of improvement [17][28][2].

If the prototype does not have sufficient functionality
or stability, potential volunteers may not get involved.
On the other hand, if the prototype is too advanced, new
volunteers have little incentive to join the project because
the code base is complex or the features they require have
already been implemented. In both cases, adding future
directions to the system could provide potential new de-
velopers further avenues for the development.

Based on the second research question, new develop-
ers, when joining a software project, tend to work on new
modules, rather than old ones. As a consequence, the core
developers should expand the original system into new
directions and provide new code to work on: this would
foster the recruitment of new developers and facilitate the
transition phase.

To evaluate this question, an experiment was designed:
at first, the newly added modules were extracted in every
month. In parallel, the amount of new developers was also
extracted. Finally, what new developers worked on was
defined as the percentage of new modules they handled:
Figure 5 graphically summaries this process.

Figure 4: Development Input (left) and Output Produced (right) in Wine.

14 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

The empirical results were extracted for the two
systems Arla and Wine and are displayed in a box-plot,
spanning all the releases for the two systems. Figure 6
is a description, on a percentile basis, of the modules as
handled by newest developers.

Figure 5: Design of Research Question 2.

Transition achieved – Wine: this system reveals that
new developers, when joining the project, tend to work
more easily on new modules than on older ones. In fact,
more than 50% (on average) of what they work on is
newly added in the same month, either by themselves or
the core developers (right box-plot of Figure 6). Also, the
average value of the box-plot was found to be larger when
considering only the “bazaar” phase of Wine.

This first result is confirmed by plotting the amount of
new modules created by the developers (Figure 7, right). A
growing pattern is detected, similar to the one observed in
the global evolution of the system (Figure 4): new devel-
opers join in, working on newest parts of the code, while
core developers sustain the community of the project by
continuously adding new modules.

Figure 6: Description of Effort for new Developers.

Transition not achieved – Arla: this second system
provides a much more interesting box-plot: the tendency of
new developers is clearly towards working on something

new, rather than on old modules (left box-plot of Figure
6). The main difference with the Wine project is that, for
most of the periods, there are no new developers joining
in the Arla development. Based on the assumptions of
the second research question, new developers still prefer
to start something new, or work on newly added code:
still, this project could not ease the transition phase by
not recruiting new developers. Therefore, it is possible
to conclude that the original developers in Arla failed
in providing new directions for the system, by creating
new modules or subsystems. This conclusion is backed
by the amount of new modules created by the developers
(Figure 7, left): a decreasing pattern is detected, which
confirms that new developers (and the community around
the project), albeit willing to work on the system, were not
adequately stimulated by the core developers.

In summary, considering the second research question
stated above, we found similar evidences for both the sys-
tems: when joining the development of an OSS system,
new developers tend to work on (i.e., add or modify) new
modules rather than old ones. As a proposed corollary
to these results, the transition to a bazaar phase should
be actively sought by the core developers: potential new
developers should be actively fostered adding new ideas
or directions to the project.

4 Related Work
In this section the present work is related to various

fields, specifically empirical studies on software systems
and effort evaluation. Since this work is in a larger re-
search context, related to the study of the evolution of
OSS systems, empirical studies of OSS are also relevant
to this research.

The earliest studies of the evolution of software sys-
tems were achieved through the proprietary operating
system OS/360 [4]. The initial studied observed some 20
releases of OS/360, and the results that emerged from this
investigation, and subsequent studies of other proprietary
commercial software [20], included the SPE program clas-
sification and a set of laws of software evolution.

The present research has been conducted similarly,
but evaluating both the input (as effort) provided, and the
output (as changes made to the code base) achieved. The
research questions which this paper is based upon derives
from [29], and is based on the presence of two distinct
phases in the software lifecycle of OSS systems, namely
the cathedral phase and the bazaar phase [28]. This in
contrast with Raymond’s suggestion that the bazaar is the
typical style of open source projects [15][28]: an empirical
evaluation was achieved by studying the lifecycle of two
large free software projects, of which only one has made
the transition to the bazaar phase and attracted a large
community of developers. It is believed by the authors
that too much emphasis has been put on highly popular
projects in the past which are not necessarily representative
of the OSS community as a whole [13][15][16][26]. Few

UPGRADE Vol. VIII, No. 6, December 2007 15© Novática

Free Software: Research and Development

Figure 7: Creation of new Modules in the Arla and Wine Systems.

projects make a transition to the bazaar, attracting a large
and active developer community along the way.

Having a large bazaar surrounding a project has several
advantages, such as the ability to incorporate feedback
from a diverse base of users and developers. Neverthe-
less, this is not to say that projects which are not in the
bazaar phase are necessarily failures, they neither have to
be unsuccessful nor of low quality.

Interestingly enough, in contrast to Raymond’s model,
there are a number of applications, such as GNU coreutils
and tar, which form a core part of every Linux system and
which clearly follow the cathedral. Similarly, there are
many projects entirely developed by a single, extremely
competent developer which show high levels of quality.
Due to the lack of better theories and empirical research,
quality in OSS projects is explained through the bazaar
with its peer review [1][26][28]. However, not every
project with high quality actually exhibits a large bazaar
and significant peer review.

A project in the cathedral phase can be highly suc-
cessful and of high quality [31]. However, there are
some restrictions a project in the cathedral phase faces
as well as a number of potential problems which are less
severe if the project had a large developer community.
For example, while it is possible for a single developer to
write an application with a limited scope (such as a boot
loader), only a full community can complete a project
with a larger scope (such as a full desktop environment).
Furthermore, a project written by one developer may be
of high quality but it also faces a high risk of failure due
to the reliance on one person who is a volunteer [23][25].
Having a large community around a project makes the
project more sustainable.

 This discussion shows the lack of research in a number
of areas related to OSS projects. While a uniformed model
for all OSS projects has been assumed in the past, it is
increasingly becoming clear that there is a great variety
in terms of development processes [9][19][14]. Better
theories about success and quality in OSS projects are
needed [24], as are further comparisons between projects
with different levels of success and quality. Finally, it

should not be assumed that the bazaar is necessarily the
optimal phase for every project, or that it is not associated
with any problems. There is a general assumption that it
is beneficial for a OSS project to be open, but too much
openness can also be harmful when it leads to incompetent
developers or people who demotivate important contribu-
tors getting involved [9].

5 Conclusions and Future Work
Successful OSS projects have been studied and char-

acterized in the past, but an empirical demonstration on
how they achieved their status has not been proven yet. In
order to tackle this missing link, this paper has presented
an empirical exploration of two OSS projects, Arla and
Wine, to illustrate different phases in their lifecycle, their
development processes and the communities which formed
around them. Their ChangeLog records were analyzed and
all the changes and additions, performed by the developers
over the years, were recorded.

The assumption underpinning this paper is that the
“cathedral” and “bazaar” phases, as initially proposed
and depicted by Raymond in [28], are not mutually ex-
clusive: OSS projects start out in the cathedral phase, and
potentially move to a bazaar later. The cathedral phase is
characterized by closed development performed by a small
group or developer, with much in common with traditional
software development. The bazaar phase exploits a larger
number of volunteers who contribute to the development
of the software through defect reports, additional require-
ments, bug fixes and features. The transition between the
two phases was argued to be by itself a phase too, which
has to be accommodated by specific, active actions of the
core developers or project author. It was also argued that
this transition is a necessary factor for truly successful
and popular projects.

A first research question has proposed the study of the
difference between the cathedral and the bazaar phases: the
first system (Arla) has remained, through its lifecycle, an
effort of a limited number of developers, or in a cathedral
phase. It was also argued that this should not be interpreted

16 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

as a sign of the overall failure of an OSS project, but as
a potentially missed opportunity to establish a thriving
community around a project. On the contrary, the second
system (Wine) only shows an initial phase that is similar to
what observed in the Arla system: a second, longer phase
(bazaar) has a growing amount of active developers and
a continuous expansion of the system.

Through a second research question, the focus was
moved to the preferences of new developers joining an
OSS project: results on both the systems show that new
developers prefer to work on newly added modules, rather
than older ones. In the Wine system, existing developers
eased the transition phase by adding many new modules
which new developers could work on. On the other hand,
new developers in Arla, although eager to work on new
code, were not yet given enough new directions of the
project, and an overall poor ability in recruiting new de-
velopers was resulting.

The future work has been identified in a replication of
the study with other OSS projects, especially those belong-
ing to the same application domain: the results as obtained
in this study have analyzed the creation of a community
from a neutral point of view, that is, without considering
exogenous drivers. Our next step is to introduce these
drivers into the research, and analyze large projects which
currently compete with each other for the scarce resource
of developers.

References

[1] 	 A. Aoki, K. Hayashi, K. Kishida, K. Nakakoji, Y.
Nishinaka, B. Reeves, A. Takashima, Y. Yamamoto.
A case study of the evolution of jun: an object-
oriented open-source 3d multimedia library. In
Proceedings of the 23rd International Conference
on Software Engineering, pages 524-533, Toronto,
Canada, 2001.

[2] 	 B. Arief, C. Gacek, T. Lawrie. Software architectures
and open source software – where can research lever-
age the most? In Proceedings of the 1st Workshop
on Open Source Software Engineering, Toronto,
Canada, 2001.

[3] 	 R. Austen, G. Stephen. Evaluating the quality and
quantity of data on open source software projects.
In Proceedings of 1st International Conference on
Open Source Systems, Genova, Italy, June 2005.

[4] 	 L. A. Belady, M. M. Lehman. A model of large
program development. IBM Systems Journal,
15(3):225-252, 1976.

[5] 	 M. Bergquist, J. Ljungberg. The power of gifts:
Organising social relationships in open source com-
munities. Information Systems Journal, 11(4):305-
320, 2001.

[6] 	 A. Capiluppi. Models for the evolution of OS
projects. In Proceedings of International Conference
on Software Maintenance, pages 65-74, Amsterdam,
Netherlands, 2003.

[7] 	 A. Capiluppi, P. Lago, M. Morisio. Evidences in the
evolution of OS projects through changelog analy-
ses. In Proceedings of the 3rd Workshop on Open
Source Software Engineering, Portland, OR, USA,
2003.

[8] 	 A. Capiluppi, M. Morisio, J. F. Ramil. Structural
evolution of an open source system: A case study. In
Proceedings of the 12th International Workshop on
Program Comprehension (IWPC), pages 172-182,
Bari, Italy, 2004.

[9] 	 K. Crowston and J. Howison. The social structure
of free and open source software development. First
Monday, 10(2), 2005.

[10] 	M. Fischer, M. Pinzger, H. Gall. Populating a re-
lease history database from version control and bug
tracking systems. In Proceedings of International
Conference on Software Maintenance, pages 23-32,
Amsterdam, Netherlands, 2003.

[11] 	 K. F. Fogel. Open Source Development with CVS.
The Coriolis Group, Scottsdale, Arizona, 1st edition,
1999. ISBN: 1-57610-490-7.

[12] 	D. M. German. An empirical study of finegrained
software modifications.

	 pages 316-325, Chicago, IL, USA, 2004.
[13] 	D. M. German. Using software trails to reconstruct

the evolution of software. Journal of Software
Maintenance and Evolution:Research and Practice,
16(6):367-384, 2004.

[14] 	D. M. German, A. Mockus. Automating the measure-
ment of open source projects. In Proceedings of the
3rd Workshop on Open Source Software Engineer-
ing, Portland, OR, USA, 2003.

[15] 	M. W. Godfrey, Q. Tu. Evolution in open source
software: A case study. In Proceedings of the In-
ternational Conference on Software Maintenance,
pages 131-142, San Jose, CA, USA, 2000.

[16] 	 J. Howison, K. Crowston. The perils and pitfalls of
mining SourceForge. In Proceedings of the Interna-
tional Workshop on Mining Software Repositories
(MSR 2004), pages 7-11, Edinburgh, UK, 2004.

[17] 	K. Johnson. A descriptive process model for open-
source software development. Master’s thesis,
Department of Computer Science, University of
Calgary, 2001. <http://sern.ucalgary.ca/students/the-
ses/KimJohnson/thesis.htm>.

[18]	 N. Jørgensen. Putting it all in the trunk: Incremental
software engineering in the FreeBSD open source
project. Information Systems Journal, 11(4):321-
336, 2001.

[19] 	S. Koch, G. Schneider. Effort, cooperation and
coordination in an open source software project:
GNOME. Information Systems Journal, 12(1):27-42,
2002.

[20] 	M. M. Lehman, L. A. Belady, editors. Program
evolution: Processes of software change. Academic
Press Professional, Inc., San Diego, CA, USA, 1985.
ISBN: 0-12-442440-6.

UPGRADE Vol. VIII, No. 6, December 2007 17© Novática

Free Software: Research and Development

[21] 	L. Lopez, J. G. Barahona, I. Herraiz, G. Robles.
Applying social network analysis techniques to
community-driven libre software projects. Interna-
tional Journal of Information Technology and Web
Engineering, 11(4):321-336, 2006.

[22] 	T. Mens, J. F. Ramil, M. W. Godfrey. Analyzing the
evolution of large-scale software: Guest editorial.
Journal of Software Maintenance and Evolution,
16(6):363-365, 2004.

[23] 	M. Michlmayr. Managing volunteer activity in
free software projects. In Proceedings of the 2004
USENIX Annual Technical Conference, FREENIX
Track, pages 93102, Boston, USA, 2004.

[24] 	M. Michlmayr. Software process maturity and the
success of free software projects. In K. Zielinski and
T. Szmuc, editors, Software Engineering: Evolution
and Emerging Technologies, pages 3-14, Krakow,
Poland, 2005. IOS Press. ISBN: 978-1-58603-559-
4.

[25] 	M. Michlmayr, B. M. Hill. Quality and the reliance
on individuals in free software projects. In Proceed-
ings of the 3rd Workshop on Open Source Software
Engineering, pages 105-109, Portland, OR, USA,
2003.

[26] 	M. Michlmayr, F. Hunt, D. Probert. Quality prac-
tices and problems in free software projects. In M.
Scotto and G. Succi, editors,Proceedings of the First
International Conference on Open Source Systems,
pages 24-28, Genova, Italy, 2005.

[27] 	A. Mockus, R. T. Fielding, J. D. Herbsleb. Two
case studies of open source software development:
Apache and Mozilla. ACM Transactions on Soft-
ware Engineering and Methodology, 11(3):309-346,
2002.

[28] 	E. S. Raymond. The Cathedral and the Bazaar.
O’Reilly & Associates, Sebastopol, CA, USA, 1999.
ISBN: 1-56592-724-9.

[29] 	A. Senyard, M. Michlmayr. How to have a suc-
cessful free software project. In Proceedings of the
11th AsiaPacific Software Engineering Conference,
pages 84-91, Busan, Korea, 2004. IEEE Computer
Society.

[30] 	N. Smith, A. Capiluppi, J. F. Ramil. Agentbased
simulation of open source evolution. Software
Process: Improvement and Practice, 11(4):423-434,
2006.

[31] 	 I. Stamelos, L. Angelis, A. Oikonomou, G. L. Bleris.
Code quality analysis in opensource software devel-
opment. Information Systems Journal, 12(1):43-60,
2002.

[32] 	L. Torvalds. The Linux edge. In C. DiBona, S. Ock-
man, and M. Stone, editors, Open Sources: Voices
from the Open Source Revolution, pages 101-111.
O’Reilly & Associates, Sebastapol, CA, USA, 1999.
ISBN: 1-56592-582-3.

18 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

The Commons as New Economy and what
this Means for Research

Richard P. Gabriel

This article was previously published in the Proceedings of the First International Workshop on Emerging Trends in FLOSS
Research and Development. FLOSS ‘07. ISBN: 0-7695-2961-5. Digital Object Identifier: 10.1109/FLOSS.2007.14. It is
reproduced with kind permission of IEEE and the author.

Suppose the entire social and commercial fabric supporting the creation of software is changing—changing by becom-
ing completely a commons and thereby dropping dramatically in cost. How would the world change and how would we
recognize the changes? Software would not be continually recreated by different organizations, so the global “efficiency”
of software production would increase dramatically; therefore it would be possible to create value without waste, experi-
mentation and risk-taking would become affordable (and probably necessary because firms could not charge for their
duplication of infrastructure), and the size and complexity of built systems would increase dramatically, perhaps beyond
human comprehension. As important or more so, the activities of creating software would become the provenance of
people, organizations, and disciplines who today are mostly considered consumers of software—there would, in a very
real sense, be only a single software system in existence, continually growing; it would be an ecology husbanded along
by economists, sociologists, governments, clubs, communities, and herds of disciplines. New business models would be
developed, perhaps at an alarming rate. How should we design our research to observe and understand this change?
There is some evidence the change is underway, as the result of the adoption of open source by companies who are not
merely appreciative receivers of gifts from the evangelizers of open source, but who are clever thieves re-purposing the
ideas and making up new ones of their own.

Keywords: Business Strategies, Commons, Intel-
lectual Property, New Business Models, Open Source,
Software License, Software Production, Source Code.

1 Introduction
Sometimes something new happens at a scale that both

researchers and practitioners are either unable or unwilling
to observe. An example of this in recent memory has been
the emergence of emergence as a field of study, in the form
of complexity science. For centuries a sort of phenomenon
that is now regard as possibly central to many scientific
disciplines was simply not observed or was considered
not worthy of serious thought.

Researchers in and practitioners of open source1 are
enamored of licensing, tools and their usage, community
building, and how effective and efficient the open-source
methodology is at producing software. However, some-
thing much larger is going on that could be changing the
landscape of computing and not just adding some knowl-
edge to the discipline of software engineering.

Over the last 10 years, companies have been contrib-
uting a stupendous amount of software to (let’s call it)
the open-source world. For example, Sun Microsystems
recently computed that, using conventional means for
assigning a monetary value to source code, it has con-

Author

Richard P. Gabriel received a PhD in Computer Science from
Stanford University in 1981, and an MFA (Master of Fine Arts)
in Poetry from Warren Wilson College in 1998. He is a Dis-
tinguished Engineer at IBM Research, looking into the archi-
tecture, design, and implementation of extraordinarily large,
self-sustaining systems as well as development techniques for
building them. Until recently he was President of the Hillside
Group, a nonprofit that nurtures the software patterns commu-
nity by holding conferences, publishing books, and awarding
scholarships. He is on Hillside’s Board of Directors. He is au-
thor of four books and a poetry chapbook. He has won several
awards, including the AAAI/ACM Allen Newell Award. And
he is the lead guitarist in a rock ‘n’ roll band and a poet. <rpg@
{dreamsongs.com | us.ibm.com}>.

tributed over $1 billion in code. IBM and possibly other
large corporations are not far behind. Of particular inter-
est is that Sun has made a decision to open-source all of
its software, and it appears they are well on their way to
doing that. At the same time, Sun is not placing all of its
revenue expectations on their hardware: they expect to
make money with their software.

2 Sun: A Case Study (Brief Overview)
Sun started in 1982 as a company based on open

 1 I use this term for simplicity and to avoid politics.

UPGRADE Vol. VIII, No. 6, December 2007 19© Novática

Free Software: Research and Development

standards and commodities: BSD Unix, Motorola 68000
processors, and TCP/IP. In the late 1990s it began to
experiment with open-source ideas and true open source:
Jini (not true open source, but an interesting experiment in
open-source concepts and practices combined with strate-
gies for creating markets), Netbeans, Juxta, and OpenOf-
fice were early experiments, followed by Glassfish, Grid
Engine, OpenSparc, OpenSolaris, Open Media Commons,
and most recently Java.

Throw in Java.net and an interesting landscape emerg-
es. Sun is clearly experimenting with the whole concept of
the commons. OpenSparc is a hardware design that was
licensed under an open-source license for the purpose of
creating markets; Open Media Commons is primarily a
DRM open-source project, but it is also looking at the
question of what intellectual property rights means in
the 21st century. Java.net is a sort of meta-community
aimed at creating markets around Java. Solaris and Java
are considered Sun’s software crown jewels.

Throughout this experimental era at Sun (which is
still going on) there were emphases on governance and
business models.

Sun is pushing four open-source-related business
strategies:

n	 To increase volume by engaging software develop-
ers and lowering the barriers to adoption.

n	 To share development with outside developers
and established open-source projects for software
required by Sun’s software stacks.

n	 To address growing markets whose governments
or proclivities demand open source, such as Brazil,
parts of the European Union, Russia, India, and
China

n	 To disrupt locked-in markets by providing open-
source alternatives.

Sun makes an interesting set of observations about
how the point has changed over time where monetization
of software happens. In the 1970s, software was primarily
part of a complete hardware package. People would buy a
complete system (hardware and software). In many cases,
hardware companies would provide the source code for
their customers to customize—and nothing was considered
unusual about this.

During the two decades from 1980 to 2000, hardware
companies started to unbundle their software, and soft-
ware companies sprang up to sell software to do all sorts
of things, including operating systems. What these two
periods had in common was that software was monetized
at the point of acquisition. And it seemed at the time there
was no choice: you wanted to use something, so you
needed to buy it first.

With open source and the right business models, this
can change, and that change started in the early 2000s.
Open source is typically free to use—that is, no cost.
However, there are auxiliary things companies, and in

some cases individuals, willing or eager to pay for: support
and maintenance, subscription for timely updates and bug
fixes, indemnification from liability, and patent protection.
In these cases, monetization can occur when the final
product is deployed. That is, in such cases it costs nothing
to explore an idea for a product to the point of putting it
completely together for sale or distribution. Then, if the
producer wishes, one or several of these services can be
purchased.

By delaying some of the costs of coming up with new
products and possibly new companies, likely many more
new ideas can be explored and considered over the entire
market. The barriers for experimentation are very low.

The full repertoire of business models Sun has identi-
fied are as follows:

n	 Subscription (as described above) including in-
demnification and patent protection by extending
a company’s umbrella of intellectual property over
parties who subscribe.

n	Dual license, in which newer versions of the code
are sold and older ones are open source.

n	 Stewardship, in which a standard is used to attract
developers using the standard and to whom other
products and services are sold.

n	 Embedded, in which the code is part of something
else (usually hardware) that is sold.

n	 Consulting, in which a person’s or company’s
expertise, in particular source code base, is sold
as, typically, heads-down programming services.

n	Hosting, in which services provided by open-
source software is running on servers and access
to the running services are sold or other revenue
streams are attached to the running code (like
advertisements).

n	 Training and education—of the source base and
also of open-source methodologies.

Sun open-source theoreticians view these observations
as implying a virtuous cycle in which by finding a place
for added value in code in the commons, a company (or
person) can create a monetization point without having to
invest alone in a large code base, and thereby produce a
product or service at lower overall cost.

3 What This Means for Software
Suppose that Sun is not an isolated situation and that

companies and other organizations (including individuals)
are preparing to alter their business and software develop-
ment models to be based on the Sun-described virtuous
cycle. How would the entire enterprise of producing
software change and what would this mean for software
engineering?

Let’s paint the picture. The vast majority of software
would be in the commons and available for use. Nothing
much would be proprietary. There would be pressure
from the customer base for there to be some unifications

20 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

or simplifications. For example, why would there need
to be multiple operating systems aside from the needs of
different scales, real-time, and distributed systems (for ex-
ample)? On the other side, finding new value might cause
pressure on firms to fork source bases to create platforms
or jumping off points for entire categories of new sources
of value. How would this balance play out?

Because the barriers to entry to almost any endeavour
would be so low, there will be many more players (in-
cluding small firms, individuals) able to be factors in any
business area. With more players there would be more op-
portunities for new ideas and innovations. How will these
play out in the market? Will, perhaps, firms try to become
repositories of intellectual property in order to offer the
best indemnification? Will other entities like private uni-
versities or pure research labs become significant players
because they can offer a potent portfolio of patents to use
to protect their clients? Looking at large portfolios such
as owned by IBM or Microsoft, it would seem that they
would continue to dominate; however, in new or niche
areas, small organizations or even individuals could hold
the key patents.

Some obvious considerations immediately come up.
What about licensing? At present large systems are put
together from subsystems (to pick a term) licensed under
different licenses. What is not permitted is to be able to mix
pieces from differently licensed source bases. Will there
be pressure to put all code under the same license or will
the pressure be the other way—to create new licenses for
specialized purposes?

4 What This Means for Software Engineering
Because few companies would “own” an entire system

or application area, there could be some pressure on code
bases to drift regarding APIs, protocols, data formats, etc.
And if so, where would the countermanding pressure come
from? Would standards bodies handle it, would govern-
ance structures like the Apache Foundation or the IETF be
created? Or would firms spring up to define application or
system structure as was done with the personal computer
in the early 1980s. In that case, a set of design rules were
set up by IBM stating what the components of a PC were
and how they interacted [1]. This enabled markets to form
around the different components and the nature of design
in computer systems changed. Today this way of looking at
design has spawned a new approach to software engineer-
ing problems: economics-driven software engineering.

Software and computing education would change
because all the source code would be available for study
(and even improvement as part of the teaching/learning
process).

In this way, developers would be better educated than
they have ever been before.

Programming would become less a matter of clever-
ness and invention, and more a process of finding existing
source code that’s close and either adapting or adapting to
it. Licensing would either help or hinder this.

With pressure lessened to build everything from
scratch, it would be possible to construct larger and larger
systems with achievable team sizes. This would bring out
the issues and challenges associated with ultra-large-scale
systems2. To quote from the call for position papers for a
workshop on this topic [2][3]:

In a nutshell, radical increases in scale and complex-
ity will demand new technologies for and approaches to
all aspects of system conception, definition, development,
deployment, use, maintenance, evolution, and regulation.
If the software systems that we focus on today are likened
to buildings or individual infrastructure systems, then ULS
systems are more akin to cities or networks of cities. Like
cities, they will have complex individual nodes (akin to
buildings and infrastructure systems), so we must continue
to improve traditional technologies and methods; but they
will also exhibit organization and require technology and
approaches fundamentally different than those that are ap-
propriate at the node level. The software elements of ULS
systems present especially daunting challenges. Develop-
ing the required technologies and approaches in turn will
require basic and applied research significantly different
that that which we have pursued in the past. Enabling
the development of ULS systems—and their software ele-
ments, in particular—will require new ideas drawing on
many disciplines, including computer science and software
engineering but also such disciplines as economics, city
planning, and anthropology.

The switch from proprietary to commons-based soft-
ware would hasten the age of ultra-large-scale systems
which will differ qualitatively because of their massive
scale. If that happens, the inadequacies of our tools includ-
ing programming methodologies and languages would be
placed in high relief.

5 What This Means for Research
The habit of research in computing is to look deeply

and narrowly at questions. In a sense, researchers love
puzzles. Gregory Treverton wrote this about puzzles
versus mysteries in a paper on/for the intelligence com-
munity [4]:

Now, intelligence is in the information business, not
just the secrets business, a sea-change for the profession.
In the circumstances of the information age, it is time
for the intelligence community to “split the franchise”
between puzzles and mysteries. Puzzles have particular
solutions, if only we had access to the necessary (secret)
information. Puzzles were the intelligence community’s
stock-in-trade during the Cold War: how many missiles
does the Soviet Union have? How accurate are they?
What is Iraq’s order of battle? The opposites of puzzles
are “mysteries”, questions that have no definitive answer
even in principle. Will North Korea strike a new nuclear

 2 This is the topic of a workshop I'm leading on Tuesday at ICSE.

UPGRADE Vol. VIII, No. 6, December 2007 21© Novática

Free Software: Research and Development

bargain? Will China’s Communist Party cede domestic
primacy? When and where will Al Qaida next attack? No
one knows the answers to these questions. The mystery can
only be illuminated; it cannot be “solved.”

Finding evidence of the sea-change from proprietary
software to commons-based software in the commercial
world is part of a mystery, not a puzzle, and so our tradi-
tional methods might not hold up well. But certainly study-
ing the engineering methods open-source projects use will
not illuminate the larger context—that context being how
the entire enterprise of creating software changes when
corporations change their business models to embrace
the commons. The concerns of firms are not the same as
the concerns of someone using a bug-tracking tool, edit-
ing code with Emacs, and automating a tricky part of the
testing process. Moreover, because bottom-line concerns
dominate sticking to certain ideals of engineering, for
example, we are likely to see ideas we in the software
engineering community have not thought of.

Here is a small example, again from the Sun case
study. A Japanese automobile manufacturer contacted
Sun’s Open Source Group to learn about open-source. The
group was responsible for the creation of the bulk of the
company’s applications. They claimed to not have a single
coder in their direct employ, but outsourced—primarily to
India. They were concerned that the Indian companies they
were using were not as adept with interpreting the specs
they were given as made financial sense for the car com-
pany. So the VP of the group was interested whether the
Sun Open Source Group could help them figure out how
to impose an open-source methodology (but not reality)
on the Indian outsourcing companies so that the applica-
tions group could monitor progress, run the nightly builds,
observe email and wiki-based communications, and etc, to
both judge how the project was going and to correct it on
the fly, perhaps by using open-source techniques.

Not a line of code would be released to the outside
world; there would be no license. It would be simply a
management tool. Researchers who would notice and re-
port on such innovations and activities would come from
a business school, or would be economists or perhaps
anthropologists. Therefore what I see required is a broader
view, a more interdisciplinary view—this is in concert with
the conclusions reached by the authors of the ultra-large-
scale systems report.

Another part of the sea change is that software re-
searchers would be able to do real science on naturally
occurring software, systems, frameworks, etc. For exam-
ple, it would start to make sense to get a handle on how
many times a piece of data is transcoded on its way from
a database to a client screen somewhere, a number that
could be very high particularly if the system doing the
overall transmission were made of a number of separately
developed frameworks. Today, gathering such informa-
tion requires a special relationship with a corporation—a
relationship that I suspect is quite rare.

6 Conclusions
One can wonder whether Sun’s directions are predic-

tive or iconoclastic. If the latter, then Sun is merely a
curiosity; but if the former, it behooves those of us who
straddle the research / practitioner boundary to figure out
a sort of research program that will help us notice the
changes in order to record and study them.

References

[1] 	 C. Baldwin, K. Clark. Design Rules: The Power of
Modularity. MIT Press, 1999. ISBN: 0262024667.

[2] 	 First ICSE Workshop on Software Technologies for
Ultra-Large-Scale (ULS) Systems. <http://www.
cs.virginia.edu/~sullivan/ULS1/>.

[3] 	 The Software Engineering Institute (SEI). The
Software Challenge of the Future: Ultra-Large-
Scale Systems, June 2006. <http://www.sei.cmu.
edu/uls/>.

[4] 	 Gregory F. Treverto. Reshaping Intelligence to Share
with “Ourselves”. Commentary No. 82, Canadian
Security Intelligence Service, July 2003. <http://
www.csis-scrs.gc.ca/en/publications/commentary/
com82.asp>.

22 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

Keywords: Framework Programme, Free Software, Libre
Software, Open Source, Research, Research Management.

1 Introduction
Within the scope of the 6th Framework Programme

(6FP), libre (free / open) source has begun to arouse
interest, and several projects have been studying the
phenomenon with a view to increasing knowledge and
improving software development. Many of the good prac-
tices applied in libre software projects could be adapted
to the management of complex environments. We think

Libre Software for Research
Israel Herraiz-Tabernero, Juan-José Amor-Iglesias, and Álvaro del Castillo-San Félix

Traditionally, research projects tend to be less than transparent, only showing to the public selected deliverables but no
internal information. Normally no information about how the research project is progressing is available as public data.
Even the partners of the project tend to be unaware of how the other partners are getting on. In this respect, research
projects are similar to traditional software development projects. Research projects in the field of Information Society
Technologies share some features with libre (free / open source) software projects, such as global distributed develop-
ment and the possibility of teleworking. In the light of the above, in this paper we present a proposal to manage research
projects, adopting methods used in the libre software community, and using libre software tools. Our methodology faci-
litates communication flows between the various partners of the project, even if they are geographically dispersed, and
also allows selected internal information to be shared with the general public. Furthermore, by adopting this methodolo-
gy, several additional possibilities arise, among which are automated public activity reports, project progress analyses,
and technological watching and foresight techniques. We firmly believe that this new approach to managing research
projects presents a number of advantages over traditional organization methods, and may improve the performance of
research projects.

Herraiz, Amor and del Castillo, 2007. This article is distributed under the “Attribution-Share Alike 2.5
Generic” Creative Commons license, available at <http://creativecommons.org/licenses/by-sa/2.5/ >.

Authors

Israel Herraiz-Tabernero is a Ph.D. student at the Universidad Rey
Juan Carlos, Madrid, Spain. His research is related to the evolu-
tion of libre software projects. In particular, he is using time series
analysis and other statistical methods to characterize the evolution
of software projects. He has participated in several research projects
funded by the Framework Programme of the European Commis-
sion (QUALOSS, FLOSSMetrics, QUALIPSO, CALIBRE). He
has also collaborated on other projects funded by companies such
as Vodafone and Telefonica. He has participated in the writing of
manuals about managing and starting libre software projects. For
example, together with Juan José Amor and Gregorio Robles he
wrote a manual for the Universitat Oberta de Catalunya’s Master
Programme in Free Software. He has been a reviewer for the IEEE
Africon 2007 among other conferences and for the journal IEEE
Transactions on Software Engineering. He is currently a research
and teaching assistant at the Universidad Rey Juan Carlos, pursuing
his PhD on the evolution of libre software. He also coordinates the
programme of the Libre Software Master offered by the Universidad
Rey Juan Carlos, in collaboration with Igalia and Caixa Nova. <her-
raiz@gsyc.escert.urjc.es>.
Juan-José Amor-Iglesias has an M.Sc. in Computer Science from

the Universidad Politécnica de Madrid and he is currently pursu-
ing a Ph.D. at the Universidad Rey Juan Carlos, where he is also a
project manager. His research interests are related to free software
engineering, mainly effort and schedule estimates in free software
projects. Since 1995 he has collaborated in several free software
related organizations: he is a co-founder of LuCAS, the best known
free documentation portal in Spanish, and Hispalinux, and he also
collaborates with Barrapunto.com and Linux+. <jjamor@gsyc.
escert.urjc.es>.
Alvaro del Castillo-San Félix has been in Free Software com-
munities for over 12 years. His first experience was with the Linux
kernel and all his professional life has been related to Free Software
projects. He has worked on the foundation of projects such as Bar-
rapunto.com and large communities such as GNOME Hispano and
Mono Hispano. He worked as project manager for the first version
of LinEx and during his role as Architectural Director in LambdaUX
software company he participated in the Compatiblelinux.org project.
He works in the GNOME community, mainly on the Planner project
where he has spent over four years coding, and also on projects like
FSpot and Evolution. He is currently coordinating the European Free
Software Projects in the GSyC/LibreSoft research group at the URJC
university where he lectured for four years in distributed systems.
<acs@gsyc.escert.urjc.es>.

that one of these complex environments could be research
projects themselves.

In a research project, people from different countries
work in coordination to achieve the goals of the project.
These people, often in different geographical locations,
need to work on the same documents or on the same
pieces of software, and consequently need to be aware
of the work of the other partners to ensure an efficient
division of work.

Traditionally, however, research projects tend to be
less than transparent. Partners are not fully aware of what

UPGRADE Vol. VIII, No. 6, December 2007 23© Novática

Free Software: Research and Development

the rest of the partners are doing, the general public may
access only selected documents, commonly referred to as
deliverables, and not all deliverables are made available
to the public.
This is a serious problem. First of all, at least within the
scope of the 6th Framework Programme, research projects
are publicly funded. Therefore all results (not only the final
deliverables but all the work done in the project) should be
available to those who are paying for the project.

Furthermore, at least in the case of libre software
projects in the 6th Framework Programme (and probably
in other fields too), several projects partially share the same
goals and need access to the same sources of information.
These projects could gain from other similar projects if
they could access the internal documents and information
generated by each project. Think of the analogy with the li-
bre software world: if developers know that they can reuse
a piece of source code available in any other project, they
can simply take it and adapt it for their own purposes.

Because of all these issues we propose a methodology
to adapt the practices applied in the libre software com-
munity to the management of research projects. Our meth-
odology is intended to be adopted by all of the partners of
a given project. The paper continues as follows. The next
section describes the characteristics of a typical research
project. Section 3 describes the needs of a research project
and proposes tools to meet these needs. Section 4 explains
how to organize the work and the environment of tools sup-
porting that work, based on the experience of our research
work. Finally, Section 5 draws some conclusions.

2 Structure of a Research Project
In this section we describe the structure of a typical re-

search project. We take as examples our experience in research
projects within the scope of the 6th Framework Programme.

Research projects are proposed and developed by a
number of partners from different countries. This gives
rise to the first problem we encounter when working on a
project: language. English tends to be the language chosen
for all communication between partners and for all internal
and public documents generated.

The work is divided into workpackages. Each partner
may lead one or more workpackages and all partners will
participate in at least one workpackage. These work-
packages will contain both milestones and deliverables.
Milestones are key dates on which a certain piece of work
is due. Deliverables are documents (although they may
also be software, a database, etc) forming part of the final
outcome of the project. Some deliverables are public, some
internal to be used by the project partners, and others are
intended to be delivered to the sponsor of the project (in
6FP’s case, the European Commission).

The work required to produce the deliverables usually
needs to be performed by various partners in coordination.
Usually, one of the partners acts as coordinator and looks
after all the economic aspects of the projects, while ensuring

that all the work to be performed by each partner is completed
according to the workplan and in a timely fashion.

The key to a research project is coordination: the various
partners need to coordinate with the rest of the partners and
it is very important for all partners to be aware of the work
performed by the others. Of course, each partner is respon-
sible for its own work and for delivering it on time.

3 Needs of a Research Project
Certain tools are required if the project is to be devel-

oped as described above. Firstly we will talk about the
general concepts behind what a research project needs,
before going on to propose a number of libre software
tools to meet those needs.

n	Website
First of all, the dissemination requirements of a pu-

blicly funded project should be covered by a website. It
is usual to build a content management system (CMS) to
make it easier for the partners to publish documents and
for the general public to access them.

From the Wikipedia page on CMS[1]:
A content management system (CMS) is a system used
to manage the content of a Web site. CMSs are deployed
primarily for interactive use by a potentially large number
of contributors. For example, the software for the website
Wikipedia is based on a wiki, which is a particular type of
content management system.

The website should also be capable of distinguishing
between public and private documents, making private
documents available only to selected users (typically the
partners of the project).

n	Mailing list
Secondly, in order to facilitate communication between

partners, a mailing list is required. Sometimes it is a good
idea to set up two different mailing lists, one for all the
people involved in the project and another limited to the
core group members. In our opinion, there are some stra-
tegic decisions regarding the research project that should
only be discussed by the core group and not by all the
researchers taking part in the project.

If the group of people working together is greater than
4 or 5, it is essential to have a mailing list. Mailing lists
also provide other advantages such as a record of past
messages that can be useful when new members join the
group to work on the project after it has started. Usually
there will be two mailing lists, one for everyone involved
in the project and another just for the core group. If the
research group is small, it may be enough to have just
one mailing list.
n	Version control system

There is also a need for a repository of working docu-

24 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

ments and software (files of any kind in general) with ver-
sion control capabilities. This makes it possible to recover
past versions of the documents and to work on the same
documents in coordination with other people. It is also a
central point where anybody can find any document or file
belonging to the project. This repository is not intended for
the publication of deliverables but rather to help research-
ers work on documents in a coordinated fashion. Control
version capabilities are crucial because different people
work on the same document and it may be necessary to
recover a past version of a document.

n	Wiki
Another interesting tool is the use of wikis, which

make it possible to work on documents using a web
browser. From the Wikipedia page on wikis [2]:

A wiki is software that allows users to create, edit,
and link web pages easily. Wikis are often used to cre-
ate collaborative websites and to power community
websites.

Wikis allow researchers to work on documents
on the web using only a web browser. It is intended
for lightweight documents. In our opinion, it is not
an appropriate tool for writing deliverables but it is
more than adequate for organizing the research group’s
knowledge base.

n	 Issue tracking system
Finally, an issue tracking system may also be useful.

From the Wikipedia page on this subject [3]:
An issue tracking system [..] is a computer software

package that manages and maintains lists of issues, as
needed by an organization. Issue tracking systems are
commonly used in an organization’s customer support
call center to create, update, and resolve reported cus-
tomer issues, or even issues reported by that organiza-
tion’s others employees. An issue tracking system often
also contains a knowledge base containing information
on each customer, resolutions to common problems,
and other such data.

In the case of a research project, the tracking sys-
tem can be used by managers to assign tasks to people
and other resources, and to monitor the progress of
the work. This makes the life of the project manager
easier and ensures that everybody is aware of the work
performed by the rest of people in the group.

In our opinion, this is the basic set of tools that any
group working on a research project should make use
of. They make it easier to organize and monitor the
group’s work on a day-to-day basis. 3.1	 Tools to Meet
these Needs

n	Website
For the first requirement (a website with CMS ca-

pabilities) there are a number of platforms available in
the libre software community. A comprehensive list of
libre software alternatives may be found at [5]. Most
of them include the capabilities required by a research
group, such as document repository with different
profiles (public, private, and so on).

However, our recommendation is not included in the
above mentioned list. We recommend using Plone [9].

n	Mailing lists
With regard to mailing lists, we recommend using

GNU Mailman which is a package for managing elec-
tronic mailing lists. It has a web interface to adminis-
trate the system and enables messages to be archived
and accessed via a web interface. More information
about GNU Mailman can be found on the relevant
Wikipedia page (see [4]).

n	Version control repository
For the version control repository we recommend

Subversion [6] (also known as SVN). The main reason
behind our choice is that Subversion integrates better
with other tools and can be accessed using standard
Webdav clients, supported by the file browsers of
almost every operating system, although it is better to
use a Subversion specific client so as to be able to make
full use of its capabilities.

n	Wiki
For wikis, in our opinion the solution of choice is

the popular MediaWiki, the system used by Wikipedia
itself [7] among others.

n	 Issue tracking system
Finally, for our issue tracking system, we recom-

mend Trac [8]. What is even more interesting about Trac
is that it can integrate a wiki, a subversion repository, an
issue tracker, and a timeline for project planning. For
instance, when submitting a ticket, it can be associated
with a milestone in the project planning, with a given
revision of a document in the SVN repository, or with
the people involved in that ticket. The information is
available in other web accessible formats: text format
and RSS. In particular, RSS allows information to be
processed automatically, which is useful for technologi-
cal tracking and activity reporting systems.

There are however a great many alternatives for
issue tracking systems.[10] includes a comprehensive
list of tracking systems, broken down into various
categories.

4 Organization of the Work
In this section we present how we used the tools men-

tioned in the previous section to meet our needs when

UPGRADE Vol. VIII, No. 6, December 2007 25© Novática

Free Software: Research and Development

participating in some European projects.
First of all, this is the list of tools that we chose:

n	 Zope for our website.
n	Mailman for the mailing lists.
n	 Subversion for the control version system.
n	 Trac for the wiki and the issue tracker. The SVN

repository is integrated with Trac.

For the website, we developed our own solution, using
Zope as a framework. The website does not meet the above
mentioned requirements (document repository, profiles for
different kind of users, etc). However, within the scope
of the project, other solutions meeting these requirements
were adopted. For instance, in some projects, Plone (which
is based on Zope) was chosen.

In the case of mailing lists, we have three different
mailing lists for each project:
n	A list to which everybody working on the project

is subscribed.
n	A list containing only the core group managing the

project.
n	A list to which all partners are subscribed. This is

useful when the trac only covers the work of one
team but the project has several teams from dif-
ferent institutions working on it.

n	A list of commit watchers. Every time a new
commit is added to the version control system, a
message with a summary of the commit is sent to
this list. This allows everyone to be aware of the
changes made to the repository.

For the mailing lists we use Mailman. The lists are usu-
ally configured as moderated for unsubscribed people to
avoid junk emails. Some lists, such as core or partners lists,
could be also configured as private (nobody can subscribe
to the list or read the archives without authorization).

For the wiki and the issue tracking system, we use
Trac. We also integrated the Subversion repository in Trac.
We use the wiki for the project’s knowledge base, and the
tracking system to control, assign, and monitor the work
in the project. Also, any electronic mails generated by this
tool (when issue tickets are created or closed) are sent to
the list used by the working team.

When managing several projects at a time, each one with
its own trac, it is very useful to integrate the activity tracking
of each project in a “planet” (an RSS aggregator1). Planets
are very useful for seeing the recent activity of all projects
in a single web page, by importing all RSS files representing
the timeline content of each trac site.

Our team has modified Planet in order to integrate
activity indicators as well. An activity indicator is a smiley
which represents the most recent activity of a project. For

Figure 1: Planet Website (showing recent activity in the various projects and indicators related to this activity).

1 The most commonly used, written in Python, is available at <http://www.planetplanet.org/>.

26 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

example, if a project has registered activity in the last hour,
the smiley is laughing. But when the last activity is a day
old, the face is more serious. There are several smileys
until the worst case, representing a project which has not
registered any activity in last month.

An example from this website is shown in figure 1. The
left hand side displays a list of recent events, classified
by project. On the right hand side, we can see a list of all
the projects, with the indicator of the most recent activity.
Below the list of projects there is a legend explaining the
activity indicators.

The RSS feeds from the Trac tool of each project are
integrated into a single website. This feed contains an
entry for each event occurring in the Trac. It may be a
ticket event (created, changed, etc), an event in the wiki
(modification, addition or removal of a page), or an event
in the Subversion repository (again modification, addition
or removal).

This website has proved to be very useful for the group.
First of all because it enables anyone working in the group
to be aware of any recent work done in all the projects and
who did it. Secondly, because the activity indicators act as
a “motivator” for the various subgroups working on each
project. For instance, if one group takes the lead in recent
activity as shown by the indicators, another group may be
encouraged to work harder to get back on top.

To sum up, we have implemented all the above men-
tioned tools and have realized their full potential. For
example, our Trac websites integrate wiki, Subversion
repository, and an issue tracking system. We also have a
mailing list which receives a message every time a change
occurs in any of the repositories. As we work on various
projects we can consolidate the information about the
recent activity of these projects in a single website. This
means that everyone can be aware of the recent work per-
formed by the rest of the group, regardless of which project
they are working on. Furthermore, activity indicators act
as motivators to maintain a high level of activity compared
to other projects within our own research group.

However, we have to admit that due to external re-
quirements we have not yet been able to fully open up our
tools to the rest of the world. So we are not yet benefitting
from sharing our knowledge with other partners working
on different projects, although we are working towards
that goal.

5 Conclusions
In this section we present a methodology and a set of

tools to organize a research project and the various groups
working on the project. Our methodology is based on
the methods and tools used to manage and organize libre
software communities.

Research projects should be as open as libre software
projects are for two reasons: they are usually publicly
funded and so they should be publicly available to every-
one, and some projects may benefit from collaborating with
other research projects, thereby making a more efficient
use of public funding.

Our proposed methodology allows all information to
be made publicly available. Not only the final deliverables
but all the work done during the lifetime of the project.

The proposed tools make it possible to keep track of
all the work performed during the entire lifetime of the
project. These repositories of information on the research
project open up new avenues to improve the efficiency
of research projects; for example, the automated techno-
logical watching of research projects based on the trails
available in the repositories of the project (website, mailing
list, version control system, issue tracking, etc).

The proposed tools and methods also allow informa-
tion to users and to the public to be filtered on the basis
of different information access profiles.

Another strong point of this methodology is that it
makes it possible to work remotely, as all the information
is managed using the proposed tools and all the tools can
be accessed remotely. Thus it would be possible for people
visiting other partners or universities to continue working.
It also enables various partners to work in coordination in
spite of being in different countries.

The only drawback of our proposal is that it is only
valid for Information and Communication Technologies.
For instance, chemical or biological projects require people
to work together at the same location. However, the tools
may still be useful to organize some parts of the work, for
example the management of deliverables.

In future work we will use the trails of the repositories
of the projects on which we are working to build a tech-
nological watching system to track the research carried
out on libre software. We are also planning to build tools
to automate activity and participation reports based on
the information provided by the repositories. In the near
future we are also considering completely opening up our
repositories to make the information available to anyone.
At the moment, as we are working with other partners, that
decision is not in our hands. In any event, all the results
of our projects are offered under non-restrictive licenses,
both for software and documents.

References
[1]	 <http://en.wikipedia.org/wiki/Content_manage-

ment_system>.
[2]	 <http://en.wikipedia.org/wiki/Wiki>.
[3]	 <http://en.wikipedia.org/wiki/Issue_tracking_

system>.
[4]	 <http://en.wikipedia.org/wiki/GNU_Mailman>.
[5]	 <http://www.opensourcecms.com/>.
[6]	 <http://en.wikipedia.org/wiki/Subversion_

%28software%29>.
[7]	 <http://en.wikipedia.org/wiki/Mediawiki >.
[8]	 <http://en.wikipedia.org/wiki/Trac >.
[9]	 <http://plone.org >.
[10]	 <http://en.wikipedia.org/wiki/

Comparisonofissuetrackingsystems >.

UPGRADE Vol. VIII, No. 6, December 2007 27© Novática

Free Software: Research and Development

Technological Innovation in Mobile Communications
Developed with Free Software: Campus Ubicuo

Javier Carmona-Murillo, José-Luis González-Sánchez, and Manuel Castro-Ruiz

Nowadays, wireless communications networks are one of the fastest growing segments of the communications field. The
increasing demand for services and the need for mobility have changed the traditional model of Internet connectivity
based only on access through fixed networks. Starting from both the portable devices and the current wireless access net-
work position, we propose a system designed to provide mobility and ubiquity in a university campus environment, easily
adaptable to all kind of organizations. In this paper we present Campus Ubicuo, a research, development and innovation
project in mobile communications field. The project, which is developed using free software, aims to offer the user ubiq-
uity through advanced communications services over wireless networks. Moreover, the project development has allowed
researching into IP mobility and interference analysis produced by several wireless communications technologies.

Keywords: Free Software, IP Mobile, Mobility, PDA,
Ubiquity, 3G.

1 Introduction
In recent years the research community has started to

focus attention on free software as a basis for the develop-
ment of its proposals and contributions. In the computing
and communications field, this attention is especially use-
ful if we take into account the characteristic development
model used in free software [1].

On the other hand, the current demand of ubiquitous
connectivity, no matter what the place, time or access
technology, has made mobile communications necessary.
There are three main features in this environment that must
be taken in account: User mobility in wireless networks;
the Quality of Service (QoS) of these communications;
and finally, security issues for the information transmit-
ted across mobile networks. The Campus Ubicuo1 project
proposes to connect them by means of free software, which
contributes some new advantages.

This project is the outcome of the experience obtained
over some years of research into communications, mobil-
ity and free software, and comes to take advantage of the
mobility and portability possibilities of PDA (Personal
Digital Assistant) devices, mobile phones and laptops.
Apart from these devices, also are included technologies
like GSM (Global System for Mobile Communications),

Carmona, González and Castro, 2007. This article is distributed under the “Attribution-Share Alike 2.5
Generic” Creative Commons license, available at <http://creativecommons.org/licenses/by-sa/2.5/ >.

Authors

Javier Carmona-Murillo is a PhD student in the Computing
Systems and Telematics Engineering Department at the Univer-
sity of Extremadura, Spain, where he received his engineering
degree in Computer Science (2005). His main research topics
are broadband networks, QoS provision in mobile networks and
IP mobility. He is currently working on the Campus Ubicuo
project and he is also doing research support work in the Ad-
vanced and Applied Communications Engineering Research
Group (GITACA) <http://gitaca.unex.es>. <jcarmur@unex.
es>.

José-Luis González-Sánchez is a full time Associate Professor
of the Computing Systems and Telematics Engineering
department at the University of Extremadura, Spain. He received
his Engineering degree in Computer Science and his Ph.D degree
in Computer Science (2001) at the Polytechnic University of
Cataluña, Barcelona, Spain. He has worked for some years
at several private enterprises and public organizations, as a
System and Network Manager. He is the main researcher of the
Advanced and Applied Communications Engineering Research
Group (GÍTACA) of the University of Extremadura. He has
published many articles, books and research projects related
to computing and networking. Currently he is the president of
CPIIEx (Professional association of the engineering in computer
science of Extremadura). <jlgs@unex.es>.

Manuel Castro-Ruiz received the Technical Engineering degree
in Computer Science from the University of Extremadura,
Spain. He completed a Masters in Strategic Administration
and Innovation Management at the Autonomous University
of Barcelona. In the last 10 years he has worked in several
consultancy companies in the Information and Communications
Technology sector in Madrid, Andalucía and Extremadura.
He has managed Information Systems projects for private
enterprises and public organizations. Currently, he is the Sadiel
S.A representative in Extremadura. <mcruiz@sadiel.es>.

1 Campus Ubicuo <http://gitaca.unex.es/cubicuo> is a project de-
veloped in agreement between the Advanced and Applied Commu-
nications Engineering Research Group (GITACA) of the University
of Extremadura <http://gitaca.unex.es> and the company SADIEL
S.A. This work is sponsored in part by the Regional Government of
Extremadura (Education, Science and Technology Council) under
GRANT Nº PDT05A041.

28 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

GPRS (General Packet Radio Service), UMTS (Universal
Mobile Telecommunications System), Bluetooth or WiFi
(Wireless Fidelity).

This paper presents the work developed in the project,
as well as the research tasks carried out, organized as fol-
lows: In Section 2 we describe each Campus Ubicuo sub-
project, whereas research task related to Campus Ubicuo

are detailed in Section 3. Finally, conclusions and future
work are presented in Section 4.

2 Campus Ubicuo Development
2.1 System Architecture
Figure 1 shows the global architecture of the pro-

posed system. This is an infrastructure over which ubiq-
uity services can be offered through mobile communi-
cations technologies. In the figure we can see the four
pillars upon which Campus Ubicuo rests: mobility, QoS,
security and free software.

In following sections, we describe each task in which
the project development has been split: Movicuo, GNU/
LinEx in PDA, SARI and MeUbicuo.

2.1.1 Movicuo
In Campus Ubicuo, we devote a great amount of our

efforts to develop software that contributes mobility to
users of free operating systems like GNU/Linux. Mov-
icuo is the project subsystem where we carry out these
tasks.

Nowadays, the technologies that have mobility as

an inherent feature are mobile phone networks. GPRS
(2.5G) complements the design of GSM (2G) by adding a
packet switched network to carry data traffic; moreover it
allows QoS parameter negotiation. However traffic rates
achieved by GPRS (171.2 Kbps under ideal conditions)
[2] are not adequate to support some particular services,
as for example multimedia traffic. UMTS (3G) uses a

new media access method that adds complexity but al-
lows achievement of higher traffics rates [3]. In order to
establish a 2.5G or 3G connection from GNU/Linux, the
first step is to connect devices at the physical layer. If we
are using a laptop and a mobile phone, that connection
will be made by means of USB, serial line or Bluetooth
technology. If we are using a PDA, the physical link will
be established without user intervention. Establishing a
point-to-point link layer connection (PPP, Point to Point
Protocol) is the next step [4]. In Figure 2, we can see the
protocol stack used after PPP activation.

One of the most interesting features in the connection
process is the access to lower layers. GPRS/UMTS defines
a set of AT+ commands to allow the developers to access
to the terminal hardware and the GPRS/UMTS network
properties. These AT+ commands extend the usual AT
commands assigned to control the modem [5].

The application developed in Movicuo, simplifies that
process by offering Campus Ubicuo users the possibility
to establish a connection by using portable devices and
mobile technologies from GNU/Linux. The tool has been
implemented using GNOME and GTK+ libraries. Fur-

Figure 1: Campus Ubicuo Architecture.

UPGRADE Vol. VIII, No. 6, December 2007 29© Novática

Free Software: Research and Development

thermore, it allows QoS negotiation and offers real-time
information about the connection state (see Figure 3). We
highlight here the rate/time chart, which is particularly use-
ful, that has been developed using the rdtool <http://oss.
oetiker.ch/rrdtool>.

From the research point of view, thanks to this tool,
we have analysed 2.5G and 3G connections, studying
parameters like throughput, delay and jitter. We have also
evaluated the network behaviour depending on the kind
of traffic sent and the negotiated QoS level.

2.1.2 GNU/LinEx and PDAs
This section is focused on building a GNU/LinEx

distribution for PDA devices. Once developed, this plat-
form will allow us to design advanced communications
software for mobile devices. Building a Linux embedded
system in a PDA is a complex task. It requires a wide
knowledge in operating systems, Linux systems and de-
vice specific architecture. PDA uses a class of RISC mi-
croprocessors called ARM [6]. This means that the whole
software executed in this device must be specifically

Figure 2: Client-side Protocols for 3G Connection.

Figure 3: 3G Parameter Information Window.

30 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

compiled for that platform. The cross-compiling process
consists in creating executables binaries for a platform
other than the one on which the compiler is running.

Thus compiling an application for the PDA or to build
a distribution implies cross-compiling. Figure 4 shows
the difference between a file compiled for x86 architec-
ture and a file compiled for ARM architecture. In this
example, the GCC compiler is used.

At present, many projects are focused on Linux sys-
tem development for embedded devices. Among them

are EmDebian <http://www.emdebian.org> or Famil-
iar <http://familiar.handhelds.org>, as well as tools to
make easier the cross-compiling process like Scratch-
box <http://www.scratchbox.org> and OpenEmbedded
<http://www.openembedded.org>. The first of these
offers several tools designed to facilitate the process,
whereas OpenEmbedded is an environment that simpli-
fies the task of building complete Linux distributions for
embedded devices.

In the Campus Ubicuo project we use different PDAs.
One of them is HP iPAQ h6340 that incorporates an ARM
TI OMAP 1510 microprocessor. Building a GNU/LinEx
distribution for iPAQ means accessing each part from
which the system is composed: kernel, filesystem and
bootloader.

Kernel sources for this microprocessor are omap-linux
(also needing some patches for this specific device). The
cross-compiler used for kernel sources is GCC for ARM
(arm-linux). This compilation results in an image which
will be loaded in the boot process. Besides the kernel,
the operating system requires user interactivity tools and
the hierarchical Linux filesystem. (We call this structure
rootfs). Compiling each library and application one by
one is not acceptable in time and effort terms, so we use
OpenEmbedded to make this task easier. Regarding the

bootloader, we use Uboot because it is supported in the
device architecture.

Once we have these three elements (kernel image,
rootfs and bootloader) the GNU/LinEx system can be
booted. The built PDA platform, which can be extended
to other Linux distributions, is the base of other develop-
ments and activities in the project.

2.1.3 SARI (Wireless Remote Administration System)
Returning to the architecture shown in Figure 1, Cam-

pus Ubicuo has a remote administration system called
SARI.

Nowadays, each information system is maintained in
a particular way; moreover it should be always available
for management tasks. On the other hand, capabilities

Figure 4: Files Compiled for X86 and ARM Architectures.

UPGRADE Vol. VIII, No. 6, December 2007 31© Novática

Free Software: Research and Development

of instant messaging technology (SMS, Short Message
Service) make it especially interesting to manage some
critical systems that require to be controlled everywhere
and at any time.

There are some applications to administrate a system
via SMS, but they have some limitations especially relat-
ed to security issues. For this reason, we have developed
a new robust and extensible system, able to cover the ad-
ministration needs of modern computing systems. SARI
allows remote GNU/Linux commands execution as well
as managing subscriptions to the information broadcast
system in Campus Ubicuo. These features offer the sys-
tem administrator the necessary ubiquity in order to carry
out administration task. In Figure 5 we can see the inter-
action between users and SARI.

The main application, or base system, is executed as

a daemon. This daemon can be improved by adding dif-
ferent plugins for each kind of technology. At present we
have implemented two plugins; one of them in charge of
Bluetooth-terminal communication [7] to manage SMS
functionality (send/receive) and the other intended to man-
age the communication via email messages. This way, the
daemon executes the corresponding procedures depending
on the type of technology supported by the installed plugins.
Simultaneously, each plugin follows a set of steps and main-
tain these steps in a queue. Although the execution of a step
is not parallel with respect to the other ones in the other plu-
gins, the global process is concurrent so that different type
of technologies can be used at the same time.

Each plugin manages the communication to make it

non-blocking. Their implementations have to avoid soft-
ware blockages if the device or the server does not send
a response for a request. Each plugin follows the classic
connection stages: establishment, maintenance and clos-
ing. The operation of the SARI daemon is similar to the
rest of the GNU/Linux services. Its configuration file is
located at /etc/sari/sari.conf and can be launched from /
etc/init.d/sari. When SARI is running, it allows admin-
istrative operations as well as task related to Campus
Ubicuo users’ subscriptions. To do that, there are several
configuration files in /etc/sari where the SARI settings
can be tuned.

 2.1.4 MeUbicuo
The Campus Ubicuo project has a set of servers

where the information is stored that must be managed.

This management task has been isolated from the rest of
the system, because all the services offered are controlled
from these servers. This is why an independent subproject
called MeUbicuo has been developed. If some changes
are necessary due to changed requirements or to adapt
the system to other environments, only MeUbicuo must
be modified. SARI is executed on these servers, allowing
the users to send and receive information related to Cam-
pus Ubicuo subscriptions, as well as some administrative
tasks. Databases and data structures necessary to man-
age the system and the information broadcast system are
placed there. This means that when a user is registered for
the university news service through SMS and additional
news arrives, it will be spread to that user and to the rest

Figure 5: Users-SARI Interaction.

32 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

of the users subscribed to that category. In order to allow
the users to access the information, a web portal has been
developed. This PHP+MySQL application is used by the
users to register in the system and to modify or config-
ure their preferences, for example subscribed services or
access technology. This method complements the SMS
subscription and management service.

3 Research Tasks
Campus Ubicuo is not only a development and inno-

vation project. It has also allowed carrying out research
tasks related to mobility for IP networks or wireless trans-
mission interference. These results are briefly presented
in this section.

3.1 IP Mobility. Handover Analysing and Opti-
mization

Nowadays, IP mobility is one of the most interesting
research topics in the context of networking. Although
several approaches have been proposed to deal with mo-
bility, most of them are based on the Mobile IP protocol
[8].

Proposed by IETF, this protocol allows mobile nodes
to change its point of attachment without losing its ability
to communicate. This goal is reached by keeping a per-
manent IP address in the Mobile Node (Home Address)
and another temporary IP address (CoA, Care-of Ad-
dress) that is valid and routable at the Mobile Node’s cur-
rent point of attachment in a Foreign Network. Handover
is one of the costlier processes in Mobile IP. This occurs
with mobile node movement, when it changes its point
of attachment to the Internet. Some approaches to reduce
movement detection latency are based on layer 2 infor-
mation, so are faster than layer 3 ones. These solutions
have an important disadvantage because they restrict the
movement among heterogeneous networks due to layer
2 access technology dependence. We consider two main

components in order to evaluate layer 3 handover time
TH:

TH = TDM + TREG

where TDM is the time interval necessary to detect
migrations and TREG is the time interval used to config-
ure the new CoA and register it in the home network.

The handover analysis in Mobile IP has led us to de-
velop a movement detection algorithm called FDML3
(Fast Detection Movement Level 3), that departs from
the work done in [9], modifying the original movement
detection algorithm proposed in [8]. The handover proc-
ess in the original standard is based on consecutive unso-
licited Router Advertisements (RA) losses. This method
is not dependent on the link layer. It depends on the fre-
quency of unsolicited RA. This frequency has less influ-
ence in FDML3 algorithm because the first RA loss is
used to inform that a handover has happened.

In order to analyze and validate the new algorithm re-
sults, as well as to compare it with other detection move-
ment methods, we have used the OMNET++ simulator
<http://www.omnetpp.org>, where our proposal has been
implemented. Figure 6 shows a chart where 8 movements
(handovers) are compared.

The obtained results show that detection movement
in the handover process is reduced by up to 25% with
respect to original algorithm proposed in the Mobile IPv6
standard. Even so, in some cases, handover time is not
reduced because of the time interval between unsolicited
RA. If this interval is short, the global handover time is
not significantly improved.

3.2 Interference Analysis
Campus Ubicuo has also allowed to make an analyti-

cal study and an evaluation of interference in relation to

Figure 6: Handover Time with and without FDML3.

UPGRADE Vol. VIII, No. 6, December 2007 33© Novática

Free Software: Research and Development

different wireless communications.
In this work we have analysed how a wireless technol-

ogy affects others in a nearby environment. We have ana-
lysed how these interferences influence in the perform-
ance of each one of the other signals. The research work
has been carried out from the point of view of a network
administrator, whose job it is to maintain the network op-
erating correctly and to solve the problems that can hap-
pen. Some of these problems are caused by interference.

This way, we have been able to prove via laboratory
experiments, how wireless networks could be affected
by common elements like microwave ovens, wireless
phones, radio frequency remote controls and, in general,
those devices operating in the ISM (Industrial, Scientific
and Medical) frequency of 2.4 GHz. This range is inter-
nationally reserved to be used in a non-profit environ-
ment without the need of a license. For example, most of
wireless technology like Bluetooth or Wi-Fi operates in
the ISM frequency. Due to this research work, a network
administrator is able to know the cause of a perform-
ance decrease in a given time and can act to remedy that
situation. To carry out this research work, we have used
a spectrum analyser that allows us to know how many
wireless devices are active, the channel selected by each
one of them to operate and some other useful informa-
tion.

4 Conclusions and Future Work
In the last few years, we have seen an incremental

change in needs of users of communication technologies.
Mobility services are more and more in demand and last
generation data networks are participants in this change.
In this situation, the system developed in Campus Ubic-
uo offers advanced communications and mobile services
to its users.

One of the fundamentals of this project is free soft-
ware, a basic principle upon which we have developed
the proposal. This kind of project, managed in the con-
text of an agreement between university and the busi-
ness field, will allow both GITACA research group and
SADIEL S.A the technological transfer to other research
groups or companies. Thanks to the advantages of free
software, they will be able to profit from generated inno-
vation because our research results will be in the public
domain via the project’s homepage <http://gitaca.unex.
es/cubicuo>.

Although the project is near to conclusion, there is
one of the most attractive points still unfinished: Campus
Ubicuo deployment in other organizations separate from
the university. The use of Campus Ubicuo in three differ-
ent environments, where it could be directly applied, is
now being analysed: hospitals, secondary education cen-
tres and tourist services of a local council. In secondary

education centres and hospitals, this project can be used
to make easier and faster every administrative process
for students and patients. In relation to tourist services,
Campus Ubicuo can be a support to provide advanced
mobile communications services to tourists; for example
using a PDA or a mobile phone.

References
[1] 	 I. Herraiz, J. J. Amor, A. del Castillo. “Libre software

for research”. FLOSS International Conference. Jerez
de la Frontera, Spain. March 2007, pp. 97-105.

[2] 	 J. Carmona Murillo, J. L. González Sánchez, A. Gazo
Cervero, L. Martínez Bravo. “MOVICUO: Comuni-
caciones móviles y software libre para la ubicuidad”.
III Jornadas de Software Libre de la Universidad de
Cádiz, Cádiz, Spain. April 2006, pp 45-58.

[3]	 J. Perez-Romero, O. Sallent, R. Agustí, M. A. Díaz-
Guerra. “Radio Resource Management Strategies in
UMTS”, Wiley, 2005. ISBN: 0470022779.

[4] 	 C. Andersson. “GPRS and 3G Wireless Applications”.
Wiley. 2001. ISBN: 0471414050.

[5] 	 ETSI TS 07.07. “Digital cellular telecommunications
system (Phase 2+); AT Command set for GSM Mobile
Equipment (ME)”, 2003.

[6] 	 C. Hallinan. “Embedded Linux Primer”. Prentice Hall,
2006. ISBN: 0131679848.

[7] 	 A. Huang. “The use of Bluetooth in Linux and loca-
tion aware computing”. Master thesis, Massachusetts
Institute of Technology. Cambridge, MA. 2005.

[8] 	 D. Johnson, C. Perkins, J. Arkko. “Mobility Support
in IPv6”. IETF RFC 3775, June 2004.

[9] 	 N. Blefari-Melazzi, M. Femminella, F. Pugini. “A
layer 3 Movement Detection Algorithm Driving
Handovers in Mobile IP”. Wireless Networks 11 (3),
pp. 223 – 233. 2005. Springer Netherlands.

34 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

1 Free Software in the Spanish University
System

Free software is deeply rooted in the academic world.
Even before there was an understanding of the concept
itself, scientists and engineers at universities (especially

Keywords: Free Software, Free Software Conferences,
Free Software Popularization, University.

The Case of the University of Cádiz’s Free Software Office
Among Spanish Universities

José-Rafael Rodríguez-Galván, Manuel Palomo-Duarte, Juan-Carlos González-Cerezo, Gerardo Aburruzaga-García,

Antonio García-Domínguez, and Alejandro Álvarez-Ayllón

During the first years of the twenty first century, executive bodies at Spanish universities were becoming increasingly
interested in using free software as a means to their ends. We will describe below the case of the Free Software Office of
the University of Cádiz, showing its structure and the problems that such an organization must deal with. Later on, the
main projects we have been focusing on since the Office’s inception in 2003 will be enumerated, pointing out similarities
between other offices and secretariats akin to ours.

Authors

José Rafael Rodríguez-Galván works as a teacher in the De-
partment of Mathematics in University of Cadiz. Since 2004
he has been the chair of the OSLUCA (Free Software Office of
University of Cádiz), organizing several projects including I, II
and III Free Software Conference at the University of Cádiz, and
I FLOSS International Conference (FLOSSIC 2007). He has been
invited as speaker to many meetings and symposiums related to
free software and the University. He is also member of the UCA
researching group FQM-315, where he develops his research in
numerical simulation of equations for partial derivatives applied
to fluid mechanics. <osl@uca.es>.
Manuel Palomo-Duarte received a degree (M.Sc.) in Computer
Science from the University of Seville (2001). He works as a
full-time teacher in the Department of Computer Languages and
Systems in University of Cadiz, where he teaches subjects related
to operating systems and videogame design using free software.
He is also Erasmus Coordinator for B.S. Degrees in Computer
Science (Ingeniería Técnica en Informática de Sistemas). He is
a member of research group “Software Process Improvement
and Formal Methods”, and he’s pursuing his PhD. about quality
in BPEL web service compositions. Since he joined University
of Cádiz he has collaborated with the Free Software Office,
mainly developing conferences: III Free Software Conference
in University of Cádiz (JOSLUCA3) and I FLOSS International
Conference (FLOSSIC 2007). <osl@uca.es>.

Juan-Carlos González-Cerezo is a Computer Technical Engi-
neer graduate of the University of Cádiz. He is “Premio Extraor-
dinario de Fin de Carrera de la Diplomatura de Informática”
1990/1991 by the University of Cádiz, and the second National
Award for the End of the Studies in Computing Science B.S.
Degree, from the Ministry of Education. He has been a program-
mer in the Computer Services of the University since 1992. He
is now participating as a technician in the Free/Libre Software

Office in the UCA, while he is continuing his studies in Computer
Engineering. <osl@uca.es>.
Gerardo Aburruzaga-García is a coordinator of the Computing
Area of the University of Cádiz, and he has been an associated
teacher in the Computer Languages and Systems Department
since 1989. He has worked as a programmer and an analyst in
the computer services of the UCA, where he commenced in 1988.
He now has technical responsibility for the Free/Libre Software
Office. As a teacher, he has taught Logic Stands, Programming
II, Programming Methodology and Technology II, Operating
System Administration and Object-Oriented Programming.
<osl@uca.es>.
Antonio García-Domínguez is a Computer Technical Engineer
(B.S. degree) graduate of the University of Cádiz (2006), where
he is continuing his studies in Computer Engineering. He is
“Mención Especial en el Premio Nacional de Fin de Carrera”
2005/2006. He submitted his final year project “Post-procesador
y visor de demostraciones para el sistema de demostraciones
ACL2”, and in the summer of 2007, he participated in the Open-
lab programme project “Grid-based financial software” at CERN.
He is now taking part in the development of a framework for
BPEL web services composition testing. <osl@uca.es>.
Alejandro Álvarez-Ayllón is a Computer Technical Engineer
(B.S. degree) graduate of University of Cádiz (2007), where he
is continuing his studies in Computer Engineering. His final
year project was a forge, built in Zope/Plone, specially oriented
to the university community, and it is being used as the official
project repository by the Free/Libre Software Office of UCA. He
is an intern of the Free/Libre Software Office of the University
of Cádiz, an active collaborator of the QtOctave project, and the
main developer of Hispaciencia.com. <osl@uca.es>.

OSLUCA, 2007. This article is distributed under the “Attribution-Share Alike 2.5 Generic” Creative
Commons license, available at <http://creativecommons.org/licenses/by-sa/2.5/ >.

UPGRADE Vol. VIII, No. 6, December 2007 35© Novática

Free Software: Research and Development

American universities) worked according to a knowledge
exchange model which could be seen today as an open
source developer community. Later on, in the middle of the
1970s, as the circumstances changed to what they’re like
today, the different and isolated initiatives which could be
labeled as “free” or “open” originated from academia and
research centers. Such is the case of TEX, for example, and,
in some way, of UNIX itself. The latter was published with
a license which in practice allowed for its free use for aca-
demic purposes and it became the source of the BSD oper-
ating systems at the University of Berkeley.

The creation of the free software concept itself is attrib-
uted to people like Richard Stallman and Linus Torvalds,
who had strong links to the academic world.

Though the Spanish academic system stayed unaware
until the 1980s of this phenomenon, it saw a gradual ex-
pansion of free software in the later decades of the twen-
tieth century, and of the GNU toolset in particular. Their
remarkable quality, and their availability at no monetary
cost in FTP servers (such as the well-known sunsites) sped
up their adoption by IT departments at Spanish universities.
Likewise, some groups of teachers started to get acquainted
with free software and using it to support their research and
teaching. Due to the quality of the GNU/Linux operating
system, along with its increasing popularity and maturity

and the ease of configuration and installation that the sev-
eral distributions provided, it started to replace the propri-
etary UNIX systems commonly seen on university servers
and in data centers.

In the first years of the twenty-first century, there was
a substantial free software community in Spain, made up
largely from individuals and groups associated with the
university system, either isolated or as a part of some as-
sociation, but with no institutional support. It was already
by then possible to imagine free software making the leap
to the desktop, having office suites which could rival com-
mercial solutions. Upon this foundation, large scale politi-
cal initiatives at public administrations to use GNU/Linux
systems and free software such as the Junta de Andalucía
(main governing body in the Andalusian region) or the Jun-
ta de Extremadura’s efforts saw the light.

Executive bodies at public universities considered that
this work couldn’t be overlooked, in accordance to their
natural duty of transferring higher knowledge and the moral
senses of solidarity and freedom. Of course, the chance of
reducing the costs associated with (frequently restrictive)
software licenses was a powerful incentive. In this way, the
first institutional announcements supporting free software
were published, and the first university organizations dedi-

n Universidad de Alicante: COPLA <http://copla.ua.es/ >.
n Universidad Autónoma de Barcelona: GNUAB <http://www.gnuab.org/ >.
n Universidad de Barcelona: gclUB <http://gclub.ub.es/>.
n Universidad de Cádiz: OSLUCA <http://softwarelibre.uca.es/ >.
n Universidad Carlos III de Madrid: LUC3M <http://luc3m.uc3m.es/>.
n Universidad de Castilla-La Mancha: CRySoL <http://crysol.inf-cr.uclm.es/>.
n Universidad de Deusto: <http://softwarelibre.deusto.es/>.
n Euskal Herriko Unibertsitatea: itsas <http://itsas.ehu.es/>.
n Universidad Europea de Madrid: GLUEM <http://www.gluem.net >.
n Universidad de Huelva: OSLUHU <http://cibercomunidades.net/uhu/osluhu/>.
n Universidad Jaime I: Software Libre UJI <http://www.swlibre.uji.es>.
n Universidad de A Coruña: OSL-UDC <http://softwarelibre.udc.es/>.
n Universidad de La Laguna: SSL-ULL <http://ssl.ull.es/>.
n Universidad de Murcia: SOFTLA <http://www.um.es/atica/softla/>.
n Universidad de las Palmas de Gran Canaria: OSL <http://www.softwarelibre.ulpgc.es/ >.
n Universidad Politécnica de Cataluña: CPL <http://www.cpl.upc.edu>.
n Universidad Politécnica de Valencia: poLinux <http://www.polinux.upv.es>.
n Universidad Pontificia de Comillas: linuxec <http://linuxec.upcomillas.es/>.
n Universidad de Sevilla: SOFLA-US <http://solfa.us.es/>.
n Universidad de Valencia: LinUV <http://www.uv.es/LinUV/>.
n Universidad de Valladolid: SOLEUP <http://soleup.eup.uva.es>.

Figure 1: Offices, Secretariats and Free Software Associations in the Spanish University System (source: “Iris Libre”
meeting, November 2007).

36 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

cially a declaration of support of free software (included in
the UCA Official Bulletin #9), and formally established the
Oficina de Software Libre de la Universidad de Cádiz.

This ambitious declaration acknowledges that free soft-
ware is part of the means to the ends of the UCA, and states
the role of the OSLUCA in “promoting the use of applica-
tions and computing resources based on free software in
the academic community”, particularly so in “taking the
necessary measures” to “guarantee the non-discrimination”
of the users and “boosting the use and development of free
software” in the University, backing the training in the use
of free tools, their use for teaching in computer classrooms,
for management and research, and the publishing of any de-
rived material with free licenses, among others.

The OSLUCA comprises several teachers, IT staff and
collaborating students within the following structure:

n	 The Free Software Office Director is a teacher,
charged with the management of the office. Though
the position has included since its inception a
reduction of teaching work, recently it has been
considered within the Secretariat Management
category, in the same way as some free software
secretariats in other Spanish universities.

n	 The Technical Director is a UCA IT staff member
highly experienced in the use of free software who
integrates this work in his own routine. There’s
also another IT staff member which does important
support work for the OSLUCA.

n	 Since 2005, the OSLUCA has had its own facili-
ties. At that time a specific student scholarship for
collaboration with the Office was created. There
have been also other more specific scholarships,
for example, for working on projects which were
of interest to the University.

n	Among the teachers at the UCA, some of them
have been very participative, undertaking critical
tasks in the OSLUCA.

3 Work Performed
With the backing of the University’s executive body,

the OSLUCA had an encouraging outlook, but also heavy
responsibilities and many hardships to endure, most of
which have been common to all Spanish universities. In
view of this, various initiatives have been undertaken,
which could be classified under the following general
courses of action:

1.	 Non-discrimination of university members who
wanted to use free software. Starting with Web mail or data-
base queries, a university must offer services of all sorts to
several thousand members. For a long time, it was assumed
that all of them would use the most common environment
(Windows machines running Internet Explorer), usually
leading to problems for free software users who wanted
to use these services. Similarly, the ignorance of the im-
portance of open standards led to problems in exchanging

cated officially to its development and popularization ap-
peared. This was such the case with the official free software
support announcement at the UAM (Universidad Autónoma
de Madrid), and the inception of the Free Software Office at
the Universidad de Las Palmas de Gran Canaria.

This is the environment in which our own Free Soft-
ware Office (Oficina de Software Libre de la Universidad
de Cádiz, OSLUCA from here on), and in later years other
entities with differing levels of institutional support, were
created (see figure 1). The OSLUCA case will be illustrated
below as a paradigm of the work that these entities have
been conducting, pointing out both the most common tasks,
such as organizing conferences or developing local GNU/
Linux distributions, and more specific work, as the interop-
erability framework which was approved in an executive
meeting.

In the last few years, the academic free software initia-
tive has experimented with participation in the discussion
groups normally used for knowledge exchange and col-
laboration. This is the case of the Iris-Libre workgroup, part
of the Rediris community, and of the CRUE-TIC SL Subg-
rupo de Trabajo en Software Abierto (Open Software Work
Subgroup), belonging to the Conferencia de Rectores de las
Universidades Españolas (the Spanish universities’ rectors
association). Coordinating efforts between different univer-
sities is crucial to avoid common mistakes and to achieve
otherwise impossible objectives.

2 The OSLUCA Case
In 2003, the University of Cádiz was home to some

groups of teachers who, being users of free software, had
organized varied initiatives, such as summer courses in this
context, and were related to the Spanish free software com-
munity. Additionally, the IT department had rebuilt most
core University services (such as mail or Web servers) upon
free software, passionately defending their approach.

Assisted by some of these people and learning of the
favorable situation in Andalusia and of the first initiatives
which were being born in Spanish universities, the then re-
cently formed executive body pledged its support for the
use of free software in the University of Cádiz. The IT Gen-
eral Management supported this pledge as a critical course
of action, in which some of the IT staff and teachers most
active in the free software circles became involved, starting
some work on the area. These were:

n	 Creation of an information bulletin which was
distributed internally around the University.

n	 First initiatives towards the popularization of free
software, among which Richard Stallman’s visit in
July 2003 stands out.

n	Development of a website, a forum, several mailing
lists, and so on.

On 15th March 2004, the Executive Council of the Uni-
versity of Cádiz, its highest ranked executive body which
decides overall strategies to be followed, approved offi-

UPGRADE Vol. VIII, No. 6, December 2007 37© Novática

Free Software: Research and Development

documents inside the University. This was the case of most
office documents, saved under Microsoft Office’s closed
proprietary formats.

2.	 Popularization and training on free software tools,
and in the collaboration and publishing of free content. In
the Spanish university system, just like in the rest of society,
daily work is usually accomplished with proprietary tools.
Introducing free software implies a change which leads
to initial rejection, which can only be overcome through
training, by helping migration and focusing on its unique
strengths. It is here where holding conferences, courses and
all sorts of activities which can expand public knowledge
about free software, its philosophy, advantages and recom-
mended tools plays a major role.

3.	 Technical support and installation of free software
for its use in teaching, research and management. Initial-
ly, people who brave a migration to free software have to
face some extra work which offers few immediate returns.
Providing them with support in the same level that the one
offered by commercial software is thus critical to avoid dis-
crimination. In the same way, all projects aimed towards
using free software in common tasks in the university, and
their conception, must be supported.

4.	 Developing projects of strategic interest. As part
of our role in boosting the use of free software for common
tasks in the University, frequently we need to get involved
in highly important projects which need help to reach frui-
tion, in the form of documentation, development and so on.
This would be the case, for example, of free alternatives to
widely used applications in teaching, research or manage-
ment. Interestingly enough, the proprietary software licens-
es, often abusive, happen to be a quite legitimate reason for
the development of these alternatives.

From these general courses of action, we will describe
below some of the most representative efforts that have
been executed in the OSLUCA. It is important to note that
some of them have been common to several universities.
We will comment on this in every case.

3.1 Supporting Free Software Usage in several
Services at the UCA

The OSLUCA has offered support for free software use
in the UCA’s services. Due to its high quality, most of our
services have been built on it for a long time (Web servers,
proxy, webmail, and so on), as in most other universities.

In other cases, the migration to free software has been
more recent (with the OSLUCA providing support to the
extent of its abilities). This is the case of the University of
Cádiz portal, which uses the content management service
Plone (based on Zope), and of the course management sys-
tem, now using Moodle. Moodle was introduced in 2005 as
an alternative to the proprietary system which had been in
use until then (incurring a large cost), being a clear example
of the economic benefits of finding free alternatives.

On other occasions our staff has undertaken directly the
setting up and tuning of services. This was the case of the
free Internet access points (using GNU/Linux systems), the

over 240 GNU/Linux-based laptops which can be borrowed
at the library, and the increased number of classrooms with
dual boot (Windows and GNU/Linux) machines.

3.2 Creating the UCA Institutional Information
Exchange Regulation

On 27th September 2004, the Executive Council of the
University of Cádiz approved the “Institutional Information
Exchange Regulations at the University of Cádiz”, proposed
by the OSLUCA (UCA Official Bulletin #15, page 63).

These regulations mandates that “every document pub-
lished by a body part of the UCA officially directed to some
of its members must be saved in an open format, when-
ever a suitable one exists, or at least must include a ver-
sion saved in an open format, independently of the medium
used for its transmission: electronic email, website, etc.”.
Lastly, they also indicate that it will require the IT staff to
keep an updated list with the open formats for the different
kinds of documents to which institutional documents have
to conform.

The UCA regulations were the first document of its kind
that was published in Spanish universities and public ad-
ministrations, and it was among the first worldwide. In fact,
four years later, there are few similar initiatives in our sur-
roundings.

During 2005, the IT department and the OSLUCA had
to undertake the creation of an open format taxonomy
and selecting applications which were suitable for use in
the UCA. The publication in September 2005 of the PDF/
A (ISO 19005-1) standard, and in November 2006 of the
OpenDocument (ISO 26300) standard, allowed us to rely
on proper standards for their use in office work. Therefore,
during 2006 and 2007 a training program for management
personnel at the UCA was instituted. This would become a
compulsory training course intended to become the starting
point for the enforcement of the published regulations. Such
a revolutionary initiative must somehow break through the
deeply ingrained habit of using Microsoft Office within the
university, thus causing us to undertake some additional
work which would lead to its eventual success.

3.3 Guadalinex_UCA
Several Spanish universities have developed their own

GNU/Linux distributions. In fact, the Metadistros project
(upon which many distributions, like some of the Andalu-
sian ones, were based) was born as part of a project to ease
the creation of academic distributions in the Free Software
Office of the University of Las Palmas de Gran Canaria.
There was a rather heated debate about this in the OSLU-
CA. We list several advantages:

1.	 Having one more way to promote free software in
our university. If the distribution allows for a “live” boot
from disk, this would help users to try it out with little has-
sle.

2.	 Being able to ship in the distribution some addi-
tional recommended applications, and extra content (docu-
mentation, for instance) so they can be tested out in our

38 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

3.	 The R-UCA project (2007), which simplifies the
implementation of the R statistical package as the standard
for teaching and research in this area. The project focuses
on several courses of action, which include creating teach-
ing materials (using free licenses), training and helping
teachers, participating in the translation and development of
existing interfaces, and so on. This is also a critical project,
since using a free and high quality statistical package such
as R would allow the University to avoid the abusive pro-
prietary software pricing policies.

3.5 Other Work
 Among our other initiatives, we should point out our

efforts in promoting the creation of dissertations and mas-
ters’ theses under free licenses. For instance, we have de-
veloped our own software forge for our students’ projects.
We have also participated from its very first edition in the
Concurso Universitario de Software Libre, where a prize is
awarded for the best free software project developed by a
student of a member University. This contest was created in
2006 by students, teachers and several entities related to the
University of Seville. It has attained considerable success.
Starting with the 2007/2008 academic year, the UCA also
organizes a local contest, in which a prize is awarded for the
best project created by UCA students. Our aim is to boost
participation in the contest.

4 Workshops and Conferences
Just like most other Spanish free software offices, the OS-

LUCA has invested a great deal of effort in popularizing and
promoting free software through many conferences, work-
shops and seminars. Some of them stand out from the rest:

4.1 I Jornadas de Software Libre de la Univer-
sidad de Cádiz

This conference took place on 14th and 15th April 2004,
and served as the first public appearance of the OSLUCA
at the University. Some of the participants included Jesús-
María González-Barahona (from the Libresoft group of
the University Rey Juan Carlos), José-María Rodríguez-
Sánchez (IT General Director of the Information Society
initiative at the Junta de Andalucía), and Roberto Santos
(Vice-president at Hispalinux). It must also be noted that
the second day was dedicated to the Zope platform upon
which the University’s portal is based.

4.2 IV Jornadas Andaluzas de Software Libre
Taking place on 5th and 6th November 2004 at the Es-

cuela Superior de Algeciras (Algeciras High Technical Col-
lege), they were run jointly by the OSLUCA and the ADA-
LA and CAGESOL associations. The talks included those
of Álvaro López-Ortega (GNU project developer), Antonio
Larrosa (KDE developer) and Juan Conde, from the Con-
sejería de Innovación, Ciencia y Empresa (Innovation, Sci-
ence and Business Council) of the Junta de Andalucía.

university. We could also configure the distribution so the
UCA’s resources could be used straight away.

3.	 Creating a well-defined system for which we could
offer technical support, while gaining some insight into cre-
ating GNU/Linux distributions, something that could be
useful in certain circumstances. On the other hand, there
are some drawbacks:

1.	 Creating a distribution requires a constant effort to
keep it updated release after release.

2.	 With all the available distributions, creating one
more might be a recipe for confusion.

In the end, it was decided that an adaptation of the Gua-
dalinex distribution (the first and only not from the Junta
de Andalucía, though with its full support) called Guada-
linex_UCA would be created. We emphasized that it wasn’t
a new distribution, but a specialization of an existing one,
and that it was also a way to support, as an Andalusian uni-
versity, the Junta de Andalucía’s efforts in supporting free
software.

Guadalinex_UCA caught the eye of many people and
with several thousands of copies distributed it proved that
this sort of initiative was possible with the limited resources
of a free software office. However, it didn’t have quite the
impact that we expected, and keeping it updated required
considerable effort. Nowadays, we are investing that effort
into creating a selection of recommended software at our
university. Our next objective will be to spread the word
about these programs and help in their distribution through
metapackages and compilation CDs. This includes both
extra CDs for Guadalinex or for other operating systems
including MS Windows. Publishing CDs with free software
for Windows to boost their popularity is something that
has been promoted in several free software offices around
Spain.

3.4 Free software in Teaching
 With some exceptions, the use of free software during

teaching in the UCA is not widespread. Sometimes, the rea-
son is the lack of proper alternatives to the applications used
for teaching, but in most cases it’s simply due to either the
ignorance of the existence of such alternatives or the lack of
motivation for doing such a migration.

Therefore, the OSLUCA has cooperated with the teach-
ing body in classifying and spreading the available alterna-
tives, creating training programs for the most appropriate
ones and improving them when needed.

Some examples include:

1.	 Boosting the use of the Maxima application in the
Mathematics Department by a program-contract, and the
organization of a training course for teachers in 2006.

2.	 Participating (since 2007) in the development of
qtOctave (a high-level language intended for numerical
computations), a GUI for Octave, one of the applications
which could become a viable alternative for its use in many
subjects from different departments of our university.

UPGRADE Vol. VIII, No. 6, December 2007 39© Novática

Free Software: Research and Development

4.3 II Jornadas de Software Libre de la Univer-
sidad de Cádiz

Held from 6th to 8th April 2005, it was organized along
two main themes: free software in science, and free soft-
ware in business.

On the first part, the talk about the ethical aspects of
free software by Ricardo Galli (teacher at the Universitat
de les Illes Balears and main speaker of the Free Software
Foundation in Spain) and the talk about supercomputation
by Antonio Fuentes-Bermejo (member of IRISGrid, Inicia-
tiva Nacional de GRID, from the Rediris network, the Na-
tional GRID Initiative). Juan-José Hierro (from the Morfeo
project at Telefónica I+D), Isidro Cano (supercomputing
director at HP) and Javier Viñuales-Gutiérrez (Yaco Siste-
mas) participated in the other area.

Moreover, the conference hosted workshops in compu-
ter classrooms for the first time. One of them focused on the
creation of GNU/Linux distributions based on Guadalinex,
and another on Blender, the excellent (and free) 3D mode-
ling, animation, rendering and post-production application.

4.4 III Jornadas de Software Libre de la Univer-
sidad de Cádiz

This conference, held on 20th and 21st April 2006, rep-
resented an important leap forward in quality. For the first
time, a formal call for papers and peer review process for
participation in the Conference was followed, with all work
published afterwards in the conference’s proceedings under
ISBN. Furthermore, the Computing Languages and Systems
department gave a helping hand in the organization of the
event. More than 200 CDs with the conference’s proceed-
ings and 100 free documents (manuals, books, tutorials, and
so on) were distributed.

Among the speakers, Ismael Olea (Spanish Linux Doc-
umentation Project), Juan M. Rocha-Ramos (administrator
of the Conocimiento Libre forge at the Centro Informático
Científico de Andalucía) and Juan-Jesús Ojeda (Guadalinex
developer) were included. Serving as a prelude, a seminar
on “Intellectual property, free software and the university
system” was held. César Iglesias (Díaz-Bastien & Truan,
Attorneys at Law) and Malcolm Bain (member of the Cát-
edra de Software Libre at the UPC), among others, attended
the seminar.

4.5 FLOSS International Conference
The FLOSS International Conference was organized

jointly by the “Software Process Improvement and Formal
Methods” research group and the University of Cádiz Com-
puting Languages and Systems department. The Escuela de
Negocios de Jerez (Jerez Business School), a part of the Je-
rez City Hall’s Delegación de Formación y Empleo (tasked
with boosting employment and training in Jerez), also co-
operated.

This conference took place in the Jerez Social and
Communication Sciences Faculty, part of the University of
Cádiz, between 7th and 9th March 2007.

Participation was excellent, with over 30 speakers from

several countries, and more than a hundred attendants, with
researchers, teachers, technology workers and university
students.

The papers presented had a strong scientific focus, with
topics varying from e-learning, web accessibility, automatic
translation, software development, professional 3D mod-
eling, supercomputing and artificial intelligence. Among
the most important speakers were Rüdiger Glott (from the
UNU-Merit University), Alberto Barrionuevo (FFII vice-
president), Juan-José Domínguez-Jiménez (SPI&FM group)
and Juan José Amor (Libresoft group) were included.

All papers were included in the proceedings, which were
published by the University of Cádiz Editorial Service with
its own ISBN, under a free license. The proceedings were
also distributed in a compilation CD with over 200 books,
manuals and tutorials about free systems. These were given
out to all attendants and may be freely downloaded from the
event’s website.

At the same time, jointly with the Jerez Business School,
a seminar on the opportunities which are presented by free
software in business was held. Several IT firms presented
the varied solutions that they offer to their clients, ranging
from office suites all the way up to clusters and distributed
computing, and including ERP systems, groupware, CRM
applications, among others.

5 Conclusions
Although the Free Software Office of the University of

Cádiz was created only recently, it has already achieved
important goals, being a Free Software regional reference
institution.

Future goals include an increased adoption of free soft-
ware solutions in every aspect of the university’s daily work:
management, teaching, researching and collaborations with
external institutions.

40 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

Keywords: Empirical Methods, Innovation Adoption,
Open Source, Software Engineering Invention.

1 Introduction
Most software engineering research produces technolo-

gy such as tools, methods, or processes to be applied during
the construction of software systems. It has been gradually
understood that the empirical evaluation of such inventions
is necessary to judge research progress and generate accept-
ance outside of academia [25][28].

There are two classic scenarios for how to conduct such
empirical evaluations: First, there is the laboratory trial, of-
ten in the form of controlled experiments with student sub-
jects. Such studies are difficult to set up in such a way that
they are sufficiently impartial and realistic (in particular in
their choice of task) to be credible—but credibility is what
counts [19]. Controlled experiments with professional sub-
jects are harder to set up, but often hardly more credible.
Second, there is the industry trial, commonly performed as
a case study in cooperation with a company. While such
studies are certainly realistic, they have problems too: Cost
and risk considerations make it hard to find industrial part-
ners, non-disclosure constraints make it hard to fully de-
scribe the setting and results, and company idiosyncracies
often make it hard to understand generalizability.

For many (though not all) evaluation purposes, some
researchers consider observational studies in the context of
Open Source Software (OSS) projects to be a third approach
and one with almost ideal properties in many respects: Cred-
ibility can often be high, they are easy to observe, publica-
tion constraints hardly exist, risk considerations are more
relaxed, and corporate cost considerations are replaced by
(mere) group willingness hurdles.

Unfortunately, OSS projects are not interested in stud-
ies, they are interested in developing software. So, perform-

On Understanding how to Introduce an Innovation to an Open
Source Project

Christopher Oezbek and Lutz Prechelt

This article was previously published in the Proceedings of the First International Workshop on Emerging Trends in FLOSS
Research and Development. FLOSS ‘07. ISBN: 0-7695-2961-5. Digital Object Identifier: 10.1109/FLOSS.2007.11. It is
reproduced with kind permission of IEEE and the author.

We propose to research the introduction of Software Engineering inventions into Open Source projects (1) to help re-
searchers with creating opportunities for evaluating their tools, methods and process designs in real-life settings, and (2)
to help Open Source projects with improving their processes based on state-of-the-art knowledge. Such research will go
beyond diffusion and dissemination of inventions to active introduction, and thus increase the chances of adoption. We
will discuss the research approach, our preliminary insights, limitations of the approach, and why researchers interested
in evaluating their own inventions should be interested in this research.

Authors

Christopher Oezbek received the Vordiplom in informatics from
Universität Karlsruhe (2002), the MS in computer science from
Georgia Institute of Technology in 2004 and is currently pursuing
his PhD at Freie Universität Berlin. His research interests include
Open Source development processes, source code documentation
and API usability. He is a member of ACM and GI (Gesellschaft
für Informatik). <oezbek@inf.fu-berlin.de>.

Lutz Prechelt is full professor of Informatics at the Freie Univer-
sität Berlin since 2003. Until 2000, he worked as senior researcher
at the School of Informatics, University of Karlsruhe, where he
also received his Ph.D. in Informatics in 1995. In between, he
was with abaXX Technology, Stuttgart, first as the head of various
departments, then as Chief Technology Officer. His research in-
terests include software engineering (using an empirical research
approach), measurement and benchmarking issues, and research
methodology. His current research topics revolve around open
source software development, agile methods, and web develop-
ment platforms. Prechelt is a member of IEEE CS, ACM, and
GI (Gesellschaft für Informatik) and is the editor of the Forum
for Negative Results (FNR) within the Journal of Universal
Computer Science (J.UCS). <prechelt@inf.fu-berlin.de>.

ing a study first requires to make the project adopt the in-
vention in its normal work. However, as anybody knows
who has ever tried to get any group of people to adopt an
invention (that is, to introduce the invention as an innova-
tion), this is rather difficult. So, rather than letting a long
row of researchers individually attempt, fail, attempt, fail,
get frustrated, and give up, we suggest to make the adop-
tion process itself the subject of research in order to provide
these researchers with a proven methodology for introduc-
ing an invention to an OSS project.

Here the term introduction is used to signify the planned
initiation of an adoption process within an organization or

UPGRADE Vol. VIII, No. 6, December 2007 41© Novática

Free Software: Research and Development

social system. Adoption then can be seen as the turning point
where inventions become innovations that are actively used
by individuals [7]. Introduction contrasts well with diffu-
sion, which carries more passive connotations, and dissemi-
nation, which does not go beyond distributing information
or resources related to an invention.

From the researcher’s point of view, combining active
introduction with OSS projects has several advantages. In
contrast to industry settings, the public visibility of most of
the working process, artifacts, and communication as well
as the openness for outsiders to contribute to these projects
allow the researcher to both capture and influence the
project to a much larger degree. In contrast to dissemination
and diffusion, the researcher can (1) observe the adoption
and use of the invention as it happens rather than perform-
ing post-hoc analysis, (2) tailor the invention to the particu-
larities of the project and repair problems that often plague
early versions of inventions on the spot, and (3) choose the
project such as to maximize the insights gained.

From the point of view of the OSS community, such re-
search increases their chances for benefitting from software
engineering improvements, given the fact that conventional
approaches to managing software process improvement
such as CMMI [5], even approaches specialized to OSS [8],
do not explain how the actual introduction of the improve-
ments should be conducted, and traditional key success
mechanisms such as management commitment and support
[24] are unlikely to work.

The rest of the paper presents our research approach for
gaining insights into the introduction of inventions in OSS
projects as well as our preliminary results for the following
research questions:

1. How to select target projects suitable for introducing
software engineering inventions.

2. How to approach a project to offer an invention.
3. How to interpret reactions and make strategic and tac-

tical decisions based on them in the course of the adoption
process.

4. How to phase out involvement and exit the project.
5. How to obtain evaluation result data during and after

the introduction.

2 Research Approach
To develop an understanding of the introduction of in-

ventions, we will perform a series of iterative case-studies
[27] using action-research methodology [2], i.e., a circu-
lar, collaborative process of planning, acting and reflecting.
These studies will be performed with three different inven-
tions of different type and with a variety of different Open
Source projects. We will not introduce several process im-
provements in the same project [9] in order to avoid syner-
gies or cannibalization between improvements [11].

Inside each case we will gather qualitative data on ac-
tion-reaction relationships and recurring patterns (using
Grounded Theory data analysis methodology [6]) to obtain

an understanding of the key interactions during an in-
troduction effort.

We will work on minimizing risk toward the project and
on protecting the autonomy of the subjects [4] by creating
an atmosphere of collaboration, involvement and partici-
pation between project and researcher, and protecting pri-
vacy and confidentiality [3][13]. Even though Open Source
projects are very robust against negative influence from the
outside, similar precautions must be taken by researchers
who evaluate their inventions in projects to ensure proper
ethical conduct.

3 How to Choose a Host Project
Choosing an appropriate Open Source project when

evaluating a software engineering invention is important to
establish a case that is (a) typical enough to generalize to
other projects, (b) suitable for the given invention, and (c)
has potential for interesting interaction regarding the intro-
duction.

In particular, the project should be Open Source not only
by license but also by development style: The project mem-
bers need to be distributed rather than co-located at a single
company site, communication must be public and preferably
archived, it must be possible for external newcomers to join
the project, and basic processes and tools (such as release
process, issue tracker and version repository) should be es-
tablished. The distribution, observability, and openness en-
sure that the researcher can study the use of the invention at
all, while the presence of basic processes and tools indicates
that the project probably fulfils basic professional software
engineering standards so that study results may generalize
to other software development projects. Fortunately, with
the existence of project hosts such as SourceForge these
tools and processes are now standard.

Regarding the size of the project a viable middle ground
must be found between too small and too large. Small
projects with less than three to four developers usually have
little interaction, communication overhead, tool usage, and
process inefficiencies or are still in the process of establish-
ing basic process patterns. They are thus rather unsuitable
for all but the most basic software engineering inventions.
Large projects with more than fifty developers on the other
hand have quite the opposite problem: They usually have
well established processes, so that the “not invented here”-
syndrome, explicit opposition, tedious consensus finding,
low perceived benefit against the established processes, and
high communication overhead might make it impossible for
a single researcher to be heard. Accordingly, we suggested
to chose a middle-sized project: five to fifty developers of
whom at least five have been active during the last few
months.

As a last project property, we believe it useful to target
a project that has shown an affinity for change (or at least
no opposition to it) in the past. In many cases this property
will correlate with the openness of the project to accept new
members, but it is still beneficial to study the history of in-

42 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

thus can be supported by the researcher by talking to indi-
vidual developers. As an example of the third kind of inno-
vation-decision and its implications for how to approach the
project, consider the introduction of a feature freeze1 two
weeks prior to a release. This decision can be driven by the
project leaders and maintainers in an authoritative fashion
and supported technically by creating a local branch for the
release in the version control system. Individual members
can undermine the decision, but they need not take specific
action to make it a reality. Thus, the researcher should com-
municate directly to the project leaders.

The second important property of the invention that af-
fects the approach is the benefit structure of the invention
offered by the researcher, i.e., the return on investment or
relative advantage [22] for each project member in con-
trast to the return on investment for the whole project. The
documentation of the project, for instance, does not provide
a high return on time spent for the experienced developer
who writes it, yet the information is highly useful for new
developers (where they might provide large returns for the
project). Inventors often understand the increasing returns
[1] promised by their invention but tend to overlook that (a)
individual project members driving the introduction might
not benefit from the improvement sufficiently to compen-
sate for the effort they spend on it and (b) the benefits might
be hard to measure or only visible in the long-run.

We hypothesize that the researcher should start the ap-
proach with those project members who can gain imme-
diate benefits. Instead of asking other project members to
perform tasks with a negative bottom line in terms of their
personal benefit, those tasks should be performed by the re-
searcher initially. Later on, when the benefits become vis-
ible and affect individuals in the project, the researcher will
have a much better chance to involve project members and
withdraw from these activities.

5 How to Interpret Reactions and Make
Strategic and Tactical Decisions

When introducing inventions and novelties of any kind
into a social system, the researcher should expect rejection,
adoption, and reinvention as ultimate reactions to occur
both on the individual and group level [22].

Rejection is the decision not to adopt an innovation. It
might occur both actively, i.e. after considering the adop-
tion or even conducting a trial, or passively, i.e. without any
consideration at all [22]. Passive rejection, i.e. not getting
a response at all, is not uncommon even if the researcher
explicitly expresses interest in joining the project [26].

Reinvention occurs if members of the project take up
the invention and recast or reuse it in unexpected and un-
intended ways. Reinventions might prove highly beneficial
for the researcher, as they may point to new fields of appli-
cation for the invention.

1 In a software release process, a feature freeze is the point from
which onwards no new features must be introduced; only defect
corrections and documentation are allowed to be performed.

ventions adopted by the project; a typical example might be
the transition from the CVS version control system to the
newer and clearly superior SVN.

To acquire a project somewhat randomly yet within the
limitations given above, a project news announcement site
like Freshmeat, which aggregates projects independently
of their hosting, or a project listing site like SWiK can be
used.

Both of these example sites offer the option to visit
a project at random from the listing. While SWiK shows
all projects that relate to Open Source, Freshmeat’s nota-
ble limitation is its requirement for projects to run under
an Open Source operating system; purely Windows-based
OSS projects are not listed.

4 How to Approach Open Source Projects
Some knowledge exists in the literature about how to

approach an OSS project [10][26]. Firstly, the concept of
“gift culture”[21] suggests that the respect for the exter-
nal participant and influence s/he carries are correlated to
his/her contribution to the project. This raises the question
whether the invention itself will be seen as a gift if dissemi-
nated to the project. A case study on the effects of offering
a source code gift that requires further effort to integrate
into the code-base of the project appears to indicate the fol-
lowing: Unless the gift is directly useful for the project and
immediately comprehensible to the participants, chances
are low that it will be accepted [20]. Thus, we hypothesize
that the researcher should expect to spend a considerable
amount of work generating these benefits until the inven-
tion is accepted and adopted.

Secondly, the researcher needs to decide whether to ap-
proach the project by contacting the maintainer and project
leaders, individual developers, or by addressing the project
community as a whole. Our working hypothesis is that the
type of approach should be correlated closely with (a) the
degree of independence of each member’s adoption deci-
sion, and (b) the benefit structure of the invention. We will
now explain these factors.

In Diffusion of Innovations, Rogers distinguishes three
types of innovation-decisions: optional innovation-deci-
sions, which each member of the project can make individ-
ually and independently, collective innovation-decisions,
which require consensus within the project, and authority
innovation-decisions, which are made by a small influential
group within the project [22].

As an example, consider the adoption of a practice such
as “mandatory peer review before committing patches to
version control”. Such an improvement usually starts as
a collective innovation-decision to improve code quality,
since a general consensus is needed that every member of
the project will submit his or her patch first to a mailing-
list for inspection, and thus the whole community should
be addressed to promote the adoption. Additionally, it also
involves an optional innovation-decision by each member
to participate in the review of patches sent by others, and

UPGRADE Vol. VIII, No. 6, December 2007 43© Novática

Free Software: Research and Development

Of course, there is still a lot of room for interaction be-
tween the project member, researcher and technology until
these ultimate reactions are made. Social science literature
provides various models for such discourse such as the
theory of fields [12] or network-actor theory [17]. We have
chosen to follow the innovation model developed by Den-
ning and Dunham [7]. In this view, the innovation process
starts with (1) the sensing of possibilities for change and
(2) a vision of what might result from the change. (3) Of-
fering this vision to the affected people (or other units of
adoption) and receiving their feedback allows the idea to be
shaped into something that can be (4) executed and imple-
mented in concrete terms resulting in a product, process or
social improvement. It is only after the invention has been
(5) adopted by the desired target population and (6) sus-
tained as a successful novelty that a successful introduction
of innovation has occurred. In the setting discussed here,
the first two stages will focus more on the tailoring of the
existing problem, vision and invention rather than the gen-
eration of new ideas and implementation.

6 How and When to Phase Out Involvement
and Leave?

Our current working hypothesis is that the researcher
can leave a project when s/he has successfully established
the innovation as self-sustaining, or if the adoption has
failed and no clean-up work remains to be done. In success-
ful cases, withdrawal from the project should be gradual
rather than abrupt or it may endanger the success and cause
harm to the project. Leaving a project after a failed intro-
duction on the other hand obliges the researcher to clean up,
say, revert changes to the code-base or reinstate previous
infrastructure before a (gradual) withdrawal is in order.

7 How to Obtain Evaluation Results?
The actual evaluation of the invention under investiga-

tion is highly dependent on the nature of the invention itself
and on the particular evaluation research goal. For some
inventions the successful adoption itself can be a sufficient
success, while others can only be judged by comparing
product, process, or usage metrics to their baseline values
prior to introduction. A third kind of invention might re-
quire the developers to be surveyed about their experience
with the new technology.

Independent of these three basic approaches, the re-
searcher will probably gain the most practical, albeit quali-
tative, insights for improving and assessing the invention by
communicating with the project during the introduction. A
researcher using the action research perspective may view
this as the primary result.

8 Chances, Limitations and Conclusion
In the end, the question remains whether the experienc-

es gained with introducing software engineering inventions
in OSS projects can be applied to other settings (external

validity). These might include differences in project sizes,
application domains, software architectures, non-volunteer
personnel, management, distribution and work-place set-
ting, prior experience with software engineering methods,
etc. The most common target setting is a revenue-depend-
ent corporate environment. The following arguments argue
why evaluation results from OSS projects may transfer to
such environments: 1) Open Source developers are notori-
ous for being critical of academic results, (2) availability
of management championship and extrinsic motivations
(like pay) can often spur adoption and use, and (3) full-time
employees will benefit more from economies of scale and
learning effects than part-time OSS developers.

The most notable limiting factor of our research ap-
proach is the restriction on the type of invention feasible
for investigation. The diffusion of innovation literature lists
several attributes of invention that will affect their rate of
success for being introduced: (1) The compatibility of the
invention with existing technology, values, and beliefs2,
(2) the intellectual and technical complexity, (3) the ob-
servability of the resulting effects of the invention, (4) the
possibility to experiment with the invention (trialability)
before committing to it, and (5) the uncertainty about the
invention [22]. Halloran and Scherlis hypothesize more
specifically with regards to OSS projects that these tend to
distinguish sharply between trusted and untrusted contribu-
tions (“walled server” metaphor) and that inventions need
to preserve this distinction to be applicable to OSS projects
[15]).

This limits the approach as follow: while successful in-
troduction suggests a valuable invention, failed introduction
may be the result of specific properties of the OSS project
(such as the walled-server) and may not say much about the
real qualities of the invention.

As a second limitation we note that in contrast to field-
work and ethnographic studies conducted with companies
(see for instance [18]), it will be difficult to study the actual
working processes and practices of each project participant
since only the intermediates and process results, say, bug
reports, CVS commits, and mailing list discussions are visi-
ble to the researcher. To gather information about the actual
usage of tools on the computers of the project members,
these need to be instrumented appropriately [23][16].

A third limitation of the approach concerns the speed
at which adoption can occur. Open Source projects are to
a large extent driven by volunteers who invest less than 10
hours per week and coordinate using asynchronous elec-
tronic means over different time zones [14]. The time scale
of change should thus be expected to be much slower than
in a commercial setting where employees work regular
working hours and frequently interact synchronously.

Summing up, we have proposed to study the introduc-
tion of software engineering inventions to help research-
ers evaluate tools, methods, and processes developed in

2 For instante, OSS projects may reject tools that are not licensed
as Open Source software themselves.

44 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

ware Engineering, pages 26– 28. ACM, 2002.
[16] 	P. M. Johnson, H. Kou, J. Agustin, C. Chan, C.

Moore, J. Miglani, S. Zhen, W. E. J. Doane. Beyond
the personal software process: metrics collection and
analysis for the differently disciplined. In ICSE ’03:
Proceedings of the 25th International Conference on
Software Engineering, pages 641–646, Washington,
DC, USA, 2003. IEEE Computer Society.

[17] 	 J. Law. Notes on the theory of the actor-network: Or-
dering, strategy and heterogeneity. Systems Practice,
5(4):379–393, 1992.

[18] 	T. C. Lethbridge, J. Singer. Experiences conducting
studies of the work practices of software engineers.
In H. Erdogmus and O. Tanir, editors, Advances in
Software Engineering: Comprehension, Evaluation,
and Evolution, pages 53–76. Springer, 2001.

[19] 	D. E. Perry, A. A. Porter, L. G. Votta. Empirical stud-
ies of software engineering: a roadmap. In Proceed-
ings of the conference on The future of Software
engineering, pages 345–355. ACM Press, 2000.

[20] 	L. Quintela García. Die Kontaktaufnahme mit Open
Source Software-Projekten. Eine Fallstudie. Bache-
lor thesis, Freie Universität Berlin, 2006.

[21] 	E. S. Raymond. The Cathedral and the Bazaar.
O’Reilly & Associates, Inc., Sebastopol, CA, USA,
1999. ISBN: 1565927249.

[22] 	E. M. Rogers. Diffusion of Innovations. Free
Press, New York, 5th edition, August 2003. ISBN:
0743222091.

[23] 	F. Schlesinger, S. Jekutsch. ElectroCodeoGram: An
environment for studying programming. In Work-
shop on Ethnographies of Code, Infolab21, Lancaster
University, UK, March 2006.

[24] 	D. Stelzer, W. Mellis. Success factors of organi-
zational change in software process improvement.
Software Process: Improvement and Practice,
4(4):227–250, 1998.

[25] 	W. F. Tichy, P. Lukowicz, L. Prechelt, E. A. Heinz.
Experimental evaluation in computer science: A
quantitative study. Journal of Systems and Software,
28(1):9–18, Jan. 1995.

[26] 	G. von Krogh, S. Spaeth, K. Lakhani. Community,
joining, and specialization in open source software
innovation: A case study. Research Policy, 32:1217–
1241(25), July 2003.

[27] 	R. K. Yin. Case Study Research: Design and Meth-
ods. Applied Social Research Methods. Sage Publi-
cations, Inc., 1988.

[28] 	M. V. Zelkowitz, D. R. Wallace. Experimental models
for validating technology. Computer, 31(5):23–31,
1998.

academic settings, and have offered our preliminary results.
While the research community can benefit from access to
real life settings and the possibility to “feed back the com-
munity”, the Open Source community is introduced to state-
of-the-art inventions tailored to their specific problems by
the inventors.

References

[1] 	 W. B. Arthur. Increasing Returns and Path Depend-
ence in the Economy. University of Michigan Press,
1994. ISBN: 0472064967.

[2] 	 D. E. Avison, F. Lau, M. D. Myers, P. A. Nielsen. Ac-
tion research. Commun. ACM, 42(1):94–97, 1999.

[3] 	 M. Bakardjieva, A. Feenberg. Involving the vir-
tual subject. Ethics and Information Technology,
2(4):233–240, 2001.

[4] 	 J. Cassell. Ethical principles for conducting field-
work. American Anthropologist, 82(1):28–41, March
1980.

[5] 	 CMMI Product Team. Cmmi for development, ver-
sion 1.2. Technical Report CMU/SEI-2006-TR-008,
Software Engineering Institute, 2006.

[6] 	 J. M. Corbin, A. Strauss. Grounded theory research:
Procedures, canons, and evaluative criteria. Qualita-
tive Sociology, 13(1):3–21, Mar. 1990.

[7] 	 P. J. Denning, R. Dunham. Innovation as language
action. Commun. ACM, 49(5):47–52, 2006.

[8] 	 S. Dietze. Modell und Optimierungsansatz für Open
Source Softwareentwicklungsprozesse. Doktorarbeit,
Universität Potsdam, 2004.

[9] 	 G.W. Downs, L. B. Mohr. Conceptual issues in study
of innovation. Administrative Science Quarterly,
21(4):700–714, 1976.

[10] 	N. Ducheneaut. Socialization in an open source
software community: A socio-technical analysis.
Computer Supported Cooperative Work (CSCW),
V14(4):323–368, Aug. 2005.

[11] 	M. L. Fennell. Synergy, influence, and information in
the adoption of administrative innovations. Academy
Of Management Journal, 27(1):113–129, 1984.

[12] 	N. Fligstein. Social skill and the theory of fields.
Sociological Theory, 19(2):105–125, July 2001.

[13] 	M. S. Frankel, S. Siang. Ethical and legal aspects of
human subjects research on the internet. Published
by AAAS online , June 1999.

[14] 	R. A. Ghosh, B. Krieger, R. Glott, G. Robles, T.
Wichmann. Free/Libre and Open Source Software:
Survey and Study – FLOSS. Final Report, Interna-
tional Institute of Infonomics University of Maas-
tricht, The Netherlands; Berlecon Research GmbH
Berlin, Germany, June 2002.

[15] 	T. J. Halloran, W. L. Scherlis. High Quality and Open
Source Software Practices. In J. Feller, B. Fitzgerald,
F. Hecker, S. Hissam, K. Lakhani, and A. van der
Hoek, editors, Meeting Challenges and Surviving
Success: The 2nd Workshop on Open Source Soft-

UPGRADE Vol. VIII, No. 6, December 2007 45© Novática

Free Software: Research and Development

 Keywords: Artificial Intelligence, Intelligent Agents,
Optimization, Rendering.

1 Introduction
Physically based Rendering is the process of generating

a 2D image from the abstract description of a 3D scene. The
process of constructing a 2D image requires several phases
including modelling, setting materials and textures, plac-
ing the virtual light sources, and rendering. Rendering al-
gorithms take a definition of geometry, materials, textures,
light sources, and virtual camera as input and produce an
image (or a sequence of images in the case of animations)
as output. High-quality photorealistic rendering of complex
scenes is one of the key goals of computer graphics. Unfor-
tunately, this process is computationally intensive and re-
quires a lot of time to be done when the rendering technique
simulates global illumination. Depending on the rendering
method and the scene characteristics, the generation of a
single high quality image may take several hours (or even
days!). For this reason, the rendering phase is often consid-
ered as a bottleneck in photorealistic projects.

To solve this problem, several approaches based on par-
allel and distributed processing have been developed. One
of the most popular is the render farm: a computer clus-
ter owned by an organization in which each frame of an
animation is independently calculated by a single proces-
sor. There are new approaches called Computational Grids
which use the Internet to share CPU cycles. In this context,
Yafrid is a computational Grid that distributes the rendering
of a scene among a large number of heterogeneous comput-
ers connected to the Internet.

This paper describes the work flow and the free software
tools used at the University of Castilla-La Mancha in sever-
al 3D rendering projects based on Open Source Cluster Ap-

3D Distributed Rendering and
Optimization using Free Software

Carlos González-Morcillo, Gerhard Weiss, David Vallejo-Fernández, and Luis Jiménez-Linares, and Javier Albusac-Jiménez

The media industry is demanding high fidelity images for 3D synthesis projects. One of the main phases is Rendering,
the process in which a 2D image can be obtained from the abstract definition of a 3D scene. Despite developing new
techniques and algorithms, this process is computationally intensive and requires a lot of time to be done, especially when
the source scene is complex or when photo-realistic images are required. This paper describes Yafrid (standing for Yeah!
A Free Render grID) and MAgArRO (Multi Agent AppRoach to Rendering Optimization) architectures, which have been
developed at the University of Castilla-La Mancha for distributed rendering optimization.

González, Weiss, Vallejo, Jiménez and Albusac, 2007. This article is distributed under the “Attribution-
Share Alike 2.5 Generic” Creative Commons license, available at <http://creativecommons.org/licenses/
by-sa/2.5/ >. It was awarded as the best article of the 1st. FLOSS International Conference (FLOSSIC
2007).

Authors

Carlos Gonzalez-Morcillo is an assistant professor and
a Ph.D. student in the ORETO research group at the Uni-
versity of Castilla-La Mancha. His recent research topics
are multi-agent systems, distributed rendering, and fuzzy
logic. He received both B.Sc. and M.Sc. degrees in Com-
puter Science from the University of Castilla-La Mancha in
2002 and 2004 respectively. <carlos.gonzalez@uclm.es>.

Gerhard Weiss is the scientific director at SCCH (Software Com-
petence Center Hagenberg GmbH), one of Austria’s largest inde-
pendent research centres. His main interests have been in compu-
tational intelligence and autonomous systems in general, and in the
foundations and application of agent and multi-agent technology
in particular. He is the co/editor of the reference book in this area
“Multiagent Systems” (MIT Press). <gerhard.weiss@scch.at>.

David Vallejo-Fernandez is an assistant professor and a Ph.D.
student in the ORETO research group at the University of Castil-
la-La Mancha. His recent research topics are multi-agent systems,
cognitive surveillance architectures, and distributed rendering.
He received his B.Sc. degree in Computer Science from the Uni-
versity of Castilla-La Mancha in 2006. <david.vallejo@uclm.es>

Luis Jimenez-Linares is an Associate Professor of Computer Sci-
ence at the University of Castilla-La Mancha. His recent research
topics are multi-agent systems, knowledge representation, ontol-
ogy design, and fuzzy logic. He received both M.Sc. and Ph.D.
degrees in Computer Science from the University of Granada in
1991 and 1997 respectively. He is member of the European So-
ciety of Fuzzy Logic and Technology. <luis.jimenez@uclm.es>.

Javier Albusac-Jimenez is a researcher and a Ph.D. student in
the ORETO research group at the University of Castilla-La Man-
cha. His recent research topics are multi-agent systems, cognitive
surveillance, and cognitive vision. He received his B.Sc. degree
in Computer Science from the University of Castilla-La Mancha
in 2005. <javieralonso.albusac@uclm.es>.

46 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

plication Resources (OSCAR) and Blender & Yafray render
engines), as well as our new research software distributed
under General Public Licence (GPL). Going into detail, the
global architecture of Yafrid and the optimization system
(based on principles from the area of multi-agent systems)
called MAgArRO are exposed. This last system uses ex-
pert knowledge to make local optimizations in distributed
rendering. Finally, some experimental results which show
the benefits of using these distributed approaches are pre-
sented. The paper is structured as follows. The following
section overviews the state of the art and the current main
research lines in rendering optimization. Thereby, the focus
is on the issues related to parallel and distributed render-
ing. The next sections describe the general architecture of
an OSCAR-based cluster, the Grid-based rendering system
called Yafrid and the Distributed Intelligent Optimization
Architecture called MAgArRO. In the next section, empiri-
cal results that have been obtained by using these systems
are shown. The final section is dedicated to a careful discus-
sion and concluding remarks.

1.1 Related Work
   There are a many rendering methods and algorithms,

each having different characteristics and properties [11][6]
[10]. However, as pointed out by Kajiya [6], all rendering al-
gorithms aim to model the light behaviour over various types
of surfaces and try to solve the so-called rendering equation
which forms the mathematical basis of all rendering algo-
rithms. Common to these algorithms, the different levels of
realism are related to the complexity and the computational
time required to be done. Chalmers et al. [3] expose various
research lines in rendering optimization issues.

Optimizations via Hardware. One method to decrease
time is to make special optimizations using hardware. In
this research line there are different approaches; some meth-
ods use programmable GPUs (Graphics Processing Units)
as massively parallel, powerful streaming processors which
run specialised code portions of a raytracer. The use of pro-
grammable GPUs out-performs the standard workstation
CPUs by over a factor of seven [2]. The use of the CPU in
conjunction with the GPU requires new paradigms and al-
ternatives to the traditional architectures. For example, the
architectural configurations proposed by Rajagopalan et al.
[8] demonstrate the use of a GPU to work on real-time ren-
dering of complex data sets which demand complex com-
putations. There are some render engines designed to be
used with GPU acceleration, such as Parthenon Renderer
[5], which use the floating-point of the GPU, or the Gelato
render engine, which works with Nvidia graphic cards.

Optimizations using distributed computing. If we
divide the problem into a number of smaller problems
(each of them being solved on a separate processor), the
time required to solve the full problem would be reduced.
In spite of being true in general, there are many distrib-
uted rendering problems that would be solved. To obtain
a good solution to a full problem on a distributed system,
all processing elements must be fully utilized. Therefore, a

good task scheduling strategy must be chosen. In a domain
decomposition strategy [3], each processing unit has the
same algorithm, and the problem domain is divided to be
solved by the processors. The domain decomposition can be
done using a data driven or a demand driven approach. In a
data driven model, the tasks are assigned to the processing
units before starting to compute. In the other alternative, the
demand driven model, the tasks are dynamically allocated
when the processing units become idle. This is done by im-
plementing a pool of available tasks. This way, the process-
ing units make a request for pending work.

In both models (data and demand driven), a cost estima-
tion function of each task is needed. This cost prediction
is very difficult to exactly calculate before completing the
image due to the nature of global illumination algorithms
(unpredictable ray interactions and random paths of light
samples).

The biggest group of distributed and parallel render-
ing systems is formed by dedicated clusters and rendering
farms used by some 3D animation companies. Depending
on the task division, we can talk about fine-grained systems,
in which each image is divided into small parts that are sent
to a processor to be independently done, or coarse-grained
(in case of animations) in which each frame of an animation
is entirely done by one processing unit. In this context, Dr.
Queue [17] is an open source tool designed for distributing
frames through a farm of networked computers. This multi-
platform software works in a coarse-grained division level.
In Section 2, our solution based on OSCAR open cluster
[18] is exposed.

New approaches of distributed rendering use a grid
design to allocate the tasks among a large number of het-
erogeneous computers connected to the Internet, using the
idle time of the processor [1]. This emerging technology
is called Volunteer Computing or Peer-to-peer computing,
and is currently used in some projects based on the BOINC
technology (such as BURP [16] Big and Ugly Rendering
Project). In Section 3, the main architecture of Yafrid and
its key advantages are exposed.

Cost prediction. The knowledge about the cost distri-
bution across the scene (i.e. across the different parts of a
partitioned scene) can significantly aid the allocation of re-
sources when using a distributed approach. This estimation
is absolutely necessary in commercial rendering produc-
tions, to assure deadlines and provide accurate quotations.
There are many approaches based on knowledge about cost
distribution; a good example is [9]. In Section 4.1, the cost
prediction mechanism used in MAgArRO is exposed.

Distributed Multi-Agent Optimization. The distribu-
tion of multi-agent systems and their properties of intelligent
interaction allow us to get an alternative view of rendering
optimization. The work presented by Rangel-Kuoppa [7]
uses a JADE-based implementation of a multi-agent plat-
form to distribute interactive rendering tasks on a network.
Although this work employs the multi-agent metaphor, it
does not make use of multi-agent technology itself. The
MAgArRO architecture proposed in Section 4 is an ex-

UPGRADE Vol. VIII, No. 6, December 2007 47© Novática

Free Software: Research and Development

ample of a free and Distributed Multi-Agent architecture
which employs expert knowledge to optimize the rendering
parameters.

2 OSCAR-based Cluster Approach
Nowadays, Universities have good practical class-

rooms provided with plenty of computers. This equipment
is frequently maintained and updated. Nevertheless, these
computers are inactive over vacation and at night. This ex-
isting hardware infrastructure can be co-ordinated during
idle time by using free software thus creating clusters and
low-cost supercomputers [14]. OSCAR [18] is a software
platform which allows the user to deploy clusters based on
GNU/Linux. In the next section, the general architecture of
the OSCAR-based system will be explained. This tool is be-
ing used at the University of Castilla-La Mancha to render
3D projects [20][22].

2.1 Architectural Overview
In our execution environment, the system is composed

of 130 heterogeneous workstations placed in different class-
rooms. Every classroom has a specific hardware type (based
on x86 architecture). The minimal requirements to belong
to the system are 500MB of RAM, a swap partition of 1GB,
and a connection of at least 100Mbits/s (all computers are
connected to one network using 100 Mbits/s switches). The
Figure 1 illustrates these requirements.

The classrooms, where OSCAR cluster is used, are ded-
icated to education. For this reason, the best choice is not
to permanently install any software in them. The subproject
Thin-OSCAR [19] allows us to use machines without a lo-
cal HD or a partition to install the operating system as mem-
bers of the OSCAR cluster.

Each rendering node is configured obtaining the con-
figuration parameters from the network. This is done by
using the Pre eXecution Environment (PXE) extension of
the BIOS. In our case, these data are the operating system
image in which will be executed.

The server has two key processes to handle the PXE
requests:
n	 DHCPD: the Dynamic Host Configuration Proto-

col daemon. This protocol is used to assign IP addresses to
clients and to load the operating system image.
n	 TFTPD: the Trivial Transfer Protocol daemon.

When the server receives a file request, it sends it to the cli-
ent by using some configuration tables.

In order to begin and finish the execution of the com-
puters in a controlled schedule, the WOL (Wake On Lan)
functionality of modern computers is used. These BIOS ex-
tensions are used with the help of the motherboard and the
software package Ether-Wake (developed by Donal Beck-
er). When the package generated by Ether-Wake arrives,
the computer boots and loads the operating system image.

Figure 1: OSCAR-based Rendering Farm at ESI-UCLM.

48 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

has finished, the ACPI interface is used to halt them. The
server establishes a ssh connection to each node and sends
it a shutdown command.

3 Yafrid: Grid-based Rendering
Yafrid is basically a system which takes advantage of

the characteristics of computational grids by distributing
the rendering of a scene through the Internet. The system
also has other important tasks related to the management of
the workunits and the controlled use of the grid.

3.1 Architectural Overview
The top-level components of Yafrid are basically the

following ones:
n	Server. The hub of Yafrid. Its basic component is

the Distributor which gets works from a queue and
sends them to the providers.

n	 Service Provider. This entity processes the client
requests.

n	 Client. A client is an external entity which does
not belong to the system in a strict sense. Its role is
to submit works to the providers. Those works are
stored in a queue used by the distributor to take the
next one to be scheduled.

In terms of access to the system, three user roles have
been defined to determine the user access privileges:
n	 Client. With this role, a user is allowed to submit

works to the grid. A client is also able to create and manage
render groups (clients and providers can subscribe to these

groups). When a project is created, it can belong to a group.
In this case, only providers belonging to the same group can
take part in the project rendering.
n	 Administrator. This role is needed for operating

the whole system and has complete privileges to access to
the information about all the users.
n	 Provider. The provider is a role user that has in-

stalled the software needed for receiving works. Providers
can access to their own information and some statistics.

Yafrid server. The server is the fundamental node for
setting the Yafrid render system up. Each one of the provid-
ers connects to this node in order to let the grid to use its
CPU cycles for rendering the scenes submitted by Yafrid
clients. Yafrid server consists of an architecture of four lay-
ers (Figure 2). This design is loosely based on the architec-
ture that appears in [4]. Those layers are “Resource Layer”,
“Service Layer”, “Yafrid Server”, and “User Layer” (from
lowest to highest level of abstraction).

Resource Layer. This layer has the lowest abstraction
level and it is the most related with operating system issues.
The resource layer has the following components:

n	 Database system. It is in this database where the
tables needed for the correct operation of the sys-
tem are maintained. Some of these tables are used
to obtain statistics about the system performance,
whereas other ones store the data associated to us-
ers, groups, projects, etc. The current implementa-
tion uses MySQL. 	

Figure 2: Yafrid General Architecture.

UPGRADE Vol. VIII, No. 6, December 2007 49© Novática

Free Software: Research and Development

n	 Filesystem. Sometimes, it is necessary to directly
access the file system from the high-level layers.
Basically, the system distinguishes two types of
directories. There are some directories which are
used to store the workunits of projects that will be
accessed via SFTP by providers. Those directories
compose the workunit POOL. The other category
of directories is composed by those directories that
contain information about users and projects.

n	 Network system. The module dedicated to com-
munications hides the use of network resources by
using a middleware (the current implementation
uses ZeroC ICE [25]).

Service Layer. Basically, this layer contains the differ-
ent servers that allow modules to access resources
that belong to lower layers. There are several serv-
ers at this level:

n	 HTTP Server. The Yafrid-WEB module is estab-
lished over this server. As Yafrid-WEB has been
developed using dynamic web pages written in a
web-oriented scripting language (the current im-
plementation uses PHP), the web server must sup-
port this language.

n	 Database server. This server is used by the differ-
ent Yafrid modules to access to the indispensable
data for the system operation.

n	 SFTP server. This server is accessed by the serv-
ice providers to obtain the files needed for carrying
out the rendering of the work units. Once the ren-
dering has finished, the SFTP server will be used to
send the resultant image to the Yafrid Server.

Yafrid Layer. This is the main layer of the server and
it is composed of two different modules (Yafrid-WEB and
Yafrid-CORE) working independently. Yafrid-WEB is the
interactive module of the server and it has been developed

as a set of dynamic web pages. Yafrid-CORE is the non-
interactive part of the server. This module has been mainly
developed using Python. Yafrid-CORE is composed of three
submodules: Distributor, Identificator, and Statistics.

n	 The Distributor is the active part of the server. It
implements the main algorithm in charge of do-
ing the indispensable tasks, such as generating the
work units, assigning them to providers, control-
ling the timeout, finishing projects, and composing
the results. With the results generated by the dif-
ferent providers, the distributor composes the final
image. This process is not trivial because slight dif-
ferences between fragments obtained from different
computers can be distinguished (due to the random
component of Monte Carlo based methods as Path-
tracing). For that reason, it is necessary to smooth
the joint between fragments which are neighbours
using a lineal interpolation mask. We define a zone
in the work unit that is combined with other work
units in the server. In Figure 3 on the left, we can
see problems when joining the work units if we do
not use a blending method.

n	 The passive part of Yafrid-CORE is called the
Identificator module. Its mission consists of wait-
ing for the communications from the providers.
The first time a provider tries to connect to the
Yafrid server, the Identificator generates an object
(the provider controller) and returns a proxy to this
object. Each provider has its own controller.

n	 Provider. The provider is the software used by the
users who want to give CPU cycles to the grid. It
can work in both visual and non-visual mode. First,
the provider must connect to the grid. Once acti-
vated, the provider waits until the server sends a
work unit to process. After finishing the rendering,

Figure 3: Artifacts without Interpolation between Workunits.

50 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

the provider sends the file via SFTP and informs
the controller that the work was done.

4 MAgArRO: Distributed Intelligent Opti-
mization

According to [12], an agent is a computer system that is
situated in some environment and that is capable of action-
ing in this environment in order to meet its design objec-
tives. MAgArRO uses the principles, techniques, and con-
cepts known from the area of multi-agent systems, and it
is based on the design principles of FIPA (Foundation for
Intelligent Physical Agents) standards [21].

MAgArRO has also been developed using the ICE mid-
dleware [25]. The location service IceGrid is used to indi-
cate in which computer the services reside. Glacier2 is used
to solve the difficulties related with hostile network envi-
ronments, being the agents able to connect behind a router
or a firewall.

4.1 Architectural Overview
As mentioned, the overall architecture of MAgArRO is

based on the design principles of FIPA standards. In Figure
4, the general workflow and the main architectural roles are
shown. In addition to the basic FIPA services, MAgArRO
includes specific services related to Rendering Optimiza-
tion. Specifically, a service called Analyst studies the scene
in order to enable the division of the rendering tasks. A
blackboard is used to represent some aspects of the com-
mon environment of the agents. Finally, a master service
called Master handles dynamic groups of agents who coop-
erate by fulfilling subtasks.

Figure 4 also illustrates the basic workflow in MAgAr-
RO (the circled numbers in this figure represent the follow-
ing steps).

1) The first step is the subscription of the agents to the
system. This subscription can be done at any moment; the
available agents are dynamically managed. When the sys-
tem receives a new file to be rendered, it is delivered to the
Analyst service.

Figure 4: General Workflow and Main Architectural Roles.

UPGRADE Vol. VIII, No. 6, December 2007 51© Novática

Free Software: Research and Development

2) The Analyst analyzes the scene, making some parti-
tions of the work and extracting a set of tasks.

3) The Master is notified about the new scene which is
sent to the Model Repository.

4) Some of the agents available at this moment are man-
aged by the Master and notified about the new scene.

5) Each agent obtains the 3D model from the repository
and begins to auction.

6) The (sub-)tasks are executed by the agents and the
results are sent to the Master.

7) The final result is composed by the Master using the
output of the tasks previously done.

8) The Master sends the rendered image to the user. Key
issues of this workflow are described in the following sec-
tion.

Analysis of the Scene using Importance Maps.
MAgArRO employs the idea of estimating the complexity
of the different tasks in order to achieve load-balanced par-
titioning. Complexity analysis is done by the Analyst agent
prior to (and independent of) all other rendering steps. The
main objective in this partitioning process is to obtain tasks
with similar complexity to avoid the delay in the final time
caused by too complex tasks. This analysis may be done in
a fast way independently of the final render process.

Once the importance map is generated, a partition is
constructed to obtain a final set of tasks. These partitions

are hierarchically formed at different levels, where at each
level the partitioning results obtained at the previous level
are used. At the first level, the partition is made taking care
of the minimum size and the maximum complexity of each
zone. With these two parameters, the Analyst makes a re-
cursive division of the zones (see Figure 5). At the second
level, neighbour zones with similar complexity are joined.
Finally, at the third level the Analyst tries to obtain a bal-
anced division where each zone has nearly the same com-
plexity/size ratio. The idea behind this division is to obtain
tasks that all require roughly the same rendering time. As
shown below in the experimental results, the quality of this
partitioning is highly correlated to the final rendering time.

Using Expert Knowledge. When a task is assigned to
an agent, a set of fuzzy rules is used to model the expert
knowledge and to optimize the rendering parameters for
this task. Sets of fuzzy rule are considered well suited for
expert knowledge modelling due to their descriptive power
and easy extensibility [13]. The output parameters (i.e. the
consequent part of the rules) are configured so that the time
required to complete the rendering is reduced and the loss
of quality is minimized. Each agent may model different
expert knowledge with a different set of fuzzy rules. For
example, the following rule is used (in a set of 28 rules)
for describing the rendering parameters of the Pathtracing
method: R_1: If C is {B,VB} and S is {B,N} and Op is VB
then Ls is VS and Rl is VS.

Figure 5: Importance Maps. Left: Blind Partitioning (First Level). Center: Join Zones with Similar Complexity (Second Level).
Right: Balancing Complexity/Size Ratio (Third Level).

Figure 6: Left: Yafrid. Rendering Time Related to Workunit Size. Right: MAgArRO. Different Levels of Partitioning with a Normal Optimi-
zation Level.

52 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

The meaning of this rule is “If the Complexity is Big
or Very Big and the Size is Big or Normal and Optimiza-
tion Level is Very Big, then the number of Light Samples
is Very Small and the Recursion Level is Very Small”. The
Complexity parameter represents the complexity/size ra-
tio of the task, the Size represents the size of the task in
pixels, and the Optimization Level is selected by the user.
The output parameter Recursion Level defines the global
recursion level in raytracing (number of light bounces), and
the Light Samples defines the number of samples per light
in the scene (higher values involve more quality and more
rendering time).

5 Experimental Results
In order to test the behaviour of the systems, 8 comput-

ers with the same characteristics were connected to Yafrid
and MAgArRO. These nodes (Intel Pentium Centrino 2
GHz, 1GB RAM) were used in both systems during the ex-
ecution of all the tests. The test scene contained more than
100,000 faces, 5 levels of raytracing recursion in mirror
surfaces (the dragon), 6 levels in transparent surfaces (the
glass), 128 samples per light source, and was rendered us-
ing the free render engine Yafray [23]. In addition, 200,000
photons were released in order to construct the Photon Map
structure. With this configuration, the rendering on a single
machine without optimizations took 121:17 (121 minutes
and 17 seconds).

In the case of Yafrid, as we can see in Figure 6 (Left), the
rendering time in the best case is nearly seven times better
using the grid, and less than twice as good in the worst case.
With these results, it is clear the importance of choosing
an appropriate workunit size. This occurs because there are
complex tasks that slow down the whole rendering process
even if the number of nodes is increased.

As we mentioned, MAgArRO uses Importance Maps

to estimate the complexity of the different tasks. Figure 6
(Right) shows the time required by using different partition-
ing levels. Using a simple first-level partitioning (similar to
the Yafrid approach), a good render time can be obtained
with just a few agents. However, when the number of agents
(processing nodes) grows, the overall performance of the
system increases because the differences in the complexity
of the tasks are relatively small.

As a final remark, note that intelligent optimization may
result in different quality levels for different areas of the
overall scene. This is because more aggressive optimiza-
tion levels (Big or Very Big) may result in a loss of detail.
For example, in Figure 7.e, the reflections on the glass are
not as detailed as in Figure 7.a. The difference between the
optimal render and the most aggressive optimization level
(Figure 7.f) is minimal.

6 Discussion and Conclusion
The computational requirements of photo-realistic

rendering are huge and, therefore, to obtain the results in
a reasonable time and on a single computer is practically
impossible (even more difficult in the case of animations).
Several approaches based on different technologies have
been exposed in this paper.

Our OSCAR-based cluster has some interesting char-
acteristics:

n	Very good throughput in the case of animations.
The system divides each frame of the animation
into different nodes of the cluster. The fine-grained
approach needs the programming of new features
in the main server.

n	 The processing nodes are used during idle time (at
night).

n	 The latency due to the file transfer is minimal
(thanks to the use of a Fast Ethernet network).

Figure 7: Result of the Rendering Using Different Optimization Levels. (a) No Optimization and Render in one Machine. (b) Very Small (c)
Small (d) Normal (e) Very Big (f) Difference between (a) and (e) (the Lighter Colour, the Smaller Difference).

UPGRADE Vol. VIII, No. 6, December 2007 53© Novática

Free Software: Research and Development

Otherwise, the cluster can only be used by submit-
ting tasks to the main server into the same organization.To
solve some of these problems, the Yafrid approach was
designed. This computational grid has some important
advantages:

n	 There is no cluster; the providers can be heteroge-
neous (software and hardware) and can be geo-
graphically distributed.

n	With the fine-grained approach, we can make local
optimizations in each frame.

n	One of the main advantages of this distributed ap-
proach is the scalability. The performance per-
ceived by the user depends on the number of sub-
scribed providers.

Some enhancements should be done to improve
the Yafrid performance. Some of them were added to
MagArRO:

n	MAgArRO enables importance-driven rendering
through the use of importance maps.

n	 It allows us to use expert knowledge by employing
flexible fuzzy rules.

n	 It applies the principles of decentralized control
and local optimization. The services are easily
replicable. Thus, possible bottlenecks in the final
deployment can be minimized.

There are many future research lines. In our current
work, we concentrate on the combination of the best char-
acteristics of Yafrid and MAgArRO to integrate the new
system (called YafridNG) in the official Blender branch
[15]. The source code of these systems, distributed under
GPL license, can be downloaded at [24].

Acknowledgments
This work has been funded by the Consejeria de Ciencia

y Tecnología and the Junta de Comunidades de Castilla-La
Mancha under Research Projects PAC-06-0141 and PBC06-
0064. Special thanks to Javier Ayllon for his support at the Su-
percomputation Service (University of Castilla-La Mancha).

References

[1] 	 D.P. Anderson, G. Fedak. The Computational and
Storage Potential of Volunteer Computing. Sixth
IEEE International Symposium on Cluster Com-
puter and the Grid (CCGRID ‘06). p. 73-80. May
2006.

[2]	 I.Buck, T. Foley, D. Horn, J. Sugerman, K. Fata-
halian, M. Houston, P. Hanrahan. Brook for GPUs:
Stream Computing on Graphics Hardware. Proceed-
ings of SIGGRAPH ‘04, p.777-786.

[3] 	 A. Chalmers, T. Davis, E. Reinhard. Practical Par-
allel Rendering. Ed. A. K. Peters, 2002. ISBN: 1-
56881-179-9.

[4] 	 I. Foster, C. Kesselman, S. Tuecke. The Anatomy of
the Grid: Enabling Scalable Virtual Organizations.

International Journal of Supercomputing Applica-
tions 15, 3(2002).

[5] 	 T. Hachisuka. High-Quality Global Illumination
Rendering using Rasterization. GPU Gems 2: Pro-
gramming Techniques for High Performance Graph-
ics and General-Purpose Computation. Addison-
Wesley Professional, 2005.

[6] 	 J.T. Kajiya. The rendering equation. Computer
Graphics 20(4): 143-150. Proceedings of SIG-
GRAPH ‘86.

[7] 	 R.R. Kuoppa, C.A. Cruz, D. Mould. Distributed 3D
Rendering System in a Multi-Agent Platform. Pro-
ceedings of the Fourth Mexican International Con-
ference on Computer Science, 8, 2003.

[8] 	 R. Rajagopalan, D. Goswami, S.P. Mudur. Func-
tionality Distribution for Parallel Rendering. Pro-
ceedings of the 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS’05), p.
18-28, April 2005.

[9] 	 E. Reinhard, A.J. Kok, F.W. Jansen. Cost Prediction
in Ray Tracing. Rendering Techniques ‘96, p. 41-50.
Springer-Verlag, June 1996.

[10] 	E. Veach, L.J. Guibas. Metropolis light transport.
Proceedings of SIGGRAPH ‘97, p. 65-76. New
York, USA: ACM Press - Addison Wesley Publish-
ing Co.

[11] 	 T. Whitted. An improved illumination model for
shaded display. Proceedings of SIGGRAPH ‘79, 14.
New York, USA: ACM Press.

[12] 	M.J. Wooldridge. An introduction to multiagent
systems. John Wiley & Sons, 2002. ISBN: 0-471-
49691-X

[13] 	L.A. Zadeh. The concept of a linguistic variable and
its applications to approximate reasoning. Informa-
tion Science, 1975.

[14] 	Beowulf: Open Scalable Performance Clusters.
<http://www.beowulf.org>.

[15] 	Blender: Free 3D content creation suite. <http://
www.blender.org>.

[16] 	BURP: Big Ugly Rendering Project. <http://burp.
boinc.dk/>.

[17] 	Dr. Queue.: OS Software for Distributed Rendering.
<http://www.drqueue.org/>.

[18] 	OSCAR: Open Cluster Group. <http://www.open-
clustergroup.org/>.

[19] 	Thin-OSCAR. <http://thin-osccar.sourceforge.
net/>.

[20] 	Virtual Tour ESI UCLM. <http://www.inf-cr.uclm.
es/virtual/index_en.html>.

[21] 	FIPA. Foundation for Intelligent Physical Agents.
<http://www.fipa.org>.

[22] 	Virtual Visit - Hospital Ciudad Real. <http://dev.
oreto.inf-cr.uclm.es/www/vvhosp>.

[23] 	Yafray: Yet Another Free Raytracer <http://www.ya-
fray.org>.

[24] 	Yafrid Next Generation. <http://www.yafridng.org>.
[25] 	ZeroC ICE Middleware. <http://www.zeroc.com>.

54 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

Identifying Success and Tragedy of FLOSS Commons: A Preli-
minary Classification of Sourceforge.net Projects

Robert English and Charles M. Schweik

This article was previously published in the Proceedings of the First International Workshop on Emerging Trends in FLOSS
Research and Development. FLOSS ‘07. ISBN: 0-7695-2961-5. Digital Object Identifier: 10.1109/FLOSS.2007.9. It is
reproduced with kind permission of IEEE and the author.

Free/Libre and Open Source Software (FLOSS) projects are a form of commons where individuals work collectively to
produce software that is a public, rather than a private, good. The famous phrase “Tragedy of the Commons” describes
a situation where a natural resource commons, such as a pasture, or a water supply, gets depleted because of overuse.
The tragedy in FLOSS commons is distinctly different: It occurs when collective action ceases before a software product
is produced or reaches its full potential. This paper builds on previous work about defining success in FLOSS projects
by taking a collective action perspective. We first report the results of interviews with FLOSS developers regarding our
ideas about success and failure in FLOSS projects. Building on those interviews and previous work, we then describe our
criteria for defining success/tragedy in FLOSS commons. Finally, we discuss the results of a preliminary classification
of nearly all projects hosted on Sourceforge.net as of August 2006.

Keywords: Collective Action, FLOSS Commons,
FLOSS Project, Project Abandonment, Project Classifica-
tion, Project Failure, Project Success, Tragedy of the Com-
mons.

1 Introduction
Free/Libre and Open Source Software projects

(FLOSS) are recognized as Internet-based commons
[1][13][15]. Since 1968, when the famous article “Trag-
edy of the Commons” by Garrett Hardin was published
in the journal Science, there has been significant interest
in understanding how to manage commons appropriate-
ly. Hardin’s work, and much of the work that followed,
focused on commons management in the natural envi-
ronment. And in these commons, the “tragedy” Hardin
described was over-harvesting and destruction of the
resource, whether it be water, fish stock, forests, or our
atmosphere. In FLOSS commons the “tragedy” is differ-
ent; what developers hope to avoid is project abandon-
ment and a “dead” project. In order for FLOSS projects
to avoid tragedy and be successful, the collective action
involved (or attempts at collective action in the case of
projects with one participant) must be sustained at least
until a software product has been produced. Discovering
how FLOSS projects sustain collective action to produce
useful software may have important implications for
improving our understanding of FLOSS software devel-
opment as well as computer-mediated collective action
more generally [14][15].

In recent years, scholars have investigated differ-
ent approaches to measuring the success and failure of

Authors

Robert C. English is a Research Fellow with the National
Center for Digital Government at the University of Massachusetts
Amherst and currently works with coauthor Charles M. Schweik
on a major study on Free/Libre and Open Source Software
(FLOSS) collaboration. He received his undergraduate degree
in Information Management from UMass Amherst, and is cur-
rently a graduate student in Public Policy and Administration at
the same institution. English had a successful business career
before taking up his academic work. His research interests focus
on potential uses of FLOSS and FLOSS collaboration methods
in organizations working for social and political change. <reng-
lish@pubpol.umass.edu>.

Charles M. Schweik is an Associate Professor in the Dept. of
Natural Resources Conservation and the Center for Public Policy
and Administration at the University of Massachusetts, Amherst,
USA. He also is the Associate Director of the National Center
for Digital Government at UMass Amherst <http://www.ncdg.
org>. He has a PhD in Public Policy from Indiana University,
a Masters in Public Administration from Syracuse University,
and has an undergraduate degree in Computer Science. A pri-
mary research interest is in the use and management of public
information technology. For more than six years, between his
undergraduate degree and his MPA, he was a programmer with
IBM. <cschweik@pubpol.umass.edu>.

FLOSS projects. For example, studies [2][3][7][11][16]
measured FLOSS project “life” or “death” by monitoring
project activity measures such as: (1) the release trajecto-
ry (e.g., movement from alpha to beta to stable release);
(2) changes in version number; (3) changes in lines of

UPGRADE Vol. VIII, No. 6, December 2007 55© Novática

Free Software: Research and Development

code; (4) the number of “commits” or check-ins to a cen-
tral storage repository, and (5) activity or vitality scores
measured on collaborative platforms such as SF and
Freshmeat.net. Weiss assessed project popularity using
web search engines [17]. And most recently, Crowston,
Howison and Annabi reviewed traditional models used
to measure information systems success and then adapted
them to FLOSS [4]. They collected data from Source-
forge.net (SF) and measured community size, bug-fixing
time and the popularity of projects.

In this paper, we are trying to build on these stud-
ies by defining success and tragedy of FLOSS commons
from the perspective of successful collective action. The
section that follows this one describes interviews we
conducted with FLOSS developers to get feedback on
our ideas about defining success. Next, in the “Success
and Tragedy Classification System” section, we define
a 6-stage classification system of success and tragedy
of FLOSS commons based on information gained from
these interviews, as well as previous literature and our
own earlier work studying FLOSS. In the “Operation-
alizing the Classification System” section, we describe
our efforts in building a dataset which combines much
of the August 2006 data available from the FLOSSmole
project (described below) and data we gathered ourselves
through automated data mining of the SF website. This
section then describes how we operationalized our pro-
posed success/tragedy classes using this dataset. The
“Results” section discusses our preliminary classification
of nearly all projects hosted on SF as of August 2006. We
conclude the paper with some next steps.

2 FLOSS Developer Opinions on Success
and Failure

We conducted eight interviews [18] with FLOSS de-
velopers between January and May of 2006 to get opin-
ions about the independent variables we thought impor-
tant to FLOSS project success and to get their thoughts
about our definitions of success and tragedy. Because we
wanted input from a diversity of projects, we stratified
our sampling by the number of developers in the project.
We created categories of projects with <5, 5-10, 11-25
and >25 developers and interviewed developers from
two projects in each category. Interviews were conducted
over the phone, digitally recorded, transcribed and ana-
lyzed using Transana 2 <http://www.transana.org>.

Interviews consisted of about sixty questions and
took approximately one hour. Among other things, we
asked interviewees how they would define success in a
FLOSS project. Interviewees responded with five dis-
tinct views. One defined success in terms of the vibrancy
of the project’s developer community. Three defined
FLOSS success as widely used software. Two others de-
fined success as creating value for users. One developer
cited achieving personal goals, and the last interviewee
felt his project was successful because it created technol-

ogy that percolated through other projects even though
his project never produced a useful standalone product.

Immediately after asking interviewees about success,
we asked how they would define failure in a FLOSS
project. Interestingly, all eight developers said that failure
had to do with a lack of users and two indicated that a lack
of users leads to project abandonment. In a probing ques-
tion that followed, we asked if defining a failed project
as one that was abandoned before producing a release
seemed reasonable. Four interviewees flatly agreed, three
agreed with reservations and one disagreed. Two of those
with reservations raised concerns about the quality of the
release. For example, one project might not make its first
release until it had a very stable, well functioning appli-
cation while another project might release something that
was nearly useless. Another interviewee had concerns
about how much time could pass before a project was
declared abandoned. One developer argued that a project
that was abandoned before producing a release could be
successful from the developer’s point of view if he had
improved his programming skills by participating. The
dissenting developer felt that project source code would
often be incorporated into other FLOSS projects and
would not be a failure even if no release had been made.

So, how do these responses inform working defini-
tions of success and tragedy? Because we view FLOSS
projects as efforts in collective action with the goal of
producing public good software, defining success in
terms of producing a useful software product makes
sense, and our interviewees seem to agree. Six of the
eight interviewees suggested that success involves pro-
ducing something useful for users. Since the real tragedy
for a FLOSS project involves a failure to sustain collec-
tive action to produce, maintain or improve the software,
defining failure in terms of project abandonment makes
sense, and generally, our interviewees agreed. Treating
the first release as a milestone or transition point between
what we refer to as the “Initiation Stage” and the project
“Growth Stage” [13][18] emerges logically from this line
of thinking. All in all, these interviews supported our ini-
tial thinking about project success and tragedy.

3 A Success/Tragedy Classification Sys-
tem for FLOSS Commons

After conducting the interviews and considering the
results, we developed a six-class system for describing
success and tragedy of FLOSS projects across two longi-
tudinal stages of Initiation and Growth (Table 1). In pre-
vious work [13][18] we defined “Initiation” as the start of
the project to its first public release, and “Growth” as the
period after this release [13, 18].

Therefore, a project is classified as (1) Success in the
Initiation Stage (SI) when it has produced “a first public
release”. This can be easily measured for projects hosted
at SF because SF lists all a project’s releases. A project
that is successful in the initiation phase automatically be-

56 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

comes an indeterminate project in the growth phase.
Projects are classified as (2) Tragedy in the Initiation

Stage (TI) when the project is abandoned before produc-
ing a first public release. We define abandonment as few
forum posts, few emails to email lists, no code commits
or few other signs of project activity over a one-year peri-
od. Preliminary data we have analyzed from SF indicates
that projects in Initiation that have not had a release for
a year are generally abandoned (see the discussion of the
“test sample” below).

A project is considered a (3) Success in the Growth
Stage (SG) when it exhibits “three releases of a software
product that performs a useful computing task for at least
a few users (it has to be downloaded and used)”. We de-
cided that the time between the first release and the last
release must be at least six months because a “growth
stage” implies a meaningful time span. As mentioned
above, we can easily measure the number of releases
and the time between them since SF tracks this informa-
tion. Measuring “a useful computing task” is harder and
clearly more subjective. Acquiring the number of down-
loads recorded on project websites is probably the easi-
est measure, with the assumption that many downloads
captures the concept of utility.

A project is considered a (4) Tragedy in the Growth
Stage (TG) when it appears to be abandoned without
having produced three releases or when it produced three
releases but failed to produce a useful software product.

We classify a project as (5) Indeterminate in the Ini-
tiation Stage (II) when it has yet to reveal a first public
release but shows significant developer activity.

Finally, projects are assigned (6) Indeterminate in the
Growth Stage (IG) when they have not produced three
releases but show development activity or when they
have produced three releases over less than six months.

4 Operationalizing the Classification
System

As a first step in operationalizing our definitions for
FLOSS success and tragedy, we conducted a random test
sample of sixty projects hosted on SF using April 2005
FLOSSmole data [5]. The FLOSSmole project is itself
an open source-like project where researchers and others
collaborate to collect and analyze data about FLOSS. The
data is collected by automated “crawling” or “spidering”
of SF and other open source hosting sites. We decided to
conduct this test sample from the FLOSSmole database
to look for problems with our classification scheme and
to get some idea about the number of projects likely to
fall within each of the classes. Following the logic used
in our FLOSS developer interviews and knowing we
wanted to study projects with larger numbers of devel-
opers because of their more interesting collective action
issues, we stratified by number of developers into cat-
egories of <10, 10-25 and >25 developers. We randomly
sampled twenty projects from each category for a total of

sixty projects.
We chose 20 projects because it was a reasonable

undertaking given time constraints and because twenty
projects per category provided a standard error of plus
or minus 22% with 95% probability for a binomial dis-
tribution. (Note: Because a project is either successful or
failed, and either in the Initiation or Growth stage, the
sample is a binomial distribution for these categories.)
For these sixty sampled projects, we manually compiled
data on project registration, last release date, number
of downloads, project website URL and forum/email/
postings among other data. From this data, we made a
judgment about whether the software was “useful” and
whether the project was abandoned. We classified the
projects as SI, TI, SG or TG (see code definitions in the
previous section) based on this information. We found no
indeterminate cases in this sample.

Perhaps the most important information we acquired
from the test sample is that the vast majority of projects
that have not had a release for a year are abandoned. All
27 projects in the sample that (1) had not provided a re-
lease in over a year and (2) had less than three releases
were abandoned. This finding suggested that we could
produce a relatively simple but approximately accurate
classification by using a project’s failure to release within
a year as a proxy for abandonment.

Naturally, operationalizing the definitions for success
and tragedy measures had much to do with the availabil-
ity of data. We chose to use the August 2006 data spi-
dered from SF because it was the latest data available at
the time we did our classification. This data has a total of
119,590 projects, but 235 of these projects are missing es-
sential data leaving 119,355 projects. Although FLOSS-
mole had much of the data we needed for operationaliz-
ing our classification scheme, the data on the number of
releases and the dates of the first and last release were not
available. Consequently, we spidered that data ourselves
between September 24, 2006 and October 16, 2006. Of
the 119,355 projects, 8,422 projects had missing data or
had been deleted from SF (SF occasionally purges de-
funct projects) between the August 2006 and the time
we collected our data. The result: we have valid data for
110,933 projects. Based on our definitions described ear-
lier, and the added information we gained from the test
sample, we undertook a preliminary classification of SF
projects as described in Table 1.

5 Results
Table 2 provides the number of SF projects classified

by the two longitudinal stages: Initation and Growth. It
also reports projects that could not be classified. Table 3
summarizes our results of our preliminary success and
tragedy classification of all projects on SF and potential
sources of error in our classifications.

We believe that the classification above is informa-
tive despite the possibility of classification errors (listed

UPGRADE Vol. VIII, No. 6, December 2007 57© Novática

Free Software: Research and Development

in the third column of Table 3). Potential classification
errors stem primarily from two sources: Source 1 Error-
using one year without a release as a proxy for abandon-
ment. Source 2 Error - using the number of downloads
per month as a proxy for the software being useful.

Regarding Source 1 Error, our test sampling indicated

with 95% probability that at most 22% of projects with
less than 3 releases will turn out not to have had a release
within a year and yet not be abandoned thus suggesting
an upper bound for many abandonment errors.

As for Source 2 Error, some projects classified as TG
may be useful and have met the download criteria for

Table 1: Six FLOSS Success/Tragedy Classes and their Methods of Oper-
azionalization.

58 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

tragedy or, on the other hand, some projects classified as
SG may be useless and have not met download criteria for
tragedy. Because our definition of SG is broad (the soft-
ware performs a useful computing task for some number
of users), we don’t expect this error to be large. In other
words, we expect that the vast majority of SG projects
have produced something useful. Only 62 projects were
classified as TG because they met the download criteria
for Growth Stage tragedy in Table 1.

In terms of improving our classification, abandonment
could be more precisely measured by (1) no code “com-

mits” or changes in lines of code in the concurrent ver-
sioning system (CVS) or other repository over the course
of a year, or (2) little or no activity on developer email
lists and forums over the course of a year. Measures to
improve our estimation of whether the software is useful
could include: (1) a content analysis on utility of the soft-
ware on data collected from user forums, e-mail archives
or even web searches; (2) more carefully constructed
download criteria that takes the life of the project and the
availability of download data for different time periods
into consideration. In addition, some projects make more

Table 3: Preliminary Classification of all FLOSS Projects on Sourceforge.net
(as of August 2006).

Table 2: Sourceforge.net Projects Organized by Longitudinal Stage (as of Au-
gust 2006).

UPGRADE Vol. VIII, No. 6, December 2007 59© Novática

Free Software: Research and Development

than one release on a single day, thus bringing the criteria
for three releases into question. We have data that will
allow us to examine the time between each release and
possibly refine the definition of the three release criteria,
but this is yet to be done. Moreover, projects with web-
sites not hosted on SF and no file releases or downloads
on SF are currently not classified.

We hope to address these issues in future work.

6 Conclusion
Our most immediate task now is to validate the clas-

sification described above. We plan to sample a large
enough number of projects to empirically establish the
accuracy of our classification within a few percent. Our
long-term goal is to use this classification as a depend-
ent variable for quantitative models that investigate fac-
tors that lead to success and tragedy in FLOSS in the two
stages of Initiation and Growth. We expect influential
factors to be different in these two stages [13][18].

Despite the shortcomings of this classification system
described in Section 5, we chose to publish preliminary
results of our efforts in the spirit of “release early and
often” and because defining and classifying success in
FLOSS projects is so important to many FLOSS research
projects. In the near future, we plan to release the data we
collected and our classifications on the FLOSSmole site.
We hope that in the tradition of open source collaboration
other researchers will build on this work by correcting
any perceived “bugs” in our approach and collecting ad-
ditional data to improve classification accuracy.

Acknowledgments
Support for this study was provided by a grant from

the U.S. National Science Foundation (NSFIIS 0447623).
However, the findings, recommendations, and opinions
expressed are those of the authors and do not necessar-
ily reflect the views of the funding agency. Thanks go
to Megan Conklin, Kevin Crowston and the FLOSSmole
project team <http://ossmole .sourceforge.net/> for mak-
ing their Sourceforge data available, and for their assist-
ance. We are also grateful to Thomas Folz-Donahue for
programming work building our FLOSS project data-
base.

References

[1] 	 D. Bollier. Silent Theft: The Private Plunder of Our
Common Wealth, Routledge, London, 2002.

[2] 	 A. Capiluppi, P. Lago, M. Morisio. “Evidences in the
Evolution of OS projects through Changelog Analy-
ses,” In J.Feller, B. Fitzgerald, S. Hissam, and K.
Lakhani (eds.) Taking Stock of the Bazaar: Proceed-
ings of the 3rd Workshop on Open Source Software
Engineering, 12 Dec. 2006. <http://opensource.ucc.
ie/ icse2003>.

[3] K. Crowston, H. Annabi, J. Howison. “Defining Open
Source Project Success,” In Proceedings of the 24th

Intl. Conference on Information Systems, ICIS,
Seattle, 2003.

[4] 	 K. Crowston, J. Howison, H. Annabi. “Information
Systems Success In Free And Open Source Software
Development: Theory And Measures,” Software
Process Improvement and Practice, v 11, n 2, March/
April, 2006, pp. 123-148.

[5] 	 FLOSSmole. “sfProjectInfo06-Apr-2005,” 16 June
2005;<http://sourceforge.net/project/showfiles.
php?group_id=119453 &package_id=132043/>.

[7] 	 S. Hissam, C. B. Weinstock, D. Plaksoh, J. Asundi.
Perspectives on Open Source Software. Technical
report CMU/SEI-2001-TR-019, Carnegie Mellon
University. 10 Jan. 2007, <http://www.sei.cmu.edu/
publications/documents/01.reports/01tr019.html>.

[11] 	 M. Robles, G. Gonzalez, J.M. Barahona, J. Centeno-
Gonzalez, V. Matellan-Olivera, L. Rodero-Merino.
“Studying the Evolution of Libre Software Projects
Using Publically Available Data,” In J. Feller, B.
Fitzgerald, S. Hissam, and K. Lakhani (eds.) Taking
Stock of the Bazaar: Proceedings of the 3rd Work-
shop on Open Source Software Engineering, 12
Dec. 2006. <http://opensource.ucc.ie/icse2003>.

[13] C. Schweik. “An Institutional Analysis Approach to
Studying Libre Software ‘Commons’”, Upgrade:
The European Journal for the Informatics Profes-
sional, 10 Jan. 2007, <http://www.upgrade-cepis.
org/issues/2005/3/up6-3Schweik.pdf>.

[14] C. Schweik, T. Evans, J. Grove.”Open Source and
Open Content: A Framework for Global Collabora-
tion,” in Social-Ecological Research. Ecology and
Society 10 (1): 33. 10 Jan. 2007, <http://www.ecolo-
gyandsociety.org/vol10/iss1/ art33/>.

[15] C. Schweik. “Free / Open Source Software as a
Framework for Scientific Collaboration,” In Hess,
Charlotte, and Elinor Ostrom, eds. Understanding
Knowledge as a Commons: From Theory to Prac-
tice, MIT Press, Cambridge, Mass, 2007.

[16] K. J. Stewart, T. Ammeter. “An Exploratory Study of
Factors Influencing the Level of Vitality and Popu-
larity of Open Source Projects“. In L. Applegate, R.
Galliers, and J.I. DeGross (eds.) Proceedings of the
23rd International Conference on Information Sys-
tems, Barcelona, 2002, pp. 853-57.

[17] D. Weiss. “Measuring Success of Open Source
Projects Using Web Search Engines“, Proceed-
ings of the First International Conference on Open
Source Systems, Genova, 11th-15th July 2005. Mar-
co Scotto and Giancarlo Succi (Eds.), Genoa, 2005,
pp. 93-99.

[18] C. Schweik, R. English. “Tragedy of the FLOSS
Commons? Investigating the Institutional Designs
of Free/Libre and Open Source Software Projects“,
FirstMonday. 28 Feb. 2007, <http://www.firstmon-
day.org/issues/issue12_2/schweik/>.

60 UPGRADE Vol. VIII, No. 6, December 2007 © CEPIS

UPENET

ICT Security

Security of Electronic Passports

Václav Matyáš, Zdeněk Říha, and Petr Švéda

© Novática, 2007
This paper will be published, in Spanish, by Novática. Novática, <http://www.ati.es/novatica>, a founding member of
UPENET, is a bimonthly journal published, in Spanish, by the Spanish CEPIS society ATI (Asociación de Técnicos de
Informática – Association of Computer Professionals).

The electronic part of the passport should increase the security of the whole document but at the same time brings in
new threats to the privacy of the passport holder. Therefore electronic passports need to implement a new set of security
features. This article discusses the principles and the effectiveness of these security features.

Keywords: Authentication, Basic Access Control,
Electronic Passport, Entropy, Extended Access Control.

1 Introduction
A number of countries have already been issuing

electronic passports for some time. The introduction of
electronic passports has led to some controversial discus-
sions. In this article we will be taking a look at some of
the security features of electronic passports.

Passport features are specified by the International
Civil Aviation Organization (ICAO), a UN agency, in its
Document 9303. The sixth edition of Doc 9303 also in-
troduces electronic passports [4]. Although the electronic
part of the passport is still optional at a worldwide level,
the US has asked all its Visa Waiver Program partners to
introduce electronic passports and the European Union
has agreed on the mandatory introduction of electronic
passports in EU member states (to be more precise, this
decision is not binding for the UK and Ireland, while three
non-EU countries – Norway, Switzerland and Iceland
– have opted in to the program).

The difference between a traditional passport and
an electronic passport (ePassport) is that the latter has
an embedded chip with a contactless interface (and the
electronic passport logo on the front cover). The chip and
the antenna are embedded in the cover or a page of the
passport (see Figure 1). The chip is a contactless smart
card compliant with ISO 14443 (either variant – A or B –
is allowed). ISO 14443 based technology is designed to
communicate over a distance of 0-10 cm and also supports
relatively complex cryptographic chips and a permanent

Authors

Václav (Vashek) Matyáš is an Associate Professor at the
Masaryk University Brno, Czech Republic, chairing its Depart-
ment of Computer Systems and Communications. His research
interests relate to applied cryptography and security, on which
subject he has published over sixty peer-reviewed publications,
including two books. He has worked with Microsoft Research
Cambridge, University College Dublin, Ubilab at UBS AG, and
was a Royal Society Postdoctoral Fellow with the Cambridge
University Computer Lab. Dr. Vashek has edited the Computer
and Communications Security Reviews, and has worked on the
development of Common Criteria and with ISO/IEC JTC1 SC27.
<matyas@fi.muni.cz>

Zdeněk Říha graduated from the Faculty of Informatics, Masa-
ryk University in Brno, where he also received his Ph.D. in 2002.
He works as an Assistant Professor at the Faculty of Informatics
of the Masaryk University in Brno. He is currently seconded to
the Joint Research Centre (JRC) of the European Commission
at Ispra in Italy. His research interests include PKI, biometric
systems, and the security of electronic documents and operating
systems. <zriha@math.muni.cz>

Petr Švéda completed his Master degree in computer science,
specializing in IT security and smart cards, in 2004 at the Ma-
saryk University in Brno, CZ, and is now a PGS student there.
Since 2004 he has been a researcher in the field of cryptographic
protocols for restricted environments such as smart cards, mobile
devices, and Wireless Sensor Networks at Masaryk University
with an emphasis on the security of practical implementations.
He has participated in development projects for academic, gov-
ernmental, and commercial institutions in the Czech Republic.
<xsveda@fi.muni.cz>

UPGRADE Vol. VIII, No. 6, December 2007 61© CEPIS

UPENET

memory of so many kilobytes or megabytes. Here it dif-
fers from many other RFID technologies that are capable
of communicating over longer distances but do not sup-
port operations more complicated than sending a simple
identification bit string. The higher communication layer
is based on classical smart card protocol ISO 7816-4 (i.e.,
commands like SELECT AID, SELECT FILE and READ
BINARY are used).

 Figure 1: Contactless Chip and Antenna
 from British Passports.

The data in electronic passports is stored as files (el-
ementary files in smart card terminology) in a single folder
(dedicated file). Up to 16 data files named DG1 to DG16
(DG for Data Group) can hold the data. DG1 contains the
data from the machine-readable zone (i.e., nationality,
first name, surname, passport number, issuing state, sex,
birth date, validity date, and optional data – for example
a personal number), DG2 contains the photo of the pass-
port holder (in JPEG or JPEG2000 and some additional
metadata). DG3 is used for storing fingerprints, while DG4
may contain iris image data. The remaining data groups
contain information about the holder, issuing institution, or
the passport itself. Two additional files with metadata are
also present. The file EF.COM contains a list of available
data groups (and the information about versions used) and
the file EF.SOD contains the digital signature of the data.
Files EF.COM, EF.SOD, DG1 and DG2 are mandatory
for all electronic passports. The data group DG3 will be
mandatory in EU countries as from June 28, 2009 (and
will be protected by an additional mechanism). All other
data groups are optional.

2 Data Integrity (Passive Authentication)
The integrity of the stored information is protected by

a digital signature available in the EF.SOD file. The file
uses the SignedData structure of the CMS (Cryptographic
Message Syntax) standard. The PKI hierarchy has a single
level. Each country establishes its own CSCA (Country
Signing CA), which certifies the authorities responsible
for issuing the passports (e.g., state printers, embassies

etc.). These authorities are called Document Signers. Data
in the passport is then signed by one of these Document
Signers.

To verify signatures, the CSCA certificates of the is-
suing country must be available and their integrity must
be guaranteed (actually not such a simple task). The cer-
tificate of the Document Signer is either directly stored
in the passport (in the certificate part of the SignedData
structure – this is mandatory in the EU) or must be obtained
from other sources (the issuing country, the ICAO public
key directory, etc.).

The signed data is a special structure containing hashes
of all present datagroups in the passport. Integrity of each
file can be verified separately (i.e., first the digital signature
in EF.SOD is verified and then the integrity of each file is
checked by matching its hash against the hash stored in
the EF.SOD file).

The digital signature is one of the most important
security mechanisms of electronic passports – if not the
most important one. Every country chooses the signature
scheme that best meets its needs from an implementation
and security perspective (supported schemes are RSA
PKCS#1 v1.5, RSA PSS, DSA and ECDSA in combination
with SHA-1 or any of the SHA-2 hash functions). Every
inspection system (InS – a system able to retrieve infor-
mation from the electronic passport and check/display/use
the data) must naturally support all these schemes to be
able to verify any valid passport. Signature verification is
a relatively simple process, yet complications may arise
due to the relatively high number of signature schemes that
must be supported, the availability of the root certificates
(CSCA) of each country, and the CRLs (each country must
issue one at least every 90 days).

It is clear that a digital signature cannot prevent identi-
cal copies of the passport content (including the EF.SOD
file with digital signature) from being made – so-called
cloning. It still makes sense to inspect the classical security
features (security printing, watermarks, holograms, etc.)
and the correspondence between the printed data and the
data stored on the chip also needs to be verified.

3 Active Authentication (AA)
Cloning of passports can be prevented by using a

combination of cryptographic techniques and a reasonable
level of tamper resistance. To do this a passport-specific
asymmetric key pair is stored in the chip. While the public
key is freely readable (stored in DG15 with a digitally
signed hash), the private key is not readable from the chip
and its presence can only be verified using a challenge-
response algorithm (based on ISO 9796-2). This protocol
is called Active Authentication (AA) and is an optional
security feature of electronic passports. AA is optional
for EU countries and indeed not all countries implement
it (Austria, Czech Republic, and Finland are among the
countries that do implement AA).

The point of active authentication is to verify whether
the chip in the passport is authentic. The inspection system

62 UPGRADE Vol. VIII, No. 6, December 2007 © CEPIS

UPENET

Figure 2: Scanning of the Machine-readable Zone
Data.

BAC is based on a standard mutual authentication
technique, which is considered to be secure as long as the
keys are kept secret. In the case of electronic passports,
the keys are not secret in the classical sense as they are
derivable from the data printed in the passport, but even
so they may prevent random remote reading. This is,
however, slightly problematic as the data used to derive
the key does not necessarily have much entropy. Although
the theoretical maximum is 58 bits and, in the case of al-
phanumerical document numbers, 74 bits, real values are
significantly lower. Let us discuss the particular entries in
more detail [3][13]:

n 	Holder’s birth date: one year has 365 or 366 days,
theoretical maximum is 100 years, i.e., around
36524 days total (15.16 bits of entropy). The
holder’s age can be realistically estimated to an ac-
curacy of 10 years (3652 days, 11.83 bits entropy),
often even more accurately.

n	 Day of expiry: maximal validity of passports is 10
years (therefore approximately 3652 days, 11.83
bits entropy). Passports of children may have a
shorter validity (typically 5 years). In the immediate
future we will be able to make use of the fact that
electronic passports have only been issued for a
short period of time. To save space we can also use
the fact that passports are only issued on working
days and the expiration date is directly related to
the day of issue.

n	 Document number: 9 characters are dedicated to the
document number. Shorter document numbers must
be padded with padding (<) characters and longer
document numbers must be truncated. Document
numbers consisting of digits only (and the pad-
ding character <) allow for a total number of 119

combinations (31.13 bits of entropy); if numbers
are alphanumerical then the maximum number is
379 of combinations (thus 46.88 bits of entropy).
These values are only valid when the passport
number is truly random. And that is often not the

generates an 8-byte random challenge and, using the IN-
TERNAL AUTHENTICATE command, asks the chip to
authenticate. The chip generates its own random string and
cryptographically hashes both parts together. The chip’s
random string and the hash of both parts (together with
a header and a tail) are then signed by the chip’s private
key. The result is sent back to the inspection system, which
verifies the digital signature. If the digital signature is cor-
rect, the chip is considered to be authentic. Possible attacks
might try to exploit weaknesses in the tamper resistance of
the chip or may be based on the analysis of side-channels.
If you have a genuine passport at your disposal you might
also be able to produce a “copy” that talks back to the
genuine passport when necessary. For a more detailed
description of such a proxy attack see e.g. [2][4].

There are, however, privacy concerns regarding AA
passports. If the challenge sent to the chip is not completely
random, but rather specifically structured (for example
encoding place and time), inspection systems can store
the challenge and the signature as proof that the passport
in question was at a given place at a given moment. In
reality, the fact that the passport will sign any arbitrary
challenge at any place means that the evidence value is
very limited. Even so, some countries have decided not to
implement active authentication in their passports because
of this privacy threat.

Passport holders will soon realize that the passport is
in fact a powerful smart card. The use of the chip for the
digital signature of documents is apparently insecure as
the passport will sign anything without additional authen-
tication, e.g., via PIN (moreover, the challenge-response
protocol is definitely not a suitable signature scheme). The
use of active authentication for user authentication (e.g., a
computer logon) may be much more attractive.

4 Basic Access Control (BAC)
Basic Access Control is a mechanism that prevents

passport data from being read before it is authenticated
by the inspection system (i.e., it prevents the so-called
‘skimming’). The authentication keys are derived from
data printed in the machine-readable zone of the data
page (see Figure 2). The document number, the holder’s
birth date, and the passport expiration date are used. All
these items are printed on the second line of the machine
readable zone and are protected with a check digit (opti-
cal character recognition is error prone, hence the choice
of data fields with check digits). These three entries are
concatenated in an ASCII form (including their respective
check digits) and are hashed using the SHA-1 function.
The hash value is then used to derive two (112-bit 3DES)
keys for encryption and MAC authentication. The com-
mand GET CHALLENGE is used to obtain the challenge
from the chip and then the inspection system and the chip
mutually authenticate using the MUTUAL AUTHENTI-
CATE command. The session key is established and further
communication is secured using Secure Messaging.

UPGRADE Vol. VIII, No. 6, December 2007 63© CEPIS

UPENET

case. If certain information about the numbering
policy of the particular country is known, then
the number of combinations and thus the entropy
will decrease. Many countries assign sequential
numbers to their passports. If we know the date of
issue (or expiration date), the number of possible
passport numbers is small. For example a country
with 10 million inhabitants issues around a million
passports a year. If the year of issue and the range
of passport numbers are both known, then the
entropy drops to 20 bits. If the month of issue and
its range of numbers are known, then the entropy
drops further to 17 bits. We could go on to single
days, but such detailed information will probably
not be available to an average attacker. However,
not only insiders but also hoteliers and doorkeepers
may know a great deal about the numbering policy
(and such information will eventually be published
on the Internet). It is more complicated in practice,
as we must first guess the issuing country and also
the type of passport (e.g., service, alien) as different
types may have different numbering sequences.

n	 Every entry is followed by the check digit. The
algorithm is publicly known and the check digit
does not introduce any new information.

To estimate the (total) entropy, we can take the sum
of the entropies of the entries listed above. But that is
correct only when the individual entries are independent.
We may debate about the dependency of the expiration
date of the document on the birth date of the holder as he/
she applies for the document when he/she reaches the age
of 15 and then almost regularly renews it (e.g., every 10
years). This may hold true for identity cards and is also
country-dependent, but this assumption is not valid for
passports as they are issued on request at any age. There-
fore we omit that relationship. A similar situation holds for
the relationship between the birth date and the document
number. But dependency between the document number
and the expiration date will typically be present. There
is only no dependency for completely random document
numbers and only then can we use the sum of the entro-
pies. Otherwise some dependency will always be present
and it is only a question of how much information the at-
tacker has about the numbering policy. When the attacker
has a significant degree of knowledge, the total entropy
may decrease remarkably. Also the smaller the number
of passports issued in a country, the higher the chance of
guessing the document number. For example, in the case
of sequential document numbers and a country issuing 1
million passports uniformly over the year, and if the at-
tacker has detailed knowledge of the document numbers
issued on particular days, the entropy of the document
number can decrease to about 12 bits. Total entropy then
decreases from 58 or 74 bits to approximately 32 bits.
A brute-force key search can be then mounted against a
significantly smaller number of possible keys.

We can distinguish two types of brute-force attack.
Either the complete (successful) communication is eaves-
dropped and we try to decrypt it, or we try to authenticate
against the chip and then communicate with it. When
eavesdropping on the communication, we can store the
encrypted data and then perform an off-line analysis. If
the whole communication has been eavesdropped, we can
eventually obtain all transmitted data. The disadvantage
is the difficulty of eavesdropping on the communication
(i.e., the communication must actually be in progress and
we must be able to eavesdrop on it).

The derivation of a single key from the authentication
data, data decryption and the comparison of the challenge
takes around 1 microsecond on a normal PC. A brute-force
search of the space holding authentication data with a size
of 232 thus takes slightly more than one hour. A practical
demonstration of such an attack against Dutch passports
was published by Marc Witteman in [12]. His attack
utilized additional knowledge about the dependency be-
tween the document number and the expiration date and
the knowledge of a next check digit within the document
number. Similarly in countries where postal workers
deliver electronic passports by mail, these workers could
remotely read the content of an electronic passport through
a closed envelope as they might know the birthday of the
recipient and could easily guess the document number and
expiry day (because the passport had just been issued).

As we have already said, eavesdropping on the ongo-
ing communication is not such an easy task. The intended
communication range of devices compliant with ISO
14443 is 0-10cm. This does not necessarily mean that
eavesdropping at longer ranges is not possible, but an at-
tacker would soon have to cope with a low signal-to-noise
ratio problem. While the signal from the inspection system
(reader) is detectable at longer distances, eavesdropping
on the data sent from the chip (transmitted using load
modulation) gets harder with every foot of distance. For
discussions about the possible ranges for skimming and
eavesdropping see e.g. [7][9].

An on-line attack against the chip can search the key
space in the same way, but a single verification of the
authentication data is significantly slower – we must
communicate with the smart card first and then we have
to compute the MAC key and MAC code as well. A single
verification then takes approximately 20 milliseconds for
standard contactless readers and thus the attack is about
10,000x slower than an off-line attack.

We need to realize that BAC does not restrict access to
anybody who is able to read the machine readable zone.
If you leave your passport at a hotel reception desk, BAC
will not protect your data. On the other hand, there is no
additional information stored in the chip that is not already
printed in the passport (in EU this is even a legal require-
ment, except for the fingerprints, of course).

There are also other issues related to contactless com-
munication technology where BAC cannot help. First of
all it is possible to remotely detect the presence of passive

64 UPGRADE Vol. VIII, No. 6, December 2007 © CEPIS

UPENET

the chip. Basic access control (BAC) is based on shared
symmetric keys; we could design a similar protocol based
on truly secret keys. When the data on the chip is stored
in encrypted form, there are no on-chip computational
requirements as the stored data is transparent for the chip
and there is no need for any additional access control
mechanism. The solution will be secure if the secret keys
are kept secret (which is not trivial).

The disadvantage of symmetric methods is the high
number of keys that have to be kept secret (and in the case
of off-line systems they have to be kept secret at each InS
as well). Moreover, secret keys have a long validity period
and cannot be revoked. Gaining access to such keys would
mean having access to all valid passports which have been
issued so far (naturally only for those countries that the
compromised InS would be able to access). A clear disad-
vantage of encrypting the data but not protecting access
is the possibility of off-line brute-force (possibly even
parallel) attacks. This would be a significantly stronger
weapon than an on-line guessing. However, this should
still remain just a theoretical threat for a solid encryption
algorithm combined with a sufficient key length.

5.2 Asymmetric Cryptography Based Methods
Another way to authenticate the InS is by using PKI.

The aim is to reduce the number of secret (private) keys
on the inspection system side and to limit the possibility of
misuse in the event of compromise. Although there could
be several alternative ways to implement Extended Access
Control with the help of asymmetric cryptography and
PKI, we will follow the proposal of the German BSI [1],
which went on to become the European EAC protocol.

5.3 Terminal Authentication
Each country establishes a CV (Country Verifying) cer-

tification authority that decides which other countries will
have access to sensitive biometric data in their passports.
A certificate of this authority is stored in passports (issued
by that country) and it forms the initial point of trust (root
certificate) for access control. Other countries wishing to
access sensitive biometric data (whether stored in their
own passports or in the passports of other countries), must
establish a DV (Document Verifier) certification authority.
This authority will obtain certificates from all countries
willing to grant access to the data in their own passports.
This DV CA will then issue the certificates to end-point
entities actually accessing the biometric data – the inspec-
tion systems. See Figure 3.

Each passport stores a CVCA certificate of the issuing
country (e.g., the Czech Republic). If an inspection system
(e.g., a Spanish one) needs to convince the passport that it
is authorized to access sensitive biometric data, it must pro-
vide the DV certificate (the Spanish one in our case) signed
by the issuing CVCA (Czech) and its own InS certificate
(for that particular InS) signed by the DV certification
authority (i.e., the Spanish authority in this case). After

contactless chips. Secondly, even before the BAC it is pos-
sible to communicate with the chip (e.g., to start the BAC).
Anti-collision algorithms need unique chip IDs to address
the chips. These chip IDs are typically randomly generated
each time the chip is powered, but some type A chips use
fixed chip IDs which makes it very simple to track them.
Similarly, some error codes may leak information about
the chip manufacturer and/or model, which might also
increase the chances of guessing the issuing state.

5 Extended Access Control (EAC)
EU passports will also store fingerprints (in DG3)

as from June 28, 2009 at the latest (indeed Germany has
already started issuing passports with fingerprints, on
November 1, 2007). Fingerprints are stored as images in
the WSQ format (lossy compression optimized for images
of fingerprints). As fingerprints are considered to be more
sensitive data than facial images (their recognition capa-
bilities are much better), reading of DG3 will be protected
by an additional mechanism. This mechanism is called
Extended Access Control. Let us now look at possible
theoretical principles for protecting sensitive biometric
data in passports to have a better understanding of how
European EAC was designed.

5.1 Symmetric Cryptography Based Methods
If access control is based on symmetric cryptography

[10] then the data in a passport can be either stored un-
encrypted and access would be protected by symmetric
cryptography based authentication, or can be stored en-
crypted and not protected by any additional access control
mechanism.

A symmetric key would have to be different for each
passport (to avoid problems when one passport leaks the
key). Keys can be either completely random or derived
from a master key by a suitable diversification algorithm
(e.g., the passport-specific key could be obtained by en-
cryption of the document number with the master key).
We need at least one master key per country, plus probably
one key for each passport issuer (i.e., region, embassy,
etc.) and the key has to be regularly (e.g., monthly, annu-
ally) updated (for passports being issued). An inspection
system would then need access to all the keys necessary
to access all valid passports (i.e., up to 10 years) for a
number of countries. In the case of off-line systems, that
would mean that a large number of highly sensitive keys
would have to be stored in each inspection system (InS)
and the compromise of a single InS would affect current
and future access to biometric data in all passports valid
at the time of the compromise. This situation is easier to
manage with on-line systems. The keys would be physi-
cally secure; instead we would have to protect access to
the central system. In the event of unauthorized access to
the central server, recovery is relatively easy – it is enough
to stop the unauthorized access.

The advantage of symmetric or encryption based au-
thentication is the low computational power required of

UPGRADE Vol. VIII, No. 6, December 2007 65© CEPIS

UPENET

the passport verifies the entire certification chain it has to
check whether the inspection system is allowed to access
the corresponding private key. This is performed using a
challenge-response protocol. If authentication succeeds,
the inspection system can access sensitive biometric data
(the DG3 and/or DG4 files). This part of the EAC is called
the Terminal Authentication (TA).

The above mentioned process can be slightly more
complicated as CVCA certificates are updated from time
to time (by link certificates) and bridging link certificates
have to be provided (and verified by the passport) first.
Terminal authentication can be based on RSA (either PSS
or PKCS#1 v1.5 padding is possible) or ECDSA, both
in combination with either SHA-1 or one of the SHA-2
variants.

Certificates are sent by using the Manage Security
Environment – Set for verification – Digital Signature
Template command and the Perform Security Opera-
tion – Verify Certificate command. The certificate chain
may contain also link certificates if necessary and, after
they have been verified, the passport updates the CVCA
certificate with a new one (due to a possible overlap of the
validity periods of the CVCA certificates, there may be up
to two certificates valid at the same time – in such an event
both are stored in the passport). Remaining certificates
(the DV certificate issued by the CVCA and the DVCA
certificate issued for InS) are stored only temporarily and
used during the verification of the certificate chain. Once
the chain verification succeeds, the passport obtains the
public key of the InS and its access rights. Only two access
rights are specified at this moment; read access to DG3
(fingerprints) and read access to DG4 (iris image).

After obtaining the public key of an InS we need to
verify whether the InS also has access to the corresponding

private key. This is done by using a challenge-response
protocol. First the inspection system receives an 8-byte
long random challenge (using the GET CHALLENGE
command), and signs it. In fact what is signed is the con-
catenation of the passport number, random challenge, and
the hash of the ephemeral DH key of the inspection system
(from the previous chip authentication). The signature is
then sent to the chip for verification using the EXTERNAL
AUTHENTICATE command. If verification is successful,
the inspection system is authenticated and may access
DG3 or DG4 according to the rights assigned. Terminal
authentication is not a mandatory part of the communica-
tion with an electronic passport. The inspection system can
skip terminal authentication if there is no need to read the
secondary biometric data from the chip. The InS can be
completely offline, e.g., a handheld device storing its own
InS key pair and relevant certificates, or there could be a
‘central’ networked InS providing cryptographic services
to a group of terminals at the border (hence Terminal
Authentication). Whether InS is offline, online, or a com-
bination of both is up to each individual country.

As the computational power of smart cards is limited,
simplified certificates (card verifiable or CV certificates)
are used instead of common X.509 certificates. The matter
of verification of certificate validity raises an interesting
point. As the chip has no internal clock, the only avail-
able time-related information is the certificate issue date.
If the chip successfully verifies the validity of a given
certificate issued on a particular day, then it knows that
this date has already passed (or is today) and it can update
its own internal time estimate (if the value is newer than
the one already stored). It is clear that if a CV CA or DV
CA issues (either by mistake, intentionally, or as a result
of an attack) a certificate with an issue date in the distant

Figure 3: A Simplified View of an EAC PKI Hierarchy.

66 UPGRADE Vol. VIII, No. 6, December 2007 © CEPIS

UPENET

chip and terminal authentication protocols are not stand-
ardized by the ICAO at this moment. Hence these protocols
will be used only when both the passport and the inspection
systems support them. If the passport (e.g., first generation
passport) or inspection system (e.g., non-EU or even some
older EU systems) do not support the protocol, then we
need to fall back on common protocols standardized by
the ICAO in Doc 9303 (i.e., BAC and AA). Also, some
other countries (outside EU) may not consider fingerprints
and iris images to be particularly sensitive data and so data
groups DG3 and DG4 in their passports will not be subject
to additional protection.

6 Conclusions
It is clear that passive authentication ensuring the au-

thenticity of data stored in electronic passports benefits the
security of the electronic part of the passport. But it can
only be effective if the Country Signing CA certificates
are available at all inspection points. The primary channel
for exchanging CSCA certificates is diplomatic post, but it
seems that this mechanism is not actually flexible enough.
Therefore certificate distribution needs to be improved.
There are several proposals; one of them is to use the
ICAO public key directory (PKD), initially designed for
DS certificates (typically stored in passports anyway) and
CRLs also for the distribution of CSCA cross-certificates
(one country cross-certifies CSCA certificates of other
countries).

While the BAC can prevent basic skimming, the low
entropy of the authentication key is its greatest weakness.
Efforts to include the optional data field from the machine-
readable zone in the key computation (i.e., to increase the
entropy) were rejected by ICAO so as not to jeopardize
interoperability with existing systems. The only way to im-
prove the strength of BAC is to use random alphanumeric
document numbers. Some countries have already changed
their numbering policy in order to make attacks against
BAC more difficult (e.g. Germany since Nov 2007 [14]).
If you are worried that an attacker could communicate with
your passport without your knowledge and either try to
break the BAC or at least guess some information about
the chip, just store your passport in a shielding cover. These
covers are now widely available, e.g. [15].

Active authentication preventing passport cloning is
implemented by a surprisingly small number of countries.
EU passports will prevent cloning by the introduction of
the EAC, which includes the chip authentication protocol.
EAC also protects access to secondary biometric data and
fingerprints (and possibly also iris images) are only read-
able by authorized border authorities. The key manage-
ment behind it is not, however, trivial – especially from
an organizational point of view. And although DV and IS
certificates will have a short validity to limit the use of
stolen inspection systems, this will only be effective for
passports belonging to frequent travellers.

future, the passport will then reject valid certificates and
will become practically unusable. For that reason, only the
CVCA (link certificates), DV and domestic InS certificates
are used to update the internal date estimate.

5.4 Chip Authentication
In addition to terminal authentication, the European

EAC also introduces the Chip Authentication (CA) pro-
tocol, which eliminates the low entropy of the BAC key
and may also replace active authentication, as access to the
private key on the chip is verified (the public key is stored
in DG14 and is part of the passive authentication).

An inspection system reads the public part of the Dif-
fie-Hellman (DH) key pair from the passport (the classic
DH described in PKCS #3 and DH based on elliptic
curves (ECDH) in accordance with ISO 15946 are both
supported), together with the domain parameters (stored
in DG14). The inspection system then generates its own
ephemeral DH key pair (valid only for a single session)
using the same domain parameters as the chip key, and
sends it to the chip using the Manage Security Environ-
ment – Set for Computation – Key Agreement Template
command. Both the chip and the InS can then derive the
shared secret based on available information. This secret
is used to construct two session keys, one for encryption
and the other for MAC, that will secure the subsequent
communication by Secure Messaging, and SSC (Send
Sequence Counter – the message counter value used for
protecting against replay attack) is reset to zero. Only after
sending and receiving the next command correctly pro-
tected with the new session keys can it be known whether
chip authentication was successful or not.

As a result of this process a new secure channel is
established (low entropy BAC keys are no longer used)
and chip authenticity is verified (active authentication is
not necessary, but it can be supported by the passport to
allow chip authenticity verification by inspection systems
that are not EAC-specific and only recognize worldwide
ICAO standards).

Worldwide interoperability is not necessary for EAC
as sensitive data should be accessible only when there
are agreements between countries. Then it is up to the
countries to agree on technical details (naturally within the
boundaries set out by ICAO standards). The current leader
in the EAC field is the EU which designed a protocol for
EAC (the protocol was actually designed by the German
Federal Office for Information Security).

It is assumed that the protected biometric data will
be initially accessible only among EU member states.
There has already been some speculation about involv-
ing countries such as the USA, Canada, and Australia in
the European extended access control system. Looking at
the PKI structure of the EAC it is clear that is up to each
member state to decide which other countries will have
access to data in member states’ passports.

While chip authentication replaces active authentica-
tion and also improves the security of Secure Messaging,

UPGRADE Vol. VIII, No. 6, December 2007 67© CEPIS

UPENET

Disclaimer
The opinions presented are the personal views of the

authors and cannot be considered as the official position
of the European Commission, where one of the authors
is currently working at the Joint Research Centre (JRC)
in Ispra, Italy.

References

[1] 	 BSI: Advanced Security Mechanisms for Machine
Readable Travel Documents – Extended Access Con-
trol (EAC), Version 1.1, TR-03110, <http://www.
bsi.bund.de/fachthem/epass/EACTR03110_v110.
pdf>.

[2] 	 M. Hlaváč, T. Rosa. A Note on the Relay Attacks
on e-passports? The Case of Czech e-passports.
<http://eprint.iacr.org/2007/244.pdf>.

[3] 	 J.-H. Hoepman, E. Hubbers, B. Jacobs, M. Oostdijk,
R.W. Schreur. Crossing Borders: Security and Priva-
cy Issues of the European e-Passport. <http://www.
cs.ru.nl/~jhh/publications/passport.pdf>

[4] 	 ICAO, Document 9303, Edition 6, Part 1, Part 2 and
Part 3. <http://www.interoptest-berlin.de/pdf/Kefau-
ver_-_History_of_ICAO_Document_9303.pdf>.

[5] 	 A. Juels, D. Molnar, D. Wagner. Security and Pri-
vacy Issues in E-passports. <http://www.cs.berkeley.
edu/~dmolnar/papers/RFID-passports.pdf >.

[6] 	 ISO/IEC 14443: Identification cards – Contactless
integrated circuit(s) cards –Proximity cards.

[7] 	 I. Kirschenbaum, A. Wool. How to Build a Low-Cost,
Extended-Range RFID Skimmer. <http://www.eng.
tau.ac.il/~yash/kw-usenix06/index.html>.

[8] 	 E. Kosta, M. Meints, M. Hansen, and M. Gasson.
In 1FJP international Federation for Information
Processing, Volume 232, New Approaches for Se-
curity, Privacy and Trust in Complex Environments,
eds. Venter, H-, Eloff, M-, Labuschagne. L., Eloff,
J., von Solms, R., (Boston: Springer), pp. 467–472.
2007.

[9] 	 D. Kügler, I. Naumann. Sicherheitsmechanismen
für kontaktlose Chips im deutschen Reisepass. Ein
Überblick über Sicherheitsmerkmale, Risiken und
Gegenmaßnahmen. Datenschutz und Datensicher-
heit, March 2007.<http://www.bsi.de/fachthem/
epass/dud_03_2007_kuegler_naumann.pdf>.

[10] 	V. Matyáš, Z. Říha, P. Švenda. Bezpečnost
elektronických pasů, část II, Crypto-World 1/2007.
<http://crypto-world.info/>.

[11] 	 MiniMe (pseudonym), Mahajivana (pseudonym):
RFID-Zapper. <http://events.ccc.de/congress/2005/
wiki/RFID-Zapper(EN)>.

[12] 	M. Witteman. Attacks on Digital Passports,
WhatTheHack. <http://wiki.whatthehack.org/im-
ages/2/28/WTH-slides-Attacks-on-Digital-Pass-
ports-Marc-Witteman.pdf>.

[13] 	Z. Říha. Bezpečnost elektronických pasů, část I.
Crypto-World 10/2006. <http://www.crypto-world.

info>.
[14] 	<http://de.wikipedia.org/wiki/Reisepass>.
[15] 	<http://www.rfid-shield.com/>.

