
UNIVERSIDAD DE CASTILLA-LA MANCHA

ESCUELA SUPERIOR DE INFORMÁTICA

BACHELOR IN COMPUTING ENGINEERING

Specialization in Information Technology

BACHELOR DISSERTATION

AIWake
Platform for the analysis of the level of attention in lectures

using computer vision and deep learning

Enrique Valverde Soriano

July, 2022

UNIVERSIDAD DE CASTILLA-LA MANCHA

ESCUELA SUPERIOR DE INFORMÁTICA

Technologies and Information Systems

Specialization in Information Technology

BACHELOR DISSERTATION

AIWake

Platform for the analysis of the level of attention in

lectures using computer vision and deep learning

Author: Enrique Valverde Soriano

Supervisor: Carlos Gonzalez Morcillo

Co-Supervisor: Santiago Sánchez Sobrino

July, 2022

AIWake
© Enrique Valverde Soriano, 2022

Este documento se distribuye con licencia CC BY-NC-SA 4.0. El texto completo de la licencia puede obtenerse
en https://creativecommons.org/licenses/by-nc-sa/4.0/.

La copia y distribución de esta obra está permitida en todo el mundo, sin regalías y por cualquier medio,
siempre que esta nota sea preservada. Se concede permiso para copiar y distribuir traducciones de este libro
desde el español original a otro idioma, siempre que la traducción sea aprobada por el autor del libro y tanto el
aviso de copyright como esta nota de permiso, sean preservados en todas las copias.

Este texto ha sido preparado con la plantilla LATEX de TFG para la UCLM publicada por Jesús Salido en
GitHub1 y Overleaf 2 como parte del curso «LATEX esencial para preparación de TFG, Tesis y otros documentos
académicos» impartido en la Escuela Superior de Informática de la Universidad de Castilla-La Mancha.

1
https://github.com/JesusSalido/TFG_ESI_UCLM, DOI: 10.5281/zenodo.4574562

2
https://www.overleaf.com/latex/templates/plantilla-de-tfg-escuela-superior-de-informatica-uclm/phjgscmfqtsw

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.esi.uclm.es/www/jsalido
http://visilab.etsii.uclm.es/?page_id=1468
http://visilab.etsii.uclm.es/?page_id=1468
https://github.com/JesusSalido/TFG_ESI_UCLM
https://zenodo.org/badge/latestdoi/191907589
https://www.overleaf.com/latex/templates/plantilla-de-tfg-escuela-superior-de-informatica-uclm/phjgscmfqtsw

Tribunal:

Presidente:

Vocal:

Secretario(a):

Fecha de defensa:

Calificación:

Presidente Vocal Secretario(a)

Fdo.: Fdo.: Fdo.:

TRABAJO FIN DE GRADO - ESCUELA SUP. DE INFORMÁTICA (UCLM)

AIWake

Enrique Valverde Soriano
Ciudad Real, July 2022

Resumen
En los tiempos que corren no es raro encontrarse cada vez mas con sistemas que hacen uso de la
visión por computador y la inteligencia artificial para resolver problemas del mundo real, algunos
con aplicaciones tan importantes como la medicina o la seguridad y otros que hacen uso de estas
tecnologias para resolver problemas relacionados con las emociones humanas ayudando en el trata-
miento de algunos trastornos como el autismo o determinando las reacciones de los clientes ante un
determinado producto.

Este proyecto toma como base la idea concebida originalmente en el C:TED, un departamento de
la Universidad de Castilla-La Mancha encargado de la producción de contenidos digitales para esta
misma, dentro de estos contenidos se encuentran las presentaciones dadas por profesores o expertos
en una materia a las que, de manera presencial, los alumnos o interesados acudían. El proyecto
AIWake toma ese contexto para que mediante el desarrollo de un sistema que se apoye en la visión
por computador y técnicas de inteligencia artificial como el deep learning, se obtenga como resultado
una herramienta que ayude a que dichos profesores o expertos a través de una grabación del público
de sus ponencias puedan obtener métricas y estadísticas referentes a las expresiones mostradas por
dicho público durante el transcurro de su ponencia para ayudarles a encontrar posibles mejoras en
cuanto a su manera de transmitir información.

El resultado del desarrollo fue un sistema que se apoya en un modelo de clasificación entrenado
especificamente para este cometido, una interfaz de usuario diseñada acorde a los principios de
Gestalt y de usabilidad y un componente de control interno para la coordinación, todo esto junto dota
de funcionalidad al sistema, sirviendo al usuario con gráficas de los datos obtenidos y herramientas
para la corrección de posibles errores dados por la propia naturaleza de los problemas de clasificación.

iii

BACHELOR DISSERTATION - ESCUELA SUP. DE INFORMÁTICA (UCLM)

Guided template for TFG

Enrique Valverde Soriano
Ciudad Real, July 2022

Abstract
It is not odd nowadays to increasingly find computer vision and artificial intelligence systems that
solve real world problems, some of these systems have important applications on fields like medicine
or security and others use this technologies in order to solve human emotions related problems
helping with the treatment of disorders like autism or determining the reactions that clients have
against a determined product.

This project comes from the originally conceived idea at the C:TED, a department of University
of Castilla-La Mancha in charge of producing digital contents for this, regarding this contents there
are the lectures brought by professors or matter experts which, in a face-to-face way, the students or
interested ones came. AIWake project takes that context in order to through the development of a
system supported by computer vision and artificial intelligence techniques such as deep learning
to obtain a tool that supports these professors and matter experts which through a recording of
their lecture attendants will be able to obtain statistics and metrics regarding the attendants facial
expressions during the course of their lectures in order to help them finding improvements on their
way of transmitting information.

The development result was a system that is supported on a specifically for this task trained
classification model, a user interface designed accordingly to the Gestalt and usability principles and
an internal control component for coordination, all of this together provides functionality to the
system, serving the user with obtained data charts and tools to rectify possible misfires given by the
implicit nature of classification problems.

v

Agradecimientos

Hay muchas personas que seguramente me dejaré en el tintero a la hora de agradecer el apoyo que
me mostraron durante el desarrollo de este proyecto y seguramente necesitaría escribir un libro para
mencionarlas pero si que quiero agradecer en especial a mi familia no solo por el apoyo durante el
desarrollo del proyecto sino porque a pesar de ser un liante por naturaleza siempre están ahi, en
especial a mi madre que si no hubiera sido tan pesada no me habría animado a retomar el proyecto
con fuerza de nuevo.

A ese grupo de chavales que conocí en ciudad real y ahora no podemos pasar un año sin hacer
mínimo una escapa.

Al Club Waterpolo Valdepeñas, del que orgullosamente formo parte, por hacer que mantuviera la
cordura durante este periodo tan estresante de mi vida, no seremos el mejor equipo de la historia
pero somos un grupo de amigos increible.

A mis colegas del pueblo que aunque pase el tiempo siempre harán que las cervezas sepan mejor
los fines de semana.

A Carlos Gonzalez Morcillo por confiar en mí para este proyecto, darme tantísima libertad creativa
a la hora de hacerlo y darme aquella oportunidad en el C:TED, un lugar que a pesar de todo siempre
recordaré junto con su gente y los momentos que pasamos grabando aquellas aburridas ponencias de
Química.

Enrique Valverde Soriano
Ciudad Real, 2022

vii

Contents

Resumen iii

Abstract v

Agradecimientos vii

List of Figures xi

List of Tables xiii

Listings xv

1. Introduction 1

1.1. Motive . 1
1.2. Background . 2

1.2.1. Facial recognition . 2
1.2.2. Emotion recognition . 4

1.3. The AIWake project . 6
1.4. Document structure . 7

2. Objectives 9

2.1. Main objective . 9
2.2. Sub objectives . 9

3. State of the art 11

3.1. Artificial Intelligence . 11
3.2. Computer vision . 13

3.2.1. Computer vision applications . 14
3.3. Deep learning . 15

3.3.1. Main types of deep learning algorithms . 15

4. Working method 19

4.1. Methodology . 19
4.1.1. Iterative and incremental software development 20
4.1.2. Planning . 20
4.1.3. Development management . 22

4.2. Tools involved on the development . 23
4.2.1. Software . 23
4.2.2. Hardware . 25
4.2.3. Other tools . 25

ix

x CONTENTS

5. Project architecture 27

5.1. Control and User Interface . 29
5.1.1. User Interface . 29
5.1.2. Control . 34

5.2. Processing . 38
5.2.1. Face isolation module . 38
5.2.2. Emotion detection module . 47
5.2.3. Emotion detection review module . 50

5.3. Data representation . 54
5.3.1. Global representation module . 55
5.3.2. Detailed representation module . 59
5.3.3. Face-picker representation module . 60

6. Results 63

6.1. Per iteration results . 63
6.1.1. Iteration/phase 0, generating a deep learning model for a classification problem 63
6.1.2. Iteration/phase 1, processing the video source in order to detect the faces to

be processed . 64
6.1.3. Iteration/phase 2, processing the video source to obtain data regarding emotions 66
6.1.4. Iteration/phase 3, Phase 3, creating an UI for reviewing obtained data 67
6.1.5. Iteration/phase 4, integrate charts in the application to allow detailed data

analysis . 69
6.2. Project stats . 71
6.3. budget estimations . 72

7. Conclusions 73

7.1. conclusions . 73
7.2. future work . 74
7.3. specialization competences fulfillment . 75
7.4. final thoughts . 75

Bibliography 77

A. A more detailed overview of the tools employed on this project 81

A.1. Python . 81
A.2. Qt . 82
A.3. PyCharm . 87
A.4. OpenCV . 88
A.5. Tensorflow . 90
A.6. Keras . 91
A.7. NVIDIA CUDA . 92
A.8. Kaggle . 93

B. AIWake reference guide 95

List of Figures

1.1. Characteristics of emotions . 2
1.2. Emotion detection algorithms summarized . 3
1.3. PAD and Circumplex models . 4
1.4. Superpower Glass . 6
1.5. Project logo . 6

3.1. Deep Blue vs AlphaGo . 12
3.2. EVA . 12
3.3. Plate recognition . 13
3.4. 3D Vision . 14
3.5. Decision tree example . 15
3.6. Deep learning layers . 15
3.7. Kernel example . 16
3.8. CNN example . 16

4.1. Iterative and incremental development . 20
4.2. AIWake Trello . 23
4.3. UserBenchmark results . 25

5.1. Overview of AIWake . 27
5.2. AIWakeUI . 29
5.3. Color palette . 31
5.4. Closure principle . 32
5.5. Common region principle . 32
5.6. Proximity principle . 32
5.7. First design . 33
5.8. Second design . 33
5.9. Mock-up for final UI . 34
5.10. Final design . 34
5.11. Components involved in face isolation . 39
5.12. Collision squares of the face isolation algorithm . 46
5.13. Components for emotion detection module . 47
5.14. Components of emotion detection review . 51
5.15. Qchart objects scheme . 55
5.16. Components for representation . 56

6.1. Model training process . 64
6.2. Sample face isolation . 64
6.3. Single frame isolation times . 65
6.4. Video face isolation time . 65
6.5. Emotion detection sample . 66

xi

xii LIST OF FIGURES

6.6. Single frame emotion detection times . 66
6.7. Loading libraries time . 67
6.8. Face-picker utility . 68
6.9. Face-picker utility emotion detection . 68
6.10. Video options section . 68
6.11. Video options section with style guide . 69
6.12. Global representation in real time . 70
6.13. Global representation all data . 70
6.14. Main charts of the application . 71
6.15. Activity chart . 71
6.16. Data by GitHub . 71
6.17. Data by GitHub according the language . 72

A.1. python logo . 81
A.2. python powered . 82
A.3. Qt logo . 82
A.4. PyQt . 84
A.5. QtCreator . 85
A.6. QtCreator advanced code editor . 86
A.7. Matplotlib logo . 86
A.8. Matplotlib example . 86
A.9. plots with QtChart . 87
A.10. Detailed QtChart plot . 87
A.11. PyCharm logo . 87
A.12. PyCharm UI . 88
A.13. Results of the 2018 python developers survey . 88
A.14. OpenCV logo . 88
A.15. OpenCV example . 89
A.16. Tensorflow logo . 90
A.17. Tensorflow hub . 90
A.18. Keras logo . 91
A.19. KDnuggets portal . 91
A.20. Keras + Tensorflow . 91
A.21. CUDA . 92
A.22. CUDA image processing . 92
A.23. cuDNN . 93
A.24. Kaggle . 93
A.25. Kaggle competitions . 94
A.26. FaceNet search . 94

List of Tables

1.1. Main emotions and their representative characteristics 2
1.2. Main fields of emotion recognition . 5

4.1. Scheme of the phases development . 22

xiii

Listings

5.1. __init__ function . 35
5.2. Mapping of events . 35
5.3. getFaceIds function . 40
5.4. deleteFace function . 40
5.5. deleteFaceFrame function . 41
5.6. fordwardToProcessed . 41
5.7. Processing of faces in the face isolation module . 42
5.8. Processing of faces in the face isolation module . 42
5.9. Singleton pattern . 44
5.10. Serialize funtion (first part) . 44
5.11. queue function . 45
5.12. Face isolation algorithm . 46
5.13. Crop function . 48
5.14. emotion detection code snippet . 49
5.15. Modifying control variables . 52
5.16. drawFaceInfo function . 52
5.17. Face characteristics extraction . 53
5.18. Selecting the bar plot . 57
5.19. Functions to update chart values . 58
5.20. Representation run function . 58
5.21. Detailed module updating the chart values . 59
5.22. Face picker plotter initializing . 60
6.1. Sample output - face isolation . 65
6.2. Sample output - Emotion detection . 67
A.1. Python source code . 84
A.2. Python source code . 84
A.3. Python source code . 85

xv

CHAPTER 1

Introduction

How can we measure if a presentation was interesting, funny, both of them or nothing special at all?
for sure someone without the technological knowledge would answer that we should take a look on
how the attendants may react, this answer is correct at first, but nowadays we have a lot of resources
and with the help of a proper technological knowledge and image classification algorithms we could
achieve something far away from the fact of just looking how attendants react.

Nowadays data is every where to be used and this makes it easier for us people with the proper
technological knowledge and even people that just have a big interest on technology (thanks to the
internet anyone can search and learn about anything) to transform this data in something pretty
useful, in this project the aim is to create a system that allows the user to determine the performance
of a given presentation with the help of an emotion detection model along with the human action
through the use of a usable user interface.

The technology and the resources available make this development process an amazing challenge
that when fulfilled it will provide a powerful system to be use as a tool for professors, experts or
anyone interested on deep learning study.

While development the need of amplifying the developer base of knowledge about topics regarding
artificial intelligence, image classification problems, user interface design and programming will be
required for accelerating the project development and fulfilling project deliveries deadlines.

All the decisions, methodologies, tools and results will be shown in this document intended to
give everyone who reads it a full overview of the mentioned elements, without further delay, lets
start with some general aspects of the development such as the motive, background of the project,
some facts about the project and the structure of this document.

1.1. MOTIVE

The main way of presenting any information to others implies always that someone who has the
knowledge has to present that information to the ones that hasn’t have the knowledge or those who
want to amplify this knowledge, there are different ways of presenting this knowledge to others and
we can classify these in:

personal or interpersonal, the first one being the most direct that facilitates the interaction
between emitter(s) and receiver(s) and is limited to a receiver or a limited number of them, the
second one, interpersonal, is directed to many receivers but this way of communicating doesn’t
allow the interaction between the emitter and the receivers.
unidirectional or bidirectional, in the case of unidirectional communication we assume that
there’s no way the receivers would we able to respond to the emitter(s), in the bidirectional
case is the opposite.

In this particular case we will focus on the personal and bidirectional ways of communicating, to
be more specific we will focus on those situations where there is an emitter (can be a teacher or an
expert) and a set of receivers (the pupils or people that are just hungry for knowledge).

2 1.2. Background

After determining the scope of the project it can be stated that using all the mentioned concepts
above it would be very interesting to create an system to allow these emitters to analyze their way of
communicating to receivers through the use of a classification algorithm and deep learning to obtain
metrics about their performance and show these metrics in a usable and user friendly system.

1.2. BACKGROUND

Emotions are expressed during personal interactions, the study of how to read these emotions is
a tough task and there are several artificial intelligence studies and solutions that are applied by
different institutions nowadays, the definition of the concept emotion recognition will be shown later
in this document, in this section we will focus in the challenges emotion recognition is facing in the
present day.

The following table shows the general characteristics of every emotion, these characteristics
are used by emotion recognition models that extract the characteristics of an image as the Table 1.1
shows:

Table 1.1: Main emotions and their representative characteristics

Emotion Characteristics
Angry Lowered and burrowed eyebrows, intense gaze and

raised chin
Happy Raised corners of mouth
Surprise Dropped jaw, raised eyebrows and wide eyes
Fear Open mouth, wide eyes and furrowed eyebrows
Sad Furrowed eyebrows and lip corner depressor
Disgust raised top lip, wrinkled nose and narrowing of the

eyes

Figure 1.1: Set of images from a sample of FER2013 data-set

Figure 1.1 shows a data sample from the data set FER2013 which can be found in the Kaggle
website, this data set was used to train the emotion detection model for this project.

Deep learning is an artificial intelligence function that mimics the human brain by processing data
through a set of interconnected nodes usually called neurons, for emotion recognition the algorithm is
composed by several layers, an input layer, the hidden layer and the output layer, each layer modifies
all the input values in order to transform them into the target and preferred output (the emotion a
face is showing in this case, deep learning has more uses and we will discuss them later).

1.2.1. Facial recognition

This technology is becoming more advanced every year [1] but at its core the system detects and
studies the expressions extracting the characteristics of every face processed and depending on a set
of factors in concludes with the emotion as an output, main factors are as follows:

1.Introduction 3

The location of eyebrows and eyes.
Position of the mouth.
Changes on facial features.

An study held in 2012 summarized the system algorithm as shown in Figure 1.2

Figure 1.2: Emotion detection algorithms summarized

About Figure 1.2 [2] its important to mention the knowledge base which is a data base used for
comparisons in the difference measurements phase which contains a set of images relevant for
the emotions to be detected, in the prepossessing and resize phase the system enhances the input
and removes noise, then the input is resized usually using the eye selection method.

There are two approaches when training a emotion recognition software, the categorical way
and the dimensional way, in the categorical way there is a finite set of emotions that falls into
various sets of classes, this is the way the AIWake project emotion recognition algorithm was trained,
in the dimensional way the emotions are not defined concretely instead they exist on a spectrum
based on this approach. PAD emotional state has three dimensions while the Circumplex model of
affect uses two.

The chose of the approach relies on the way the emotion recognition algorithm will be imple-
mented, with a categorical approach a classifier has to be implementedwhile, when the dimensional

approach is chosen the algorithm must implement the outputs on a sliding scale.
Figure 1.3 shows both approaches schemes of the dimensional way of determining emotions in

an emotion detection process.

4 1.2. Background

(a) PAD model uses three dimensions (b) Circumplex model uses two dimensions

Figure 1.3: three dimensional model vs two dimensional model for emotion recognition

1.2.2. Emotion recognition

Emotion recognition is the process of identifying human emotion through machines in the same way
humans are capable to recognize human emotions by looking at each others faces in a conversation,
this section provides a quick view at the nowadays real-world uses of this technique and their impact
in the world as emotion recognition is one of the core elements of this project.

Is emotion recognition effective?

Emotion recognition technologies are not near to be perfect, in simpler terms, emotion recog-
nition consists in the classification of facial expressions, this classification problem brings faults
and there is not an emotion recognition system nowadays capable of being 100% accurate in its
emotion guessing for example: systems could consider subtle emotions and expressions more
alarming than those which actually are so it cannot distinguish which emotions are genuine
and which are not and could be deceived easily.
Also there is the cultural problem, different cultures express their emotions differently from
others which make emotion recognition systems unable to produce correct conclusions so
there is always a certain risk of misinterpretations.
At the end emotion recognition is a growing technology that becomes better everyday but the
problem with classification problems still there, one goal of this project is to make the users
able to detect these misinterpretations and correct them.
The fields of emotion recognition

This section encompasses all the fields where emotion recognition solutions are applied in
our case we will focus on video and image but this is something to be developed more deeply
throughout this document.
Nowadays emotion recognition is employed in customer service using cameras that compare
the customer emotions before and after being attended by the customer service to determine
the level of satisfaction of customers, emotion recognition is also used for helping differently
abled children for example by using smart glasses in children that aren’t capable of recognize
other’s emotions.
More solutions brought by emotion recognition are implemented in video game testing, some
companies in the video game industry are using emotion recognition on testing phases of new
games in order to obtain feedback from the users in real-time.
Main fields of emotion recognition are as shown on Table 1.2

1.Introduction 5

Table 1.2: Main fields of emotion recognition

Field Summary
Video lot of research is still on going to understand how to

use video in emotion recognition, at the end video
is just a set of images (frames) that can be analyzed
using emotion recognition algorithms

Image One of the major sets available in emotion recog-
nition, some research stated that classification of
emotions in pictures could be used to sort video se-
quences into various genres.

Speech The goal by some studies is to be able to instead
of transcribing speeches into texts (which is not
capable of emotion recognition) use these speeches
for emotion recognition systems. [3]

Text DTM (Document-Text Matrix) is the usual structure
used for texts, DTM records the frequency of words
in a document, as it uses individual words it is not
appropiate for determining emotions, the emotion
recognition approach is to perceive text based on its
tone, punctuation, etc factors that are considered by
researchers in the research of new data structures
for texts.

Conversation Focused on adquiring emotions from discussions be-
tween two or more individuals, the data-sets used
are commonly from free samples from social plat-
forms, one big challenge of this field is the detection
of sarcasm, emotional shifts and context.

A real world emotion recognition solution to help kids with autism

Autism spectrum disorders (ASD) are a group of diverse disorders that are characterized by a
certain level of difficulty in social interaction and communication, ASD also shows atypical
activity and behaviour patterns, in 2018 [4] it was estimated that almost 2.3% of 8 year old kids
had ASD.

This difficulty in social interaction makes ASD children to have a big lack of social skill, with
the arriving of emotion recognition and Google Glass device, a group of researches at the
Standford University School of Medicine began to study the effects on using Google Glass devices
along with an Android that made use of emotion recognition in order to improve ASD children
to improve their social skills.

The researches called the therapy Superpower Glass [5] to help make it appealing to children,
it uses flash cards that depict faces with different emotions.

It uses a categorical approach of emotion recognition having eight core expressions: happiness,
sadness, anger, disgust, surprise, fear, neutral and contempt, it includes a mechanism to allow
people involved in the study to calibrate their own neutral faces if necessary.

The study tested 14 families for an average of 10 weeks each, these families had a child between
the ages of 3 and 17 with confirmed ASD diagnosis, the families used the therapy for at least
three 20 minutes sessions per week.

The program was designed to allow three ways to use, free play were children wear the glasses
while interacting with their families and two game modes Guess my emotion and Capture the
smile.

6 1.3. The AIWake project

Results were that 12 of 14 families said that their children made more eye contact after the
therapy and the keys were able to realize the clues of feelings in faces, it was proven after
evaluating the children’s that their SRS-2 (questionnaire completed by parents to evaluate
children’s social skills) scores decreased, meaning that the children’s had less severe symptoms
of ASD and never increasing the scores in any case, 6 out of 14 children’s declined their
scores so dramatically that they even moved down one step in the severity of their autism
classification.

Figure 1.4: Superpower Glass is a therapy that aims to improve ASD children social skills

Figure 1.4 represents the concept behind the Superpower glass project.

1.3. THE AIWAKE PROJECT

In this chapter we have had a brief explanation on emotion recognition and face detection systems
and nowadays research, this section encompasses a description of the system that is going to be
developed and the reasons behind its development.

The chosen name for the system was AIWake from Artificial Intelligence AI and the Wake verb
which refers to the problem it wants to solve: analyzing the emotions of presentation attendants in
order to provide the speaker with a set of feedback (which makes able the speaker to analyze the
level of attention of attendants, the more attention paid the more awake the attendants).

Figure 1.5: the logo chosen for AIWake system

Logo shown in Figure 1.5 was inspired on cameras due to the use of video recordings as input for
the emotion recognition algorithm, can you spot the camera shutter behind the logo (not the i dot)?

So lets give a little context about the project, since 2019 the developer of this project began
to be part of C:TED which is a department of UCLM in charge of recording important events and
produce multimedia products that are delivered directly to the UCLM, presentations with high level
of attendants were filmed during all these years and the idea of developing an system to analyze the

1.Introduction 7

attendants expressions started to grow but its development was dramatically slowed because of the
arrive of COVID-19.

As an emotion recognition project AIWake its an opportunity to learn about emotion recognition
techniques, there is not much information about other tools out there that are used for emotion
recognition in the context of presentations, as an example shown in the last section, some are used
for example for retrieving feedback in customer service applications also its important to mention
one big challenge of this project: the fact that we are looking to analyze multiple faces in a single
image (a frame of a video) which implies the implementation of a top-to-bottom algorithm where we
first scan the video for face appearances and then we analyze each detected face individually.

After all this time the system has been changing due to the problems found (mainly COVID-19 as
mentioned before) and since November 2021 the development has follow the steps that are going
to be shown in this document, to give an example, the project started as a C++ and Intel OpenVino
project in 2020 but the idea was discarded due to lack of flexibility Intel OpenVino had (and the fact
that it only allowed Intel processors to be used in data processing) in a mid-development phase (The
final project uses Python and Tensorflow so we can conclude that a lot of things have changed).

With the acquired knowledge of Artificial Intelligence the development of a system which with
the use of a set of frameworks for computer vision, emotion recognition and UI development along with
an strong programming language in terms of Artificial Intelligence fulfilled the objectives specified in
this document second chapter and solved the problem, the project can be improved by adding more
functionalities to it as the used methodology allows it, improvements that could make this tool an
amazing solution for analyzing performance of presentations will be shown in the final chapter of
this document.

1.4. DOCUMENT STRUCTURE

The documentation for this project will be following the next structure following the guide lines for
final degree project documentation provided by the Escuela Superior de Informatica of Universidad de
Castilla-La Mancha.

Chapter 1. Introduction:The actual chapter, it will depict general information about the project,
some context and the background
Chapter 2. Objectives:A brief view of the challenges the project will face, in this section each
characteristic of the system to implement will be reviewed.
Chapter 3. State of the art:Review of topics encompassing the project and quick view over
some examples of solutions that employ these topics.
Chapter 4. Methodology:This chapter will cover the followed development methodology for
this project and the tools used for development.
Chapter 5. System architecture:Detailed design and implementation of the proposed solution.
Chapter 6. Results:As it name says, this chapter will cover results at each phase of the develop-
ment and will include the different design choices taken during the development.
Chapter 7. Conclusions:A more personal review of the project development process, this
chapter will show thoughts that came during the development and also will depict some new
ideas that could be added to the project in the future.

CHAPTER 2

Objectives

In this chapter the objectives that will lead the development and the purpose of each of this objectives
along with the procedures involved on its development will be shown.

2.1. MAIN OBJECTIVE

The main objective is to develop an system that makes a user able to analyze and determine which
were the emotions expressed by the attendants of a presentation, a set of frameworks, data sets and
libraries will be employed, the tools involved in the development will be depicted in the Methodology
chapter. To reach this objective Python programming language knowledge is required along with
concurrent programming and data management, the sub objectives shown in this chapter are all
related to the completion of the main objective and will be shown in the following section of this
chapter.

2.2. SUB OBJECTIVES

1. Acquire knowledge of deep learning techniques to be able to generate a model for

image classification. this sub-objective is very important in order to give the system a unique
touch but the system must be flexible in order to allow users to use their own classification
models.

In order to achieve this objective, the learning of lot of concepts about Artificial Intelligence
from the internet, looking at research papers about emotion recognition models, a data set for
model training that will be downloaded from the website Kaggle (a community focused on
machine learning) and make use of machine learning frameworks such as Keras and Tensorflow.

2. Define which technologies will be used in order to achieve the main objective and

stablish a proper project planning. time is the most important resource everyone has so
having everything clear from the start will allow a faster development, the technologies and
planning used for this project will be discussed in future sections of this document.

To give a brief summary of the methodology the project will follow its development will
consists on different iterations, each iteration will focus on a project functionality and the
next iteration will extend the functionalities, the idea is to make it modular for example: output
of iteration 1 will be the input for iteration 2 so each iteration can run independently making
a possibility for the functionality of iteration 2 to be started without running the iteration
1 functionality, the emotion recognition process will depend only on the output of the face
detection functionality so we can start from the emotion recognition part if we already have a
file containing the data processed by the face detection part.

3. Create a user friendly system. in order to fulfill this objective, a good knowledge base about
user interface design principles is required to employ usability and Gestalt principles which
are necessary in any heavily user oriented system.

10 2.2. Sub objectives

We will discuss about usability in following chapters of this document, for the UI design
part a popular framework for UI development known as Qt will be integrated in the project
development, Qt is a set of C++ libraries that allow the developer to implement UIs for different
applications, in order to use Pyhton along with Qt the Python wrappers set for Qt provided by
PyQt module will be employed, the results will be shown with a set of screenshots of the final
UI of the project in the Results chapter.

4. Establish a style guide to make an unique system. colors are one of the most important
aspects in terms of making something unique, establishing a style guide (buttons of the system,
background colors, fonts...) will allow the system to be more appealing, have high contrast to
have more readable texts and basically produce a feeling of love at first sight for the user.
Qt uses QML (Qt Meta Language) which is based on JavaScript in order to implement the
design aspect of a Qt application, similar to CSS we can establish a set of style rules for the
elements of the UI an preview these rules directly in the IDE which we will employ for the
design of our system Qt Creator.

5. Use principles of parallel and concurrent programming. the processing power needed
by this kind of system is huge, a lot of sub-processes will take place during the main execution
of the program so there is a big need of concurrent programming techniques.
The architecture of the system will implement a set of signals and threads in order to control
parallel processes, Qt provides the libraries QThread and QtSignal this set of signals and threads
will provide the system with control methods for the concurrent aspect, the use of threads is
mandatory on systems that run over an UI were the main thread is the system container as
any different process from the main window would freeze all the UI until the heavy processing
is finished.

6. Give the user a high level of feedback from the system. this system requires a great
processing power due to use of big data models and use of classification algorithms to analyze
the images the user will provide, this makes the fact of giving constant feedback like information
messages, real time data, etc to the user a priority.
Taking advantage from the Qt library we can use QtSignal module to make the sub-processes
of the system able to send messages to main thread, giving feedback to the user is an important
aspect of any system in order to make the user less impatient while a high amount of time is
required for a process to complete, elements such as progress bars and information labels are
our best allies in terms of feedback.

CHAPTER 3

State of the art

This chapter will address the core elements of this project, by core elements i am referring to all the
technologies that will see use in this application, their actual state and main uses.

3.1. ARTIFICIAL INTELLIGENCE

Nowadays the world is seeing big changes due to the presence of growing technologies which is
considered as a new industrial revolution, artificial intelligence [6][7] has attracted much attention
from governments, industries and academia’s, a proof of this fact is the amount of articles published
in recent years over this discipline that are selected and explored, in this section we will take a look
on the state of the art for artificial intelligence and some of its more relevant projects and applications
that are present in the real world.

First lets start with some context, artificial intelligence is as know in computing science a discipline
that tries to replicate and develop intelligence and its implicit processes through machines, artificial
intelligence follows four approaches:

1. Centered in humans.
a) Systems that think like humans.
b) Systems that act like humans.

2. Centered in rationality.
a) Systems that think rationally.
b) Systems that act rationally.

The concept of artificial intelligence began after second world war in 1956 in the Darthmon
conference by the computer scientist John McCarthy and as a science that has been coined since 1956
it has achieve great challenges as the defeat of the chess world champion by the computer AlphaGo
in early 2016, you may be thinking on the case of Deep Blue, the machine that defeated Kaspárov

playing chess in 1996, the main difference is the fact that Deep Blue was brute-force programmed this
means that the computer was programmed to play chess and due to the use of a massive parallel
processing based in RS/6000 it was able to win (but Kaspárov won 3 matches and 2 resulted on a
draw after the Deep Blue first win and won 4-2 against the machine) and AlphaGo is a computer

program developed by Google DeepMind using the programming language Go that employs true
artificial intelligence that is able to learn and even achieve a superhuman level on the game after only
4 hours of playing (Figure 3.1).

As a curious fact, Kaspárov asked IBM about registers of the machine because he thought the
machine was being manipulated by a human and IBM never gave him those registers which made
Kaspárov to declare that the event was organized for propagandist purposes and it was never meant
to be an scientific event.

12 3.1. Artificial Intelligence

(a) Deep Blue, a machine (b) AlphaGo, a program

Figure 3.1: programmed to play vs programmed to learn

Artificial intelligence is a knowledge project that takes the knowledge as the object to acquired
knowledge and at the end achieve the effect of simulating human intellectual activities it groups
computer science, logic, biology, psychology, philosophy and other disciplines to achieve great results
in activities such as:

1. Speech recognition: converts human speech from analog to digital form and its powered
by Natural Language Processing and Machine Learning, the digitized speech can be use for
applications in smart phones (Apple, Siri), smart homes (Amazon, Alexa) and other voice
activated solutions.

2. Image processing: its in charge of making algorithms that are able to process images like
the human brain does, also its the core of this project, there are a lot of libraries that allow
image processing programing such as OpenCV, Tensorflow, PyTorch or Caffe some of then will
be discussed deeply in this document.

3. Natural Language Processing (NLP): the ability of a computer program to understand
human language as it is spoken and written that has been existing for over 50 years and relies
in the field of linguistics, it is not the same as Speech recognition as mentioned above, NLP
is focused in the natural language and it can extract meaning of words based on the context,
recognize named entities and even generate new texts based on its knowledge.

4. Intelligent robots[8]: robots with a well developed artificial "brain" which can arrange actions
according to a purpose and the help of sensors and effectors, main uses of this intelligent
robots include industrial robots, service robots and mechanical rehabilitation robots, they use
simulation environments for testing and researching purpose, some of these environments
like NVIDIA’s Isaac Sim are built on top of Unreal engine or Unity platforms, a close example
of an intelligent robot is EVA (Figure 3.2) [9] an affecting robot for old and dependant people
being developed by MAmI group (Castilla la mancha University) in collaboration with CICESE
(Ensenada Public University) and the Healthcare Robotics Lab (University of California San Diego).

Figure 3.2: EVA, an affecting robot being developed by MAmI group in collaboration with CICESE and
Healthcare Robotics Lab

3.State of the art 13

3.2. COMPUTER VISION

Computer vision [10] refers to the set of tools and technologies that make systems able to take images
from real world, process those images and produce a set of information, it try’s to emulate the way
the human vision works but translated to a context of machines.

The goals and functions of computer vision can be grouped in these 3 big groups:

1. Object detection: takes the idea of computers being able of recognizing patterns found in
images to separate and classify them, these objects can be humans, buildings, cars, etc, object
detection has many applications including face detection, video surveillance and image
restoration but one of its most common use case if the facial recognition. It takes advantage of
the characteristics any object has, a ball is round, a face has eyes, mouth, nose and hair (or
not).

2. Image analysis: takes advantage of the capacity a computer has in terms of extracting the
characteristics of a big set of images, in terms of the human capability to analyze an image
against a computer processing capability a computer can process thousand of images in a
second and collect the data in a human readable format.

3. Statistics: with the above mentioned about the capacity of a computer to process large sets of
images, computer vision can be applied in order to compare the extracted characteristics of a set
of images, imagine for example a programwhich uses a video taken during a day in a motorway
were we want to obtain the amount of Ford cars passing through the motorway and compare
it with the amount of KIA cars, a human person would need to count the cars appearing in the
video manually and spending almost the entire day, a computer vision program could fulfill
this task in minutes producing useful data for car vendors, an approximation of this example
can be seen in Figure 3.3.

Figure 3.3: A computer vision example of a program that is able to read car plates

The use of machine learning in computer vision [11] is applied when only the recognition of
patterns in a set of images is needed, the training process for a computer vision solution through
machine learning consists on giving an artificial intelligence system a set of instructions previously
classified, ordered and interpreted in order to make the system get used to the patterns and respond
properly to them. If we are looking for a more advanced and complex solution then we need to use
deep learning [12] techniques to build the system, giving the system a set of rules and let it learn
to recognize the patterns by itself which is a slow process but allows the system to recognize new
patterns once trained.

14 3.2. Computer vision

3.2.1. Computer vision applications

Making a system that is able to recognize the environment has become an important trend in the
industrial context and this systems have come to stay in our daily lives [10].

Here is a list of the main applications computer vision has at the present day, there are a lot more
but these are the most present ones specially in the industrial world.

1. Electronics: Industries have focused the computer vision approach to the components selec-
tion which facilitates the selection of components replacements and the automated welding
giving more security in terms of human workforce and allowing the efficient welding of small
components and pieces.

2. Food industry: Computer visions allows to avoid millionaire losses to agri-food companies
by detecting bad batches of products or intruders in the preparation and packing lines which
also provides the industry with a higher quality assurance.

3. Automotive industry: This was one of the most benefited industries when computer vision
came, computer vision introduced the use of industrial robots in the assembly and welding
processes, these robots are able to recognize specific pieces and welding supervision which
translates in higher quality standards and productivity.

4. Logistics: Automation of logistic processes translates in higher productivity, computer vision
is applied in product picking, inspections of products in order to fulfill quality standards and
the classification of products.

5. Security: Stand-alone security systems came along with computer vision, this systems are able
to recognise personnel, detect intruders and together with proximity devices these systems
are able to event prevent accidents.

A new trend in computer vision is 3D Vision which makes the system to recognize objects and
perceive the environment around this object as an human would do, this has great applications in
navigability solutions and in high level industrial processes allowing the system to measure pieces
and specify the measurements in order to buy this pieces which is very important in the industry
due to the fact that 3D Vision is able to measure even in microscopic scales that are invisible to the
human eye, this concept of 3D Vision and computer vision in general collaborated in the emergence
of the concept that nowadays is known as Industry 4.0 (Figure 3.4).

Figure 3.4: Industry 4.0 is supported by automatons that take advantage of computer vision to operate,
in this case for motherboard components inspection

3.State of the art 15

3.3. DEEP LEARNING

In this project in order to generate a model for our application we will need to introduce the concept
of deep learning, deep learning is a type of machine learning both of them being subsets of Artificial
Intelligence, AI, which is a science devoted to make machines think and act like humans (in an
intelligent way).

The key difference between these two concepts is the approach each one has, machine learning
aims to make computers being able to perform tasks without the need for explicit programming,
with machine learning computers are given a set of structured data (Figure 3.5) and they learn to
become better at evaluating and acting on that data over time.

Figure 3.5: A decision tree, the way machine learning acts to determine its outputs

The "problem" with machine learning is the fact that even the computer is able to act more
accurately over time it will still think and act as a machine so deep learning addresses this "problem"
by creating a model after the human brain. Complex, multi-layered deep learning networks (Figure
3.6) allow the data to be passed between nodes that act like neurons in a highly connected way.

Figure 3.6: A example on how nodes are connected in a deep learning model

3.3.1. Main types of deep learning algorithms

Its is important to mention the two main ways of building a deep learning network at the approach
both have in order to illustrate how deep learning can be applied.

3.3.1.1. Convolutional Neural Networks

are focused on image classification problems [13], this type of algorithm is commonly referred as
CNN and can take an image as input, assign weights and biases to various aspects of the image and
by doing this being able to differentiate one image from another.

16 3.3. Deep learning

It is a very interesting fact that convolutional networks are based on the connectivity pattern of
the organization of the neurons in the human brain visual cortex.

The way this networks work is by using the pixels that conform an image by applying relevant
filters, but why it is called convolutional? because it uses convolution layers, the element in charge
of the convolution is called Kernel/Filter, K, (Figure 3.7) a matrix that goes over the image pixels
and gets the convolved feature.

Figure 3.7: A graphic example of a 3x3x1 kernel convoluting a 5x5x1 image

When the whole image is traversed by the kernel the convolved features allows the network to
extract high level features such as edges.

There also another layers used in this type of network, the pooling layer is similar to the
convolution layer but it reduces the spatial size of the convolved feature in order to decrease the
computational power required to process the data and the fully-connected layer, FC Layer that is
used as a cheap way of learning non-linear combinations of the high level features represented in
the output of the convolutional layer.

Figure 3.8: CNN example, notice the use of the different layers mentioned.

As we can see in Figure 3.8 the input imaged is processed layer by layer, the convolution layers

extract the features, the pooling layers reduce the size of these convolved features and the FC
layers classify those features producing a final output.

AIWake requires the processing of images in order to classify emotions determined by the
expressions the attendants of presentations will make so a CNN will be required for this purpose,
the process of making this CNN will be depicted in future sections of this document but in order to
fully understand how deep learning tries to mimic human thinking lets briefly talk about the other
main deep learning type of algorithm.

3.State of the art 17

The complexity of deep learning allows the generation of data models when using a CNN that
are capable of solving image classification problems like the one we will have to face in the AIWake
project, so in this case we will need to generate a data model to classify our images, we will talk
about the process of generating this model in future sections of this document.

3.3.1.2. Recurrent Neural Networks

also known as RNN introduce the concept of memory which makes the computer able to keep data
points and decisions in mind and use this in order to review new data.

RNN have a mayor focus on natural language processing work and the connections between its
nodes form a directed or uni-directed graph along a temporal sequence which is the main reason
why this kind of networks are able to "remember".

As in AIWake we are not interested in natural language processing there’s no need to expand
this section more.

CHAPTER 4

Working method

This chapter will describe the steps took to achieve the final goal of the project, the chosen methodol-
ogy, the tools used for development and the context around this project, as the project was developed
by a team conformed by one person in charge of programming and a supervisor an agilemethodology
based on development iterations focused on specific functionalities that have an established period
of time to be developed and then reviewed was chosen.

4.1. METHODOLOGY

As said before, an agile methodology was taken, this methodology will be described in detail in
this chapter but in order to summarize the development of this project will consists in several
phases/increments, each iteration will focus on one big aspect of the overall functionality, lets take a
look at this iterations:

1. iteration 0: Generate a deep learning model for solving a classification problem.
a) Identify the data to be processed by the model
b) Train the model using a data set
c) Evaluate the generated model

2. iteration 1: Pre-processing of video source, this iteration covers the face isolation aspect of
the application.
a) Allow user to browse for a video source
b) Load this video source in the application
c) Develop an algorithm for isolating faces appearing in the video
d) Generate a json file containing all the data obtained after the face isolation processing

3. iteration 2: Post-processing of video source using the data obtained in iteration 1 in order to
employ the model generated in iteration 0 to detect emotions.
a) Load the data generated in iteration 1 and saved in a json file that contains positional

information about each person appearing in the video.
b) Crop the video source according to the positional information given and send each

cropped image to the data model
c) Generate a json file with the obtained data after processing the cropped images through

the data model
4. iteration 3: Data review, in this iteration most of the UI programming will take place, the idea

is to make an UI to allow the users review the data obtained on each iteration allowing them
to modify data and some parameters regarding processing.
a) Integrate Qt with the application and start modeling the UI
b) Create the UI options for iteration 1 results review

20 4.1. Methodology

c) Create the UI options for iteration 2 results review
d) Make the UI fully responsive and establish the styling

5. iteration 4: Create charts to allow data analysis in the UI.
a) Create a chart view for the iteration 1 processing data
b) Create a chart view for the iteration 2 processing data
c) Allow the user to pick different data representation options.

That’s a glance on the steps the development will take, all this steps will be depicted in the
following section, its important to mention the use of Git along with GitHub that was present during
all development and can be checked on https://github.com/Kirkuss/TFG, the use of Git will also be
shown in this document but for now all that is needed to know is that every iteration was developed
following the Gitflow [14] model for branch usage.

4.1.1. Iterative and incremental software development

The modular nature of this project creates a perfect situation to follow an iterative and incremental
software development methodology where all the Phases of the project will be taken as iterations
and the new functionality added on each iteration will be the increment for each finished iteration
it will be an evaluation of results, if these results are the desired ones that is to say the output of that
iteration follows a deterministic way we can continue to the next iteration.

Agile methodologies are highly used nowadays and there is a lot of reference guides to follow
an agile methodology, in this case the end of each iteration will be followed by videos with a brief
review of the implemented functionality that will be send directly to the project supervisor (Carlos
Gonzalez Morcillo) who after a look at the video will share some considerations about the functionality
implemented.

Iterative and incremental software development is summarized in Figure 4.1

Figure 4.1: Iterative and incremental software development takes each iteration as a cyclic process that
goes over different phases

4.1.2. Planning

This section will show the steps that followed the completion of the stated goals in Chapter 2 with the
time taken while developing the main features of the project and some considerations that appeared
during the development of each feature.

iteration 0, generating a deep learning model for a classification problem

This functionality consisted on achieving a certain knowledge level about artificial intelligence
and deep learning, the learning process started in September, 2021 and finished in December,
2021 it is relevant to say that before starting focusing on the aspects regarding this application

4.Working method 21

in September, 2021 there was already some knowledge about artificial intelligence due to the
fact of the several attempts of developing the project that got rejected because of problems
like COVID-19.

After achieving the required knowledge the implementation of a model trainer began and it
was deployed in December, 2021, the architecture will be depicted in the Architecture section,
now lets focus on the main tasks involved with this 4-month iteration.

1. Obtain knowledge about classification models training: the most demanding task
in terms of time, the need of adapt the acquired knowledge of data models to the selected
frameworks and programming languages and the chose of a data set for training was a
difficult task to complete.

2. Implement the model trainer: due to the complex nature of deep learning models
keeping it simple in terms of implementation was chosen, overall process took 1 month
from November, 18 to December, 21.

The time estimation for this iteration was 3 months but problems with memory manage-
ment and elements (like NVIDIA CUDA) integration delayed the iteration completion with
an additional month this delay was palliated with a parallel implementation of iteration 1

which along with the modular nature of the project was possible (both functionalities were
independent) this fact violates the iterative and incremental methodology principles but it
was required due to the time demanding development and the modularity of the project, end
justifies any means and the results were great.

iteration 1, processing the video source in order to detect the faces to be processed

As said in the previous iteration planning specification, iteration 1 was implemented during
the iteration 0 development in a 2-week time lapse that took from October, 27 to November,
17, the estimated time for this iteration was 1 month but at the end it was completed on a 1
week period.

Hardest part of this iteration was the implementation of an algorithm to determine if the
appearance of a face in a new frame of the video belongs to a face that appeared in another
frames before in what was called the Face Isolation Algorithm its development took less than
a week and is one of the core features of the application, this algorithm will be explained in
detail in the architecture section.

To process the video source OpenCV and OpenCV haarcascade model were integrated into
the source code, a simple video window allowed the testing of the algorithm output, despite
some performance problems that were solved during this period everythingwent smooth as silk.

iteration 2, processing the video source to obtain data regarding emotions

As the goal of this iteration stands we can deduce that iteration 0 and iteration 1 outputs
are needed for the implementation of this iteration, this iteration implementation was similar
to the iteration 1 implementation as it also needed of OpenCV to work and the video to be
processed but it introduced new problems such as performance and data management, so a 2
week period was established to work on this iteration, the implementation of a first version
took from December, 21 to January, 3.

It was working perfectly, not smoothly, the output of the iteration was the desired one (we
were able to obtain data regarding the emotions detected in the video and produce a json file
regarding that data) so the decision of leaving the development of this iteration as completed
but awaiting for a future refactoring in order to obtain better performance results was made.

iteration 3, creating an UI for reviewing obtained data

22 4.1. Methodology

In this iteration the main approach was to take all the previous phases functionalities and
integrate these on a UI, time estimated to obtain a first version of the UI was 2 months but at
the end it got expanded another month in order to start some code refactoring (having an UI
allowed testing functionalities easily), refactoring that took a little longer than expected, this
iteration was divided in sub-phases/iterations:

• iteration 3.5: Intended to increase the performance of iteration 2 execution and the
way data was processed at the outputs of each iteration, covered an extensive search for
parallelism and signal behaviour of the application, took more time than intended due to
the search of a way for image compression which was discarded due to very large size in
output.

• iteration 3.5.5: A lot of general errors were solved in this sub-iteration and the develop-
ment of the system’s main user interface got more complexity by adding style rules and
responsive behaviour.

This iteration including sub-phases was deployed on April, 27 and it started to show the
big potential the application had, but it took more time than intended hardening the project
development time restrictions.

In this iteration the integration for Qt libraries and the use of Qt Creator in the application
took place along with some basic data charts that allowed a first contact with the final product.

iteration 4, integrate charts in the application to allow detailed data analysis

Intended to end in May, 31 it took 6 days more and ended in June, 6 due to a problem found in
matplotlib library that required the implementation of data charts through QtCharts.

Hardest part of this iteration was the processing of the data generated by iteration 1 and
iteration 2 functionalities as different charts require different ways of processing the data, also
mention the performance issues that having different data plotters brought to the application,
some additional research in the QtChart library documentation allowed the implementation of
different ways of improving performance till the point the impact of the data plotters were
almost 0.

Although the implementation of the UI took place on iteration 3 the UI was so important
for this application that it got a continuous development, this means that iteration 4 also
introduced changes to the UI aspect such as style improvements and more responsive sections.

The overall time distribution for each iteration ended like shown in Table 4.1 were the red color
represents delays and the yellow color represents that times when some aspects of an iteration were
modified to improve the system in general, for example when modifying the user interface.

Table 4.1: Scheme of the phases development

Sept Oct Nov Dic Jan Feb Mar Apr May Jun
iteration 0
iteration 1
iteration 2
iteration 3
iteration 4

4.1.3. Development management

All the planning shown above brought a set of tasks to be completed, there are a lot of tools along
internet that are free to use that have the purpose of ease the task management of a development
process for this project the decision of using Trello was made, Trello is an online tool that provides

4.Working method 23

a Kanban board where the different tasks of a project can be shown and moved through different
states, for this project a set of tasks and states were defined during development.

Figure 4.2: The state of the Trello page for AIWake

As can be seen in Figure 4.2 a color code for each task was used based on the priority of these
tasks, being red used formandatory tasks, orange for high priority, green for tasks that can be made
over the development, and purple for non-mandatory tasks that can be implemented in case there’s
time which due to the time restrictions are the less tasks making an appearance.

4.2. TOOLS INVOLVED ON THE DEVELOPMENT

In this sections the main tools (frameworks, system, IDEs and Libraries) will be described, the entire
project development relied on this set of tools and obtaining a good knowledge base for them was
mandatory, only mentioned tool that didn’t require knowledge was my home pc, all the obtained
knowledge about using these tools came from the internet by a set of guides and tutorials in video/text
format.

4.2.1. Software

This section will explain the tools selected regarding software the hardest aspect of these software
tools was the fact of choosing them due to the amount of tools available for developing artificial
intelligence software applications.

Windows 10 Operative System: Operative system used as the development platform, some
problems regarding low level system calls in order to apply parallelism in the system execution
appeared.

Python: Python [15] is a high level, interpreted and general purpose programming language,
being interpreted means that it is not necessary to compile it, it is executed by the interpreter
of the computer instead (it is not necessary to "translate" it to machine code), Python includes
some built in libraries that allow data representation such as MatPlotLib.

• MatPlotLib: Is a library that allows data representation throught the use of lists or arrays
of data, it also makes use of the NumPy library.

Qt:An object oriented multi-platform framework mostly used in the development of software
that needs a user interface, it is also used for console (server-side) applications and command
line programs.
Qt its an open source software developed by the Qt project nowadays a part of Nokia and
Trolltech (Norwegian company) are part of the Qt project, Qt is used in KDE Plasma which is
a GNU/Linux desktop environment.

24 4.2. Tools involved on the development

• PyQt: PyQt [16] is a comprehensive set of Python bindings for Qt v5, PyQt has more
than 35 extensions that enable Python to be used as the development language for Qt, it
also allows us to develop using Qt through Python on iOS and Android applications, this
set of bindings also can be embbeded in C++ based applications in order to configure or
enhance these applications.

• QtCharts: A Qt module that uses the Qt Graphics view framework to integrate charts
with modern user interfaces, this Qt module replace the MatPlotLib libraries usage at
the final stages of the development due to its performance improvement and chart
representation.

PyCharm: PyCharm is a multi-platform IDE developed by the czech company JetBrains for
the Python programming language that offers a community editions with as its website says
all the python tools just in one place.
PyCharm offers advanced code analysis, a graphic debugger and integration with version
control systems like Git

Qt Creator: An IDE for development of Qt applications, it uses QMLwhich is a language based
on JavaScript created for the design of user interface focused applications QML stands for Qt
Meta Language, Qt creator is programmed in C++ which makes a need for our application to
include the PyQt5 libraries into our Qt Creator instance, it was created by Trolltech also the
creators of Qt

OpenCV: Is an open source computer vision and machine learning software library built to be
one common infrastructure for computer vision applications.

TensorFlow: Tensorflow is an open source end to end platform for machine learning that
counts with an integral and flexible ecosystem of tools, libraries and resources coming from
the contributions of its community that allows developers and researchers to innovate through
the creation of applications using machine learning, it was developed by Google.

Keras: Keras is an API (Application Programming Interface) designed as it website claims
for human beings, not machines, that follows best practices in order to reduce cognitive load
minimizing the number of user actions for common use cases when it comes to model training
for machine learning applications, it is built over TensorFlow 2 and comes with an extensive
documentation and user guides.

NVIDIACUDA: CUDA is a pararell computing platform and programmingmodel developed by
NVIDIA for computing on NVIDIA GPUs, CUDA allows to speed up drastically very demanding
computing applications using the power of GPUs, CUDAmakes the compute intensive portions
of programs to be executed in parallel using the thousands of GPU cores available, in terms of
processing deep neural networks it comes with the cuDNN library.

• cuDNN: A GPU-accelerated library of primitives for deep neural networks that provides
highly tuned implementations for standard routines such as forward and backward
convolution, pooling, normalization and activation layers.

Trello: A web software for project organization that employs a Kanban system to keep track
of activities regarding a project.

Adobe Illustrator: A very powerful tool for graphic design provided by Adobe which was
used on this project in order to create the logo seen in Figure 1.5.

Git: A software for tracking changes in any set of files, used for the version control while
developing the project.

GitMind: A free application for professional mind mapping this application was used in the
creation of the design diagrams.

4.Working method 25

4.2.2. Hardware

This section depicts the hardware tools involved in the development of this project, originally cameras
and other multimedia devices were tought to be used but testing and sample gathering was run
trough simulations by collecting internet videos, so at the end, only a home pc was involved.

A home pc running onWindows 10 with the following specifications was used in the development.
Operative System: Windows 10 Pro (21H1).
CPU: Intel(R) Core(TM) i5-9600k (3.7 GHz, 6 cores).
GPU: NVIDIA GeForce RTX 2060.
Motherboard: Gigabyte GA-H310M S2H
RAM: 16 Gb.

A Logitech webcam was used in order to test real-time processing but this feature was discarded
due to time restrictions and will appear in the improvements section at the end of this document.

Figure 4.3: The system used for developing the project UserBenchmark scores

Figure 4.3 shows the score of the system employed for developing the project, it obtained high
results which its very important due to the high performance required by the project on early
stages due to the lack of optimization, having a less powerful system could have led to frustrating
development stages due to screen freezes and system failing in order to process the required outputs,
for example, in order to predict emotions through the model, the system requires a high performance
GPU as it is processing a high volume of video frames.

Having an NVIDIA GeForce RTX 2060 allowed the use of CUDA which had a great impact in
terms of improving performance.

4.2.3. Other tools

This section will show tools used that couldn’t fit in the previous sections.
Kaggle

is an online community composed by data scientist and machine learning experts that allows
users to find and publish data sets and generate models along these data sets, Kaggle also
offers working along with other data scientists and engineers and participate in competitions
of solving data science challenges against other teams since 2010.

CHAPTER 5

Project architecture

This chapter will encompass all the development regarding the project’s different elements architec-
ture and its relationships between each other, the main goal of this chapter its to give a detailed view
on how the elements are set and defined in order to fulfill the system requirements.

The main components of the project are running in different threads that run in parallel each of
this threads is in charge of one functionality regarding the system, a general view of the component
organization is shown in Figure 5.1:

Figure 5.1: Overview of the AIWake system

Figure 5.1 shows a general view of the main components of the system the modules, such as the
user interface and the data management modules are running in parallel in different threads, the
purpose of each module and a detailed explanation of them will be depicted in this chapter but first
lets see a brief summary of the components shown in Figure 5.1

Control and UI: Refers to the main execution, it encompasses the UI mainWindow thread
and using the events produced by the interaction of the user with the main window it controls
which threads are being executed and what actions are going to be shown through the system,
it is the main responsible of having a constant feedback output to the user.

28

Processing: The core modules of the system data processing, it is in charge of taking the
input video source and process it to produce the output files that are going to be processed by
each process, it is composed by two processes that refer directly to the development phases
mentioned in the methodology.

• Face isolationmodule: this functionality takes the video source and produces an output
json containing data about the found faces, an algorithm for determining which particular
face belongs a new face appearing in the video takes place here, a review process takes
place after isolating the faces, then, the output json is produced.

• Emotion detectionmodule: by using the model generated in Phase 0 this module takes
the output from the Face isolating module and reads it in order to obtain a cropped
section of the video source, with this cropped section of the video a new image containing
only a particular face its send to the data model in order to predict the emotion of that
face in that particular video frame, a review process takes place and then the json output
is generated, this output could be used in other programs that use the format or be used
again on AIWake to review the data again.

Data representation: Encompasses the data analysis and visualization of the data obtained
by the Processing threads, the threads running by the purpose of representation of data are
constantly running and waiting for new data to plot in the UI, three threads are in charge of
this.

• Detailed plotter: It is in charge of representing the data in a detailed way, this means
at a frame level, each time a frame of the video is processed the data obtained in that
particular frame is plotted in the UI layout containing the chart, this plot is useful when
reviewing the data frame by frame and it allows the user to pick between different plots.

• General plotter: It gives a general view of the data that is being processed, this means
that the plot is going to plot a cumulative representation of the obtained data, it is useful
in order to obtain a general view of the video performance and ruling emotions detected
in the presentation attendants.

• Face level plotter: When reviewing the data the UI offers the option of picking a
particular face, this fact makes mandatory for the user to be able to review the emotions
detected in a particular selected face, it is useful when there is a need to know what a
particular attendant was doing when for example, in frame 436 he got angry without
a logical explanation (it could be a classification misfire or maybe the attendant had a
reason to be angry).

Notice that there is only one thread in charge of UI components, this is due to the fact that in
terms of design, AIWake has a UI that is composed by only the main window, the design aims for
simplicity using grouping of related options in different sections inside the main window, this reduces
the feeling of the system being complex to use by the final user, much applications nowadays make
the mistake of overloading its main window with a lot of popups, external windows and options
which makes these applications to feel more complex than it really are.

Another important consideration is the fact that the Face isolation module and the Emotion

detection module are not parallel executed, this is due to the fact that the Emotion detection

module depends on the Face isolation module output json this design decision was taken in order
to give the system the option of start the execution of the Emotion detection module directly if
a video source and a json with the valid format are given, which allows the user to continue the
process in different periods of time that doesn’t need to be continuous but clashes directly with
the option of giving the system a continuous video source like a webcam or a camera for real-time
emotion detection processing an improvement that could come in the future.

5.Project architecture 29

5.1. CONTROL AND USER INTERFACE

In this section we will have a detailed explanation of the components implementation regarding the
user interface and control of the threads involved in the system, as said before, the mainWindow
thread is the parent for all the threads running the processes of the system, this made mandatory the
control of these threads using signals and different control methods.

Both aspects, control and user interface will be explained separately in this section, other aspects
of the system like the data representation charts (that also belongs to the UI) are separated in different
threads in order to prevent the mainWindow from freezing as these processes are managing a large
amount of data and plotting this data through variables that are in a dependency relationship with
the components of the main window (the plotters layouts).

5.1.1. User Interface

The design choices for the user interface will be explained here, as mentioned before, as an information
technology student i considered the need of an usable system as mandatory so usability principles

were taken into account for the user interface design, the concept of usability refers to the facility
of a user to interact with an system in an easy and comfortable way allowing and helping the user
to achieve its goal using the system, this concept is directly related to level of satisfaction that the
system will produce on the user after using the system, the higher the usability the higher the level
of satisfaction.

Also Gestalt principles for UI design [17] were applied in the design of the AIWake UI, these
principles are part of a psychological current that appeared in Germany around 1920 and are directly
related to the study of how the human brain works when perceiving objects, the system of these
principles along with the use of usability principles guided the UI design.

Figure 5.2: AIWake UI during the review phase of the face isolation process.

In Figure 5.2 we can see the AIWake UI, how the mentioned principles were implemented and
different designs for the UI will be shown in this section along with some code snippets regarding
the user events controls.

Now lets describe how the principles mentioned for UI design were applied, lets start with the
usability, usability principles are mostly applied in wed design but it can be applied also in desktop
applications (web applications are just desktop applications that are able to run over the browser).

30 5.1. Control and User Interface

The list of usability principles applied is the following:

Make the system state visible for the user: This principles refers directly to the action
of giving feedback to the user, means like progress bars, status texts and live charts were
implemented in the design of the user interface.

Give the user control and freedom: This principle refers to the action of giving the user a big
set of options to control the process, AIWake UI gives the user options to change the data model
used for processing, manage options regarding the face isolation algorithm (like aceptance
levels and accuracy) and also allows the user to correct errors regarding the classification of
faces, AIWake was also designed having one important consideration in mind, the fact that as
a desktop system not all systems are the same so the processing rate can be modified allowing
the system to run in less powerful systems.

Consistency: Users have an internalized set of standards regarding usability such as the
actions some buttons will perform after clicking them, this consistency principle is mostly
applied in the video player, where the design is based in a common video player like windows
media player or VLC would look which are popular video players used nowadays.

Recognizing before remembering: This refers to the structure of the UI, AIWake UI was
designed having in mind the distribution of the elements and how the user will perceive them,
for example, the options pane regarding the face isolation phase is near the video player as
this is the first element the user will need to interact with (user has to provide a video source
and press play), the video player is in the upper left corner due to the fact that according to
some studies about user interaction upper left corner is the first area of an system the users
tend to pay attention to (this is know as the F pattern), notice how the first button the user
should use is in that area’s corner, next the face picker situated in the right side immediately
updates when starting the reviewing process which changes the focus of the user (which is
in the video player) directly to the main tool they have for reviewing the data, the charts are
real-time updated and occupy the bottom section of the UI as they are core elements when
reviewing the obtained data and giving feedback to the user.

Flexibility and use efficiency: In terms of flexibility, this principle refers to the wide range
of users that could use the system, the goal is to make the system adaptable to this wide range
of users, AIWake UI was designed with only the necessary number of buttons each one makes
the action it represents (video player uses the usual set of icons while system’s specify directly
the action the button will perform), the user interface is also fully responsive not only at main
window level but at section level, this allows the user to modify the overlay of the window and
also hide elements or even maximize sections that the user is interested in like the chart views.

Aesthetic and minimalist design: One goal of the design of AIWake UI was to provide the
system with a custom design, using QML (the programming language for Qt UI design) i was
able to give the system an unique look regarding the main elements, here it is a list of the main
characteristics of the visual design the elements of the UI has:

• Progress bar: no border, white color for texts and #7A7A7A as the background color
(gray with some light), when the progress bar is showing progress it will be filled with a
gradient of blue going from #3F7BA1 to #51B1ED.

• Buttons: no border, max width of 80px and max height of 40px, the background color
when not pressed is #3F7BA1 and the text color is white, when pressed the button’s
background color changes to #51B1ED.

• Frames (sections containing grouped actions): no border, background color #232323.

• Frames (sections containing empty spaces): no border, background color #C0C8CF.

• Tab panes (Overall): no border, background color #232323.

5.Project architecture 31

• Tab panes (tabs): no border, the selected tab looks bigger than the non selected one by
giving the non selected tab a 2px margin-top, selected tab background color is #43A5FA
and the non selected tab has a background color of #1A1A1A, when hovering over any
tab the background color will change to #3F7BA1.

• Labels and check boxes: all text with white color.
• Main window: background color of #1A1A1A.
• Sections separators bars: bars between sections that allow the user to change the
sections size, its color will be always the same as the main window background color in
order to maintain consistency.

As can be seen in the list regarding the visual elements style guide the main goal is to achieve
consistency through the use of a color palette consisting on a set of gray-blue tones and the
use of white texts.
The chosen color palette used in the system user interface employs the above mentioned colors
Figure 5.3 shows the final palette used in the user interface.

Figure 5.3: Color palette for AIWake in order: #C0C8CF, #7A7A7A, #232323, #51B1ED and #3F7BA1

In terms of being minimalist, the less buttons the better and also the use of reduced number of
colors for the palette help achieving this goal.
Help and documentation: this principle is applied through the use of a user manual and
the "Help" button in the bottom-right corner which prompts the user with guides to obtain
the manual, also, the process run through the system is "guided" by preventing the user of
committing mistakes through the execution controlling which sections of the system can be
used depending on the process that is running in that particular moment.

Now lets take a look on how the Gestalt principles were applied in the design choices of making
the UI for our system.

Gestalt most recognized principles are as follows: principle of closure, principle of common region,
principle of multi-stability and principle of proximity (emergence) the way such principles are applied
in this system is the following:

Multi-stability: Humans tend to look for stable solid and stable items, this principle is mainly
applied for giving the elements of the user interface high contrast, and its applied through the
use of a dark background and light white text.
When this principle is well applied it helps lessen the cognitive load of the users and also help
with guiding them through the system tasks in order to complete the process.
Closure: refers to the fact that humans prefer complete shapes when perceiving elements, this
principle is applied through the shaping of buttons and the shapes that the different sections
of the system use, lets see an screenshot of a section:
Figure 5.4 shows the face-picker utility section, the closure principle is applied by means
of using a darker color in the gaps between different section, notice the use of #232323 (dark
gray) to make a square figure around the utility buttons, charts, image and combobox, this
allows the utility to be distinguish by the user at first sight as a whole element.

32 5.1. Control and User Interface

Figure 5.4: Section of the face-picker utility

Common region: this principle stands for having related elements in the same closed area,
we could think that Figure 5.4 is also applying this principle and in fact it is correct because
the squared section enclosures related elements (those that belong to the face-picker utility)
but the principle of common region can be applied in many ways such as the way the video
controls are displayed (Figure 5.5) or even the two sections that contains the detailed and
general chart views.

Figure 5.5: Video controls for AIWake

Proximity (Emergence): emergence is easy applied when we take in consideration what
elements must be considered as one, for example, all the elements regarding video progress,
video options and video player are together and only the gap between them for the closure
principle to be applied with different sections of the system is what separates them, this helps
the user recognize that area of the system as the video controls.
Lets take a look at the mentioned above area:

Figure 5.6: Video area (little section of the overall video area)

Figure 5.6 shows a cropped section of the system, this figure show how the elements regarding

5.Project architecture 33

feedback about the video being processed, processing rate, detection options and the video
player are together, the proximity principle is applied in an horizontal way for the video
utilities and its applied also for the data visualization area that is in the bottom of the user
interface.

UI designs

The design of the user interface went through four phases, lets take a look at the evolution of
the user interface through the development:

1. Simplistic approach (Figure 5.7), 27-01-2022: this was the first idea in terms of design,
the system was though as a main tab bar were each tab would contain each main module
of the process, first tab being the face isolation module, second tab would contain the
emotion detection module, a third tab containing the data analysis module with the chart
views and the last tab for the general options pane.

Figure 5.7: First design of the AIWake UI

This design turned out to be very complex in terms of navigation through the system
and a big problem for having a minimalist system, also, it had big problems in terms of
making a responsive system.

2. First attempts following UI design principles (Figure 5.8), 01-04-2022: the first
attempts on getting an system that followed the mentioned design principles, it is similar
to the final UI and was the core idea for the distribution of the elements in the system
but the use of a tab bar for navigation in order to get to the general options of the system
and the fact that there is an obvious problem regarding spatial distribution (which is a
problem when making a responsive system) resulted on a little redesign.

Figure 5.8: Second design of the AIWake UI

3. The mock-up (Figure 5.9), 27-04-2022: The main approaches of this design were to
eliminate the tab pane navigation and to distribute space used in the system there wasn’t

34 5.1. Control and User Interface

a real implementation of this mock-up but it allowed me to confirm which was the best
way to distribute the elements in order to make use of the full space the system could use.

Figure 5.9: A very simple mock-up regarding the spatial distribution of the system

It was a very fast design process in order to allow me to portray the main idea behind
the distribution i wanted for the system elements.

4. Final UI (Figure 5.10), 05-05-2022: using the mock-up main ideas and the state the user
interface was along with some modifications turned out in the final system interface:

Figure 5.10: Final design of the system

This design modified a little the distribution of the mock-up but followed its principles,
the tab navigation was deleted with only one tab panel remaining, the face-picker utility
but following the common region principle it made no sense to me to split the face-
picker section in two and it remained in the same area enclosed by the same square but
separated with a tab that is auto-selected when the emotion detection process starts.

The .ui file containing the design elements

(AIWake_app.ui) is located in the project folder and contains all the scheme of the user interface
along with the code, this .ui file extension belongs to QtCreator files for ui windows and saves
all the user interface configuration in XML language including a section for the style of the
elements of the system, the file contains over 2000 lines of code regarding the user interface.

5.1.2. Control

This section will depict how the main thread that belongs to the mainWindow process controls the
threads executing the processes running during the execution of the system.

The main thread code is located in the AIWakeUI.py file, this file contains all the necessary calls
and control structures to manage the communication between threads, using PyQtSignal library
as our main control manager in order for the main thread to receive signals and decide what to do
according to the data received from that signals.

5.Project architecture 35

lets have a look at the __init__ function of the main thread which is called from the main.py
program and its in charge of instantiating all elements regarding user events control, signals control
and threads control.

Listing 5.1: init funtion (AIWakeUI.py)

1 def __init__(self):
2 super(AIWake_UI , self).__init__ ()
3 uic.loadUi("AIWake_app.ui",self)
4 self.setWindowTitle("AIWake")
5 self.thread = {}
6 self.currentThread = []
7 self.initUI ()

The control structure for threads is simple, thread = is a python dictionary that will contain the
instance of each running thread of the system to begin its execution by calling the start() function
of that thread instance or to change some values managed by a particular thread, the next control
structure is currentThread = [] a python list that contains a set of boolean values that determine
which thread should be running at that time.

About the last function call of the init function initUI() it maps all the elements of the system
with its corresponding events and links them to a function that will perform an action regarding the
event, the way Qt manages this events is by the use of already implemented signals in the object that
our user interface element is inheriting such as clicked() signal in the case of buttons or the release()
signal in the case of sliders, such mapping done by the initUI function is a vast list of code lines, we
will take a look at some of these lines for the shake of simplicity.

Listing 5.2: Mapping of user interface events to their respective functions (AIWakeUI.py)

1 self.playBt.clicked.connect(self.playBtClick)
2 self.showBoxesCb.stateChanged
3 .connect(self.previewChange_showHB)
4 ...
5 self.VideoSpeed.currentIndexChanged
6 .connect(self.setProcessingSpeed)
7 self.VideoSpeed.setCurrentText("High␣detail")
8 ...
9 self.frameSelector.sliderPressed.connect(self.sliderPressed)
10 self.frameSelector.valueChanged.connect(self.sliderMoved)
11 self.frameSelector.sliderReleased.connect(self.sliderReleased)

The code shown in Listing 5.2 belong to the initUI function and performs the following actions:

Line 1 clicked() signal: Triggered when a user clicks on a button, in this case the mapping be-
longs to the play button of the video player, clicking that button would trigger the playBtClick()
function which starts all the processing of the video or in case that the thread in charge of that
functionality (Thread 1, Face isolation or Thread 2, Emotion detection) are already running
and in the review phase it would resume the pause event (in case the video is paused).

Line 2 stateChanged() signal: this signal belongs to the QCheckBox component and it is
triggered when the state of the check box changes (if it is selected or not) it brings an integer
argument to determine which state the check box has, for this example, if the face isolation
thread is running it shows the boxes that are drawn in the frame to represent the cropped area
of the detected face or hides the boxes depending on its state.

Line 4 currentIndexChanged() signal: it belongs to the QComboBox component and gets
triggered when the selected option of the combo box changes, this signal returns an integer
which represents the index of the selected element, more values like, the text value of the
selected index can be modified or read through getter and setter functions like in Line 5 where
the text value for the selected index (default index in this case) in the VideoSpeed combo box

36 5.1. Control and User Interface

is changed to "High detail", for this particular case, the signal is mapped to a function that
changes the processing rate option for the video processing (allowing the processing to skip
some frames in an exchange for level of detail in the charts).

Line 7 sliderPressed() signal: the slider component of the user interface is present in the
video player and in the options section regarding the face isolation phase, these sliders come
with this signal which is triggered when the knob of the slider is pressed by the user, for this
case, it controls the video player frame selector slider and pauses the video player in order to
allow the user to pick a new frame of the video to play from.

Line 8 valueChanged() signal: this signal is common in some elements, in this particular
case it is being used for the slider that controls the selected frame, but it does the same and
gets triggered always in the same way as it name says, when the current value of a selector
changes, for this case we are mapping the slider value change event (when we move the slider
to right or left sides or the video bar) to the sliderMoved() function which tells the threads
in charge of showing video being played to change the current frame the video is showing,
combined with the sliderPressed signal the system has the ability to pause the player and show
the frame selected by the slider instantly.

Line 9 sliderReleased() signal: regarding the slider, the system makes use of another signal
of this component, the sliderReleased() signal, which triggers when the knob of the slider is
released by the user and in this particular case it is used when reviewing the data after the
emotion processing phase to set current frame for an action that i will explain later.

This are the total set of predefined signals that i made use in the system, Qt offers the possibility
of configuring our own signals for thread control, the set of these own signals will be shown and
briefly explained below and explained in detail in the sections regarding the architecture of the
different threads of the system.

The Qt PyQtSignal library offers a very easy way to implement signals, so as said, lets explain
the set of signals that were created in order to control the threads of the system.

Face Isolation thread: the FaceIsolator module contains a set of signals for video preview,
management of the face picker utility, feedback and more.

• changePixmap(QImage, int) signal: this signal is used to notify the main thread when
a new frame is processed in order to update the video player with the processed frame
and cropping boxes in the faces, it sends to the main thread a QImage object that is the
required object by the layout that shows the processed images to properly show these
images, the int value is an integer that holds the percentage of the video that has been
processed by this thread in order to be shown in the progress bar.

• setPicker(list) signal: used to send a list containing the id’s of the processed faces to
the main thread, this list is processed by the main thread in order to establish the options
that the face-picker utility holds in terms of available faces to select for review.

• changePixmap_pick(QImage, list) signal: acts in a similar way than the changePixmap()
signal but the QImage object is the cropped section of a detected face in order to show it
in the face-picker utility, the list argument contains strings with data about the face.

• updateStatus(list, int) signal: as its name says this signal is use to update the status
feedback text and the status color, the list contains the strings that hold the status text
and the integer argument represents a number which is used for determining which color
will show the status, red for error, yellow for wait and blue for processing.

• updateFrameSelector(int) signal: it is used for positioning the slider bar knob in
the corresponding position of the frame that is being processed, the integer argument
represents the actual frame value.

5.Project architecture 37

• preprocessDone() signal: this signal notifies the main thread that the face isolation
phase was completed in order for the main thread to begin with the execution of the
emotion processing phase, this signal is emitted when the user saves the reviewed data
and the json file is generated.

• changeSelectedFrame(int) signal: is triggered when during the reviewing process, the
user selects a different frame, the integer argument holds the frame selected by the user.

• updatePlotter(list, list) signal: in order to plot the data that is processed in real time,
this signal sends two lists, one contains the information about the cumulative detections
that are being processed and the other one holds the label values for the chart, in this
case accepted and rejected faces that were isolated during the execution of this thread.

• updatePlotterDetailed(dict) signal: similar to the updatePlotter() signal but this one
holds the values of the frame that is being processed, it uses a dict for simplicity.

• sendDataToPicker(dict) signal: this signal is used to send a dict structure to the face-
picker utility in order for the picker to plot the data regarding the face that is selected in
that moment only it is triggered when the selected face value changes.

• setFirstFace() signal: in order to direct the user attention to the face-picker utility when
the face isolation process is over, this signal is triggered at the end of the processing and
makes the selected face value to automatically change to the first face id in the face-picker
combo box and updates the image of the face-picker along with the chart.

Emotion detection thread: this thread is in charge of the emotion detection aspect of the
system, the signals that are triggered in this thread are five in total and act in a similar way
than in the face isolation thread, these five signals are:

• postPbValue(int) signal: updates the value of the progress bar during the emotion de-
tection process, the integer represents the percentage of frames that have been processed.

• done() signal: similar than the preprocessDone() signal in the face isolation thread with
the difference that this process ends automatically and doesn’t require the user to click
any buttom, after this signal is over a post-review process begins that runs in another
thread, this decision of separating the emotion processing thread from its review process
was made due to tha fact that the emotion detection is a very performance and RAM
memory demanding.

• updateStatus(list, int) signal: works in the same way it does in the Face isolation
thread.

• updatePlotter(dict) signal: works similar to the face isolation thread signal but it
sends a dictionary to the main thread, this is because the fact that labels for emotion
detection could change if a user decides to try a new model, this labels are stored in the
configuration file as a dictionary that already contains the labels and their values.

• updatePlotterDetailed(dict) signal: same as face detection thread signal.

Emotion detection review thread: the high requirements of the emotion detection thread
came with the idea of separating both processes (processing and reviewing) this thread has the
same signals of the face isolation thread visual feedback aspects but with some differences.

• changePixmap_preview(QImage, int) signal: works the sameway than the changePixmap()
signal of face isolation thread.

• updateStatus_preview(list, int) signal: used for updating the status feedback, the
same as in the already shown threads.

• changePixmap_pick(QImage, list) signal: same as the face isolation thread one with
the difference that the face-picker is now allocated in the emotion detection tab (mood
tab).

38 5.2. Processing

• updateFrameSelector(int) signal: updates the slider knob position to the position of
the current frame that is being shown in the preview video similar to the face isolation
thread updateFrameSelector() signal.

• updateStatus(list, int) signal: same signal as the one in face isolation thread.
• setPickerMood(list) signal: new addition to the signals set, this signal sends to the
face-picker utility the emotion that was detected over the selected face in the last reviewed
frame that face appeared, it allows the user to select a different emotion in case of misfires
from the emotion detection model when predicting that face’s emotion.

• updatePlotter(list, list) signal: this signal sends the same data as the updatePlotter()
signal in face isolation thread but it is only used to send the detailed plotter the data
regarding the selected frame.

Data representation threads: this threads doesn’t use any signal, this is because the nature
of these threads consists on receiving data from the main thread and these are constantly
running in the background during the whole workflow of the system, the data representation
threads have access to shared variables containing general data of the processing of the system
so they are constantly feeding from this data and waiting for new data to be processed.

In terms of shared variables the file variables.py contains a set of variables and values that are
modified by different events, the threads of the system make use of this variables in some occasions,
for controlling the access to this variables the list currentThread acts as a thread-pool initialized
in the main thread that controls which threads can access the variables using this list as a lock

mechanism, as the execution of threads that may write in this variables follows a sequential order
there aren’t much occasions when a race condition can happen, but this control is necessary, for
the case of the data representation threads there is no chance a race condition could happen as these
threads only read the data from this variables but never write over them.

5.2. PROCESSING

This section will provide a deep explanation on how the main modules in terms of data processing
work in order to produce each of their outputs.

5.2.1. Face isolation module

This module is in charge of the first processing step of the video, it takes the video source as input and
along with the use of OpenCV it sends the frames to a data model provided by the OpenCV libraries
haarcascade model, it also uses some parameters such as the processing rate, the threshold value, the
acceptance value and some more parameters regarding visualization as inputs, some parameters can
be modified in real-time while others like the video source can’t.

Figure 5.11 provides a general view of the components involved on this module and their relation-
ships, lets give a detailed explanation of each module appearing in that diagram, some components
shown are shared by the emotion processing module such as the jsonManager, variables and AI-
WakeUI association relationship, also notice that the AIWakeUI acts as a controller for all the
execution and user events, in this diagram, the functions only related to the face isolation module
are shown, lets take a look at the FaceIsolator(Qthread) module:

5.Project architecture 39

Figure 5.11: components involved in the face isolation module

FaceIsolator(Qthread): this module contains all the main functionality of the face isolation
module, it is supported by the implementation of a module that holds an structure for storing
the isolated faces data, the face module.

Regarding the variables used on this module, much of them are named on a self explanatory
way being for example the pathToVideo variable the variable that holds the file-system path to
the source video provided by the user stored on a string as its name says but some of these
variables need a little explanation:

• previewData: it holds the isolated faces values before these values are stored in json
format, this allows a faster deletion and modification of isolated faces data so instead
of storing the data all the time in the json file it is stored only when the user confirms
the review (there are some cases where the json file may be updated before saving it
definitely).

• list: a temp list that holds isolated faces, this list mostly works when the source video is
being processed, the previous list previewData holds the values and its used when the
user is reviewing the data, list variable holds the values during processing and then its
used as a temporal variable to manage data between dicts.

• showOnlySelected, deleteAuto: this variables hold the values of the options, user
events modify these values through the main thread which changes the values of these
variables directly.

• finished, selecting, done: status variables, used to control the process and determine
the stage the user is viewing, these values are modified in the main thread and send
through signals.

• forward, forwardToProcessed, backward and backwardToProcessed: these vari-
ables are modified when the user clicks the video controls via the main thread, these are
used to tell the OpenCV cap.read function which frame of the video is about to be shown
to the user, the ToProcessed stands for those cases were the user selects a processing rate
different than frame-by-frame processing, clicking backward in these cases will show the
next frame going backwards but this frame may be an skipped frame so the ToProcessed
variable tells the module to move to the last frame that was processed backwards or
forwards (depends on the button)

Now lets talk about the functions that are implemented in this module, some of the explana-
tions will include code snippets along with the explanation about the code itself.

40 5.2. Processing

• getFaceIds(list, String, boolean): it returns a list containing the ids for the isolated
faces that are being processed, it is used for updating this list in a dynamic way during
the processing and is also called when the user deletes a isolated face, the list argument
contains all the isolated faces in order to extract the ids determined by the algorithm, the
String argument holds the id of a selected face in case an addition to the ids list occurs
(when a new face appears) and the boolean argument tells the function if the action that
called this function was a deletion or an addition.

Listing 5.3: getFaceIds() code snippet

1 def getFaceIds(self , faceList , k, delete):
2 idList = []
3 if delete:
4 for k, v in faceList.items ():
5 idList.append(k)
6 else:
7 idList.append(k)
8 return idList

• setStatusText(String): builds a list that will contain the text string to send to the status
label, this function is called as an input for the updateStatus signal and returns a list
containing the text to be displayed in order to provide feedback to the user.

• deleteFace(): this function removes the face item regarding the SELECTED_FACE variable
in the variables module from the list that holds the isolated faces and updates the json file,
its interesting to take a look at the code and see how the different mentioned functions
are called:

Listing 5.4: deleteFace() code snippet

1 def deleteFace(self):
2 self.updateStatus.emit(self.setStatusText
3 ("Generating␣preview␣data ..."), 1)
4 deleted = self.list.pop(str(config.SELECTED_FACE))
5 del self.previewData[str(config.SELECTED_FACE)]
6 self.js.setDataSerialized(self.previewData)
7 self.js.saveJson(config.PATH_TO_JSON_TEMP)
8 self.setPicker.emit(self.getFaceIds(self.list , ←↪

↩→ "0", True))
9 self.updateStatus.emit(self.setStatusText("Waiting␣←↪

↩→ for␣user␣to␣review␣obtained␣data"), 1)

Notice how the updateStatus signal is used at the start and end of the process in order
to give feedback to the user as the function updates the output json and this process
takes very little time but enough to be noticed, it also calls the setPicker signal in order to
dynamically update the list of available faces of the face-picker utility.

• drawFaces(String, boolean, Integer, Integer, Integer, Integer, Integer, boolean):

the main goal of this function is to draw a rectangle over the coordinates were a face was
detected during the processing of a given frame, the Integer arguments are variables that
hold the coordinates x, y and the width and height values of the detected face, the String
value refers to the id of the face that is being drawn, two boolean values to hold the
accepted value of the face which mean if according to the acceptance ratio determined by
the user (by default 40%) the face was accepted as a valid isolated face which means that
the rectangle would be drawn in green color or if it was rejected it will be drawn in red
color and the other boolean determines if there is a selected face in order to highlight the
rectangle regarding that face (to allow the user to easily find the selected face in the video
preview), this function uses the cv2 utilities rectangle and putText in order to generate
draw these figures over the processed frame.

5.Project architecture 41

• deleteAllRejected(): works the same way as the deleteFace() function with the difference
of iterating through all the list of faces and automatically deleting all the faces that have
been rejected.

• deleteFaceFrame(): this function is in charge of deleting an appearance of a detected
face which due to any reason was misfired by the algorithm, there are some cases were
the algorithm detects a face with an error and doesn’t get the correct coordinates for
that face which leads to a cropped image of the area near the face that was isolated that
doesn’t give enough information about the characteristics to be processed by the emotion
detection module, lets see a code snipped of this function:

Listing 5.5: deleteFaceFrame() code snippet

1 def deleteFaceFrame(self):
2 if str(config.SELECTED_FACE) in self.previewData:
3 if str(config.SELECTED_FRAME) in ←↪

↩→ self.previewData[str(config.SELECTED_FACE)]:
4 del self.previewData
5 [str(config.SELECTED_FACE)]
6 [str(config.SELECTED_FRAME)]
7 self.js.setDataSerialized(self.previewData)
8 self.js.saveJson(config.PATH_TO_JSON_TEMP)

Notice the use of previewData variable as this function belong to the review stage of this
module, notice also the use of the variables SELECTED_FACE and SELECTED_FRAME to
retrieve the data needed to perform the deletion, all this variables are directly modified
by the main thread AIWakeUI.

• getNearestProcessed(Integer): this function returns the frame that contains the nearest
processed values, in other words, it looks over the previewData variable to obtain the
next frame that holds any processed information about the faces, this is useful if there are
frames that weren’t processed or frames that were skipped due to the use of a process-
ing rate different from the default frame-by-frame/high detail one, this function works
backwards or forwards depending on the forwardToProcessed and backwardToProcessed
variables values, lets see the case of forwardToProcessed value being True:

Listing 5.6: code snippet for getting the nearest processed frame (forward)

1 def getNearestProcessed(self , iterations):
2 aux_iterations = iterations
3 founds = []
4 if self.forwardToProcessed:
5 for k in self.previewData:
6 while True:
7 aux_iterations += 1
8 str_iterations = str(aux_iterations)
9 if aux_iterations > ←↪

↩→ config.VIDEO_LENGHT:
10 aux_iterations = iterations
11 break
12 if str_iterations in ←↪

↩→ self.previewData[k]:
13 founds.append(aux_iterations)
14 aux_iterations = iterations
15 break
16 if len(founds) == 0:
17 return -1
18 return min(founds)

• getAcceptedAndRejectedNum(): returns a list containing the number of valid isolated
faces and non valid faces, this function is called when an iteration of the processing is

42 5.2. Processing

completed in order to emit a signal that will send this data to the data representation
threads.

• run(): the function that holds the main execution of this module, this function is over-
writing the run() function of the QThread module that this module is inheriting from, it
is always called by calling the start() function over the instance of a QThread object, in
this case the start() function is called when the user clicks the play button after browsing
a video source, this function is complex and has a lot of code, so snippets of it will be
shown starting with:

Listing 5.7: Snippet of the code for the isolate algorithm

1 for (x, y, w, h) in faces:
2 newFace = DS.face(x, y, w, h, iterations)
3 newFound = True
4 if len(self.list) == 0:
5 founds += 1
6 self.list[str(founds)] = newFace
7 newFace.queue(newFace , None)
8 self.setPicker.emit(self.getFaceIds(self.list ←↪

↩→ ,str(founds), False))
9 frame_stats["Rejected"] += 1
10 else:
11 for k, v in self.list.items ():
12 if newFace.equal(config.PROP , ←↪

↩→ self.list[k], frame):
13 newFace.occurs += self.list[k]. occurs ←↪

↩→ + 1
14 if newFace.occurs >= ←↪

↩→ int(iterations_ratio*config.RATIO):
15 newFace.valid = True
16 frame_stats["Accepted"] += 1
17 else:
18 newFace.valid = False
19 frame_stats["Rejected"] += 1
20 newFace.queue(newFace , self.list[k].list)
21 self.list[k] = newFace
22 newFound = False
23 break
24

25 if newFound and len(self.list) > 0:
26 founds += 1
27 newFace.queue(newFace , None)
28 self.list[str(founds)] = newFace
29 self.setPicker.emit(self.getFaceIds(self.list , ←↪

↩→ str(founds), False))
30 frame_stats["Rejected"] += 1

Notice the use of the temporal list list during the data processing and the use of the face
in order to store the data in an structured way.

Lets take a look at the review stage of this module:

Listing 5.8: Snippet of the code for data review in the isolation stage

1 ret , frame = cap.read()
2 frame = cv2.resize(frame , (540, 380), fx=0, fy=0, ←↪

↩→ interpolation=cv2.INTER_CUBIC)
3

4 for k in self.previewData:
5 if str(config.SELECTED_FRAME) in self.previewData[k]:
6

7 valid =

5.Project architecture 43

8 self.previewData[k]
9 [str(config.SELECTED_FRAME)]["valid"]
10 x =
11 int(self.previewData[k]
12 [str(config.SELECTED_FRAME)]["x"])
13 y =
14 int(self.previewData[k]
15 [str(config.SELECTED_FRAME)]["y"])
16 w =
17 int(self.previewData[k]
18 [str(config.SELECTED_FRAME)]["w"])
19 h =
20 int(self.previewData[k]
21 [str(config.SELECTED_FRAME)]["h"])
22

23 if config.SELECTED_FACE >= 0:
24 if k == str(config.SELECTED_FACE):
25 if k in self.previewData:
26 cropped = frame[y: (y + h), x: (x ←↪

↩→ + w)]
27 rgbImage = cv2.cvtColor(cropped , ←↪

↩→ cv2.COLOR_BGR2RGB)
28 hs , ws , ch = rgbImage.shape
29 bytesPerLine = ch * ws
30 cropped2Qt = QImage(rgbImage.data , ←↪

↩→ ws , hs , bytesPerLine , ←↪

↩→ QImage.Format_RGB888)
31 aux_face =
32 self.list
33 [str(config.SELECTED_FACE)]
34 self.changePixmap_pick
35 .emit(cropped2Qt ,
36 self.generateFaceInfo(aux_face , ←↪

↩→ iterations ,
37 config.SELECTED_FACE))
38 self.drawFaces(k, valid , frame , x, y, ←↪

↩→ w, h, True)
39 elif k != str(config.SELECTED_FACE) and ←↪

↩→ not self.showOnlySelected:
40 self.drawFaces(k, valid , frame , x, y, ←↪

↩→ w, h, False)
41 elif not self.showOnlySelected:
42 self.drawFaces(k, valid , frame , x, y, w, ←↪

↩→ h, False)
43

44 rgbImage = cv2.cvtColor(frame , cv2.COLOR_BGR2RGB)
45 h, w, ch = rgbImage.shape
46 bytesPerLine = ch * w
47 convertToQt = QImage(rgbImage.data , w, h, ←↪

↩→ bytesPerLine , QImage.Format_RGB888)
48 self.changePixmap.emit(convertToQt , 100)

The code for the review phase is in charge of drawing the rectangles according to the
data contained in the previewData dictionary, this variable as told before holds all the
data after the processing of the isolation stage ends and provides the system with a set of
structured data about the detections of the video, notice also the use of cv2.resize function,
this is due to the requirements of the model frames sizing and its passed through all the
calls referring OpenCV when processing the video, the initial data frames are always
540x380 so the following calls to the video source opening must match this measurements
in order to maintain data consistency.

jsonManager(object): this module is contained in the utilities.py file as a tool for parsing

44 5.2. Processing

the json objects and dictionaries, it is in charge of loading the json files containing the data
and processing the data into json objects to dump that json objects into files, this module is
employed by any module that needs to retrieve data from the output json files or to produce
this files, so it is also used in the emotion detection module and the emotion detection review
module, this module holds only two variables:

• __instance: employed in order to implement a singleton pattern this pattern is used in
order to have one and only one instance of the jsonManager module so the files containing
the data are opened only one time by the same process avoiding problems like overwriting
of the files or having multiple instances of the same file opened at once which could lead
to memory problems this pattern usage is not widely implemented on python components
but it is employed in some particular cases such as this one, the way to implement the
singleton pattern is as follows:

Listing 5.9: The __new__ function returns the instance of the jsonManager

1 module jsonManager(object):
2

3 __instance = None
4 data = {}
5

6 def __new__(cls):
7 if jsonManager.__instance is None:
8 jsonManager.__instance = object.__new__(cls)
9 return jsonManager.__instance

Were the return value of this function is the instance of the jsonManager, notice the
inheritance of the module from the Python object module in order to use the __new__
function in case there isn’t an instance of the jsonManager module yet.

• data: holds temporary values to be serialized when parsing the generated data in order
to generate the json file output resulting from the processing of the different modules of
the system.

Now lets take a look at the different functions implemented in this module, remember that
jsonManager module is employed by the emotion processing module also.

• __new__(object): as depicted in the variables this function is used when the instance of
the jsonManager module is required in order to apply the Singleton pattern.

• setData(dict, String): this function takes a dictionary as argument which holds the data
regarding the processed frames during the execution of the processing modules and stores
the data in this dictionary in the temporary dictionary variable data, the string argument
stands for the type of data that is being copied but at the moment it only stores data
regarding faces, no deeper explanation is required for this function as it simply copies the
data and serializes it in order to produce a formatted json output, the serializing function
is as follows:

Listing 5.10: Tool used for serializing the faces information.

1 def serializeFace(face , id):
2 serialized = {}
3 serialized[str(id)] = face.getSerialized ()
4 for k in face.list:
5 serialized[str(face.list[k]. frame)] = ←↪

↩→ (face.list[k]. getSerialized ())
6 return serialized

Were the id variable holds the value of the id regarding the face that is getting its
information serialized at that moment and the face variable holds an instance of the face
module in order to call the function getSerialized() which will be described soon.

5.Project architecture 45

• setDataSerialized(dict): its an auxiliary function that copies an already serialized set of
data in order to perform more immediate actions regarding the data.

• loadJson(String): takes the path to the file system were the output json are and loads
the data into a dictionary which is passed in the return value of this function, loading
json data in python is easy by using the json library and the function load(file) which
takes a file and parses the data contained in that file to produce a dictionary.

• saveJson(String): takes the path to the location specified in the options of the system
to store the produced json files and writes the file with the serialized data, the json
library comes with the function dump(dict, file) which allows the programmer to easily
implement this functionality, after the file is saved, the data temporal variable is cleared.

face is an auxiliary module implemented in order to maintain a cleaner organization of the faces
that are being isolated by the face isolation module, this module holds a set of variables that
refers directly to the spatial information of particular faces, it is also in charge of determining if
a new face appearance belongs to an already detected face and keeps track of every particular
face that has appeared over the course of face isolation processing, the variables appearing in
this module are as follows:

• list: a dictionary that is used to keep track of the face appearances that were detected and
determined to belong to a particular face appearing in the processed video, this dictionary
holds pairs of values with the following structure: {"frame":{<face data>}, ...} the frame
were it was detected and the data obtained about that face appearance in that frame.

• x, y, w, h, frame, occurs: are integers that hold the spatial data regarding that face
instance, x and y follow the OpenCV way of organizing the images as a grid of pixels
were the x=0 and y=0 point is at the top left corner, the w and h are values regarding
the width and height of the frame section that was found to be a face so the rectangle
that crops the frame to obtain a single face image is obtained by doing x+w and y+h
which gives us a new point, the frame value holds the time when that face appearance
was detected and the occurs value holds the number of times that particular face has
appeared.

• valid: holds a boolean value that determines if the face appeared in an enough number
of frames to be considered as "valid" which in other words means that the algorithm
determined that face to be a real face, some misfires can occur but the user has the
functionality to correct these misfires.

Those are the variables used when processing the isolation of faces appearing in the video
source, now lets take a look at the set of functions that are implemented in this module in
order to support the operations of the face isolation module.

• queue(face, dict): this function is in charge of adding newly detected faces that are
proven to belong to an already existing face in order to feed the list variable that keeps
track of the faces that are being processed, each face has its own list of appearances, the
face argument holds the instance of the new face that was detected, in order to avoid
overloading the memory the function its implemented as follows:

Listing 5.11: Queue function that acts as a linked list for holding faces track

1 def queue(self , face , queue):
2 if queue is not None:
3 self.list = queue
4 else:
5 pass
6 self.list[face.frame] = face

Were the if statement checks if that particular face already holds an instance of the queue,
this avoids a particular face to have multiple lists a problem that leads to an exponential

46 5.2. Processing

growth in memory usage, the queue argument is always holding the first instance of the
queue that its created when a new face that has no previous occurrences appears.

• paintFrame(cv2.frame, Integer, Integer, Integer, Integer): this function is used in
order to draw figures in the frame instance passed in the cv2.frame argument, the integers
passed as arguments hold the values for x, y, w, h, the function checks if the option for
showing the collision squares mentioned above is selected and if that is the case it draws
the figures in the frame instance to be shown in the video player.

• equal(float, face, integer): the most interesting function of the face module, this
function implements an algorithm that determines if a new face appearing belongs to an
already processed face, lets take a look at the implementation:

Listing 5.12: The face isolation algorithm

1 def equal(self , conf , item , frame):
2 x1 , y1 = int(self.x + (self.w * conf)),int(self.y ←↪

↩→ + (self.h * conf))
3 x2 , y2 = int(self.x - (self.w * conf)),int(self.y ←↪

↩→ - (self.h * conf))
4

5 if x2 < 0: x2 = 0
6 elif y2 < 0: y2 = 0
7

8 rx = range(x2 , x1 + 1)
9 ry = range(y2 , y1 + 1)
10

11 self.paintFrame(frame , x2, y2 , x1 , y1)
12

13 if item.x in rx and item.y in ry:
14 return True
15 else:
16 return False

This algorithm looks simple but it took almost two days to be made, it implements
an efficient way on determining if the item argument which is a new face object is an
appearance of an already processed face, it takes the values of the previous face and
builds a collision square, if the x,y point of the new detected face is inside the calculated
collision square (Figure 5.12)the algorithm determines that the new face is actually a
new appearance of an already processed face and returns True so the new face is added to
the list variable of the already processed face, the frame argument holds the instance of
the frame that is being processed so a call to the function paintFrame allows the function
to draw the collision squares used by the algorithm in the video player of the system,
showing the collision squares allows the user to modify the threshold size option and
visualize it in real time, the threshold value refers to the size of the collision squares and
its passed to this function as a float value.

Figure 5.12: Collision squares are shown in the video player in the top-left corner of the faces detected

• getSerialized(): returns the serialized set of data regarding the face object it is used
when there is a need for producing a json output and its mainly called when saving the

5.Project architecture 47

json file by the jsonManager module, it can be also called in case of face deletion or frame
level face deletion, this function returns a dictionary of strings.

5.2.2. Emotion detection module

This module is in charge of processing the emotions that the isolated faces detected by the face
isolation module have according to the emotion detection model, the execution of this process is
very demanding in terms of performance so the review part of this stage is on a separated thread
that uses the output produced by this module, the output is also a json produced in the jsonManager
instance that includes the pair {"frame":<frame id>{"prediction":<emotion detected>}} to the already
existing data in the output json of the face isolation module.

Figure 5.13: Components involved in the emotion detection module

Figure 5.13 shows how the different elements involved in emotion detection are connected, some
of them have already being depicted in this document such as the AIWakeUI control module and the
jsonManager which was depicted in the previous section, the new elements added in this module
are the EmotionProc(QThread) module which executes the core functionality of this module and the
ModelInterpreter module which is included in the Utilities.py file as a tool to support the detection
process.

So with the jsonManager module already explained, lets take a look at the different variables
and functions implemented in the EmotionProc(QThread) module and the ModelInterpreter module
starting with the EmotionProc(QThread) module:

EmotionProc(QThread): this module holds the main functionality of the emotion detection
module, it makes use of TensorFlow libraries in order to use the TensorFlow-Keras model inter-
preter and the CUDNN library that is loaded when this module is instantiated, the declaration
of this module and the execution of the start() function in the AIWakeUI control thread is
delayed till the first stage of the system completes due to the time that it takes to the Emotion-
Proc(QThread) module to load all the imported libraries from TensorFlow-Keras this measure of
delaying the start of the module gives the system a fast start and delays the waiting time to
the moment the user saves the json file of the face isolation process which makes the overall
flow of the system the sensation of being more dynamic as the user has the sensation the json
file is being processed and saved while the libraries of EmotionProc module are being loaded,
its just a question of timing.

lets take a look at the variables of this module, most of them are control variables that are
modified by the AIWakeUI control thread in order to coordinate the processing of the face
emotions:

48 5.2. Processing

• pathToVideo: a string that gets its value from the PATH_TO_VIDEO variable this value
cant be modified and is determined at the start of the system execution by the user, the
module uses this variable to get access to video source file in order to reopen the video
and get the faces that were detected in the face isolation module.

• pathToOutput: this string holds the value for the output file that this module will
produce after its execution, the value is specified by the user in the options pane but it
has a folder located in the project files as default location.

• js: the jsonManager instance, this variable acts the same way as in the face isolation
module and its the same instance as the one declared by face isolation module.

• iterations: an integer that keeps track of the iteration in which the process is operating,
this variable could be named "frames" because it can be equal to id of the frame that is
being processed but sometimes there is a need of modifying the value of this variable in
a different way the frames does, we could understand each iteration as each time a frame
is fully processed.

• model: the instance of the emotion recognition model, this module uses the Keras
model loader to load the model that is located in the specified PATH_TO_EMODEL path
in the options pane, by default this path points to the model that was trained for the
emotion detection stage of this system which is located inside the project files, but the
user can provide a new path to a custom model that if it fulfills the requirements of the
MobileNetV2 model architecture and providing the set of labels required by its model the
user could use a new custom model for emotion detection or any classification problem
related to faces (not tested in other classification problem domains, but theoretically it
should work).

• faces: this dictionary holds the data of the face isolation json output file in order to
obtain fast access to the data by the emotion detection module, the dictionary values are
obtained by using jsonManager loadJson() function.

• x_data, y_data: these two list holds the values of the processed emotions that are send
to the data visualization plotters in order to plot the processed data in real time, the lists
are send through signals to the main thread that forwards these two lists to the data
visualization threads.

• labels: a dictionary that holds the values corresponding to the predictions made by the
model on each emotion, this dictionary holds cumulative values that are incremented
when a coincidence is found.

Those were the variables used in the EmotionProc(QThread) module now lets take a look
at the implemented functions of this module which are easy to understand as the usage of
Keras library simplifies the implementation of the emotion detection part as it provides all the
necessary functions to load and predict data models.

• setStatusText(String): the same behaviour as the function implemented in the face
isolation module, it takes a string and returns a list that contains the data to be displayed
in the status section of the user interface.

• crop(cv2.frame, Integer, Integer, Integer, Integer): it takes the frame instance that is
being processed and crops a section according to the spatial coordinates specified by the
integer arguments of the function which are x, y, w and h, this function returns a frame
array which is resized to fit the requirements of the model architecture and normalized
in order to have the correct values for each pixel, as this frame array represents an image
each cell of the array is a pixel, lets take a look at the code:

Listing 5.13: crop() returns a cropped section of the video frame processed to fit the model interpreter
requirements

5.Project architecture 49

1 def crop(self , frame , x, y, w, h):
2 cropped = frame[int(y) : (int(y) + int(h)), int(x) ←↪

↩→ : (int(x) + int(w))]
3 resized = cv2.resize(cropped , (224, 224))
4 resized = np.expand_dims(resized , axis =0)
5 resized = resized / 255.0
6 return resized

As seen in the code snippet, the frame section is extracted directly from the frame array
using the python array operands, then it is resized to fit theMobileNetV2 architecture
(which is the architecture our model is based) after resizing, the image dimensions are
expanded to add a new axis to the image, again, to make it fit to the model architecture,
finally, the image is normalized to hold the pixel color values correctly (pixels are repre-
sented with three values regarding color, red, green and blue (when RGB format) this
values are 8-bit values which have a range that goes from 0 to 255). After all that image
processing the function returns a new array that represents a new image extracted from
the video frame, this image holds only the processed face section (green rectangles in the
video player) and this new image is send to the model in order to predict its emotion.

• saveProcessedFaces(): this function takes the data contained in faces variable and calls
the setDataSerialized(dict) function of the jsonManager module in order to produce and
save the output generated in this module execution.

• generatePlotData(): generates the values for x_data and y_data to be send to the main
thread through a signal emitted after completing an iteration in order to plot data in real
time while the processing of emotions is taking place.

• run(): overwrites the run() function of the QThread module which is inherited in the
EmorionProc module and executes the main functionality of this module, it is not as large
as the face isolation run function as this module only processes and its not in charge of
the reviewing process, the main part of the run() function is the following:

Listing 5.14: The section of the run() function in EmotionProc module that is in charge of determining
emotions

1 if ret:
2 frame = cv2.resize(frame , (540, 380), fx=0, fy=0, ←↪

↩→ interpolation=cv2.INTER_CUBIC)
3 for k in self.faces:
4 if str(self.iterations) in self.faces[k]:
5 faceMat = self.crop(frame ,
6 self.faces[k]
7 [str(self.iterations)]["x"],
8 self.faces[k][str(self.iterations)]["y"],
9 self.faces[k][str(self.iterations)]["w"],
10 self.faces[k][str(self.iterations)]["h"])
11 predictions = self.model.predict(faceMat)
12 pred =
13 Utilities.ModelInterpreter
14 .getClass(n=np.argmax(predictions))
15 self.faces[k][str(self.iterations)]
16 ["prediction"] = pred
17 config.LABELS[pred] += 1
18 predictions_inst[pred] += 1

The snippet shown above has one very important part that also empowers the concept
of Keras simplicity when programming with deep learning models, it takes just a line
(line 11) and the trained model which was loaded at the initialization of this module to
start predicting the faces emotions, as can be seen, the for loop in line 3 is in charge of
iterating over the dictionary containing the parsed json output of face isolation module,

50 5.2. Processing

each k holds a face structure regarding the spatial data to crop the section for that face in
the video frame, k is the value of the frame and along with the iteration value it is used
to pick the face data regarding the iteration and the frame that are being processed at
that moment.
The rest of the function is in charge of emitting signals for status updates and data
visualization so there’s no need for a deeper explanation.

ModelInterpreter: this module contains a tool that allows the emotion detection module to
determine which label belongs to the maximum value detected after a prediction, the return
value of calling the Keras model predict() function is an array that looks like this:(

0.76344 0.12334 0.00023 0.2364 0.41 0.24213 0.00001
)

Were the highest value represents the estimated prediction, each position of the array represents
a label so a way to translate this position into its corresponding label string value is to pass
the index of the highest value to a translator function, for the case of the example array shown
above it would be 0.76344 which corresponds to the label "angry" in the model trained for this
system.
This module uses only a variable:

• components: this variable is a list that holds the string values of the labels, the position
of each of this values corresponds to the positions it should have in the prediction array.

And have only one very simple function for the translation:
• getClass(Integer): which is called after the prediction of the face cropped image section
is processed, the integer argument is given by the use of np.argmax() function which
returns the index of the highest value inside an array, this function just returns the value
holded in the components list variable that is in the index specified by the np function.

5.2.3. Emotion detection review module

This module is a continuation of the emotion detection module processing, it was designed in order
to split the processing load present in this stage of the system flow, this module contains all the
necessary elements to manipulate the obtained data coming from the emotion detection module and
most of the functions in this module are controlled via the main thread user events by means of a set
of boolean variables that act as a lock between actions and coordinate the review process flow.

The diagram for this module (Figure 5.14) is simple as it relays only in the interaction between
the user interface and the output data taken from the emotion detection module when it finishes
its processing stage, one important feature about this characteristic is the fact that the user could
provide the json file already processed and start the system from the emotion detection review
module directly.

As we can see in the diagram below, the module is similar to the previous one with the difference
of not employing any supporting module related to the purpose of the module scope, the review
process makes use of the jsonManager module to load the json output produced in the emotion
detection module and the variables file in order to access general system variables like the video
source path or the current selected face in the face-picker.

5.Project architecture 51

Figure 5.14: Components of the emotion detection review module

Lets take a look at the different elements that are part of the postPreview(QThread) module:

postPreview(QThread): first of all lets take a look at the variables that are employed in
this module, remember that this module is intended to be a controller for the review stage
of the data produced in the emotion detection module and all its functions and variables are
implemented in order to achieve an optimal flow when the user arrives to this stage, there are
no big processing requiring functions in this module as its main goal its to manipulate data,
now lets see the variables involved:

• pathToVideo: same purpose as in the other modules.

• js: instance of the jsonManager module in order to read and write json files.

• facesInfo: a dictionary that holds all the information obtained when the json output of
the emotion detection module finishes its execution, the file is loaded when the system
detects such json file exists in the path specified by the PATH_TO_JSON_POS variable.

• iterations: in this module the iterations variable refers to the current frame selected by
the user when reviewing the data, it its modified before any processing about the data is
made in order to prepare the video player output for playing video at the exact frame the
user wants to review, it is also used when there is a need for data to be retrieved about
any present frame in the video.

• showOnlySelected: this variable is modified in the main thread and is used for the
review process to only draw a square in the frame section were the face that is being
reviewed is, its main purpose is to clear the reviewed frame and focus only on the selected
face.

• pause: this variable as its name indicates its used for pausing the video player, the pause
event can happen when the user holds the slider of the video player or when the user
clicks on the pause button.

• writeOnPause: variable used when the video is paused to send feedback to the user only
one time (remember we are inside a loop) this variable makes sure that the information
is sent to the status label only one time when the pause event occurs.

• firstTime: due to the loop were the review process is happening information can be sent
multiple times, this variables is used for sending data to the face-picker utility only one
time when a face is selected and the frame being reviewed changes with other frame, it
differs from the writeOnPause variable because the frames change if the pause variable is
not set to True.

• barReleased: this variable is used to modify the value of the iterations variable when

52 5.2. Processing

the slider bar for selecting the frame is released and forces the video player to show the
selected frame when this event happens.

• forward, forwardToProcessed, backward, backWardToProcessed: this variables
behave in the same way as in the face isolation review stage.

Notice how most variables are booleans that control the events flow of the system, all this
booleans are modified depending on the events that happen in the user interface due to the
user interaction directly from the main thread, lets see a code snippet of a function in the main
thread that modifies the value of one of these booleans.

Listing 5.15: Example of the main thread modifying control variables of the emotion detection review
module

1 def sliderPressed(self):
2 if self.currentThread [2]:
3 self.thread [3]. pause = True

The code seen above checks if the current thread is the emotion detection module one, in
this case it refers to the stage the system flow is because the thread of emotion detection was
stopped, but as the thread that belongs to the review stage is part of the emotion detection
stage of the system this function checks if the event of pressing the slider for selecting the
frame is happening during the review phase of the emotion detection stage, if that’s the case
the pause variable value is set to True and the video player pauses the video at that frame.

The functions that are implemented in this module are mostly supporting functions for the
data manipulation, the run() function its in charge of the whole process of controlling which
information is displayed and which not and sends a constant feed of signals with the pro-
cessed frames depending on the pause value at that moment, lets take a look at the functions
implemented on this module:

• getFaceIds(dict, string, boolean): returns a list of the available faces to review to the
face-picker utility, it has the same behaviour as in the face isolation module.

• generateFaceInfo(string): returns a list of strings that are sent to the face-picker utility
to set the values regarding the selected face.

• drawFaceInfo(string, cv2.frame, Integer, Integer, Integer, Integer, boolean, string):

returns a processed frame, the processing of the frame consists on drawing the corre-
sponding figures regarding the face spatial information along with the prediction label
that was determined in that frame for that face in the emotion detection module, lets
take a look at the code of this function:

Listing 5.16: Use of cv2.rectangle and cv2.putText to draw information over the processed frame

1 def drawFaceInfo(self , id, frame , x, y, w, h, ←↪

↩→ selected , pred):
2 if config.DETAILED:
3 if selected:
4 cv2.rectangle(frame , (x, y), (x + w, y + ←↪

↩→ h), (255, 255, 255), 2)
5 cv2.rectangle(frame , (x, y), (x + w, y + ←↪

↩→ h), (0, 255, 0), 1)
6 cv2.putText(frame , id + "␣" + pred , (int(x ←↪

↩→ + (w * config.PROP)) + 5, y - 5), ←↪

↩→ cv2.FONT_HERSHEY_SIMPLEX ,
7 0.5,
8 (0, 255, 0), 1, cv2.LINE_AA)
9 elif not self.showOnlySelected:
10 cv2.rectangle(frame , (x, y), (x + w, y ←↪

↩→ + h), (0, 255, 0),
11 1)

5.Project architecture 53

12 cv2.putText(frame , id + "␣" + pred , ←↪

↩→ (int(x + (w * config.PROP)) + 5, ←↪

↩→ y - 5),
13 cv2.FONT_HERSHEY_SIMPLEX , 0.5,
14 (0, 255, 0), 1, cv2.LINE_AA)
15 return frame

The frame instance argument is modified by drawing figures over it using the cv2 libraries
for image manipulation, depending on the options chosen by the user the way of drawing
the figures is different, notice how if the face is selected in the face-picker utility the
function will draw another white rectangle with a slightly higher border size to give a
highlighting effect on the video player for the selected face.

• setStatusText(string): sends a list via signaling the main thread to update the status
feedback text.

• setFaceFrameMood(string): sets the value of the emotion detected in a face on the
selected frame to a new one selected by the user, the value is sent to this module by the
main thread regarding the value of the combo box selector in the face-picker utility.

• deleteFaceFrameMood(): deletes an occurrence of the selected face in the selected
frame by user demand.

• setFaceFrameMoodAll(string): this function modifies the value of the prediction given
by the emotion detection module in all the occurrences of a selected face, its important
to know that this option is for cases were the overall predictions from a face are kind of
strange according to what the user is seeing in the video player.

• dleteAll(): deletes all the selected face occurrences, this function can be used when
the setFaceFrameMoodAll function is not enough to correct a particular face detected
emotions misfires, for example if the user states that a particular attendant had a mix
of happy, disgust and angry emotions but the predictions made by the model says that
the attendant was happy all the time correcting the emotions frame by frame can be an
exhausting task so it may be worth it to not consider that attendant in the final results.

• processFaces(cv2.frame): it extracts the spatial characteristics of a given face and
processes the given frame in order to draw the figures to represent the data, the iterations
value is used here to determine if a face contained in the facesInfo dictionary belongs to
the current frame drawing the required figures in the frame if thats the case, lets take a
look at the first part of this function, the characteristics extraction:

Listing 5.17: Management of the characteristics of the faces to modify the frame instance

1 def processFaces(self , frame):
2 if frame is not None:
3 for k in self.facesInfo:
4 if str(self.iterations) in self.facesInfo[k]:
5 prediction =
6 self.facesInfo[k]
7 [str(self.iterations)]["prediction"]
8 x =
9 int(self.facesInfo[k]
10 [str(self.iterations)]["x"])
11 y =
12 int(self.facesInfo[k]
13 [str(self.iterations)]["y"])
14 w =
15 int(self.facesInfo[k]
16 [str(self.iterations)]["w"])
17 h =
18 int(self.facesInfo[k]
19 [str(self.iterations)]["h"])

54 5.3. Data representation

Much of the functions of this system are designed to avoid nested loops which would
lead to great complexity algorithms that would have great impact in execution time of
the system.

• getNearestProcessed(Integer): same behaviour as the function in the face isolation
module.

• run(): the main function of this module it is in charge of picking the next frame to be
displayed in the video player and resize this frame in order to maintain the consistency
between the modules it is the less complex run() function we can found in the processing
section as it contains just the execution loop of the thread and the controls to determine
the frame to display according to the SELECTED_FRAME variable value, it also controls
the pause event and the forward and backward events.
The run() function is called when the start() function is invoked from the main thread,
but the main processing of this function takes part in the processFaces function as the
main goal of this module is to draw figures regarding the json data of the output from
the emotion detection module.

Those were the core components encompassed in the processing aspect of the system, the last
but not least is the data representation aspect that will be depicted in the next section.

5.3. DATA REPRESENTATION

This section will show the different modules implemented for data representation in the system, the
main concept was to split the different types of representation approaches into modules that when
combined the result is a consistent and complete representation of the data that is being obtained by
the system, the main approaches are:

Global/Cumulative representation: this module has the approach of producing charts
that represent the cumulative values processed by the system, it is intended to show a global
overview of the processed data.
Detailed/frame by frame representation: this module gets the data from the instant set
of values produced at a particular frame being processed, it is intended to plot charts that
represent what values are being obtained at the moment of being processed.
Face-picker/face-level representation: this module provides the face-picker utility with a
bar chart that represents the values of a selected face on a certain frame, it is subdivided in
two modules, the face isolation stage one and the emotion detection one in order to maintain
the structure of having two different layouts were these charts are drawn in the user interface.

Before explaining how the different approaches were designed lets get a brief summary on how
the QCharts library works, the QCharts library provides the programmer with a set of objects capable
of holding data in different formats, this way of holding the data enables the transformation of this
objects into another objects for different data representation, for example, a pie plot is made through
a QPieSeries object while a bar plot is done with a QBarSeries object so by storing the data on an
optimal structure like a python dictionary we can morph the data into the desired QChartSeries object
and the chart layout will represent the data with that particular QChartSeries format because the
QChart object is mapped to the layout in the user interface and the QChartSeries objects are linked
to the QChart object.

5.Project architecture 55

Figure 5.15: QChart objects interaction

The implemented way to directly modify the charts in real time of this system was to send the
QChart object instance to the representation modules initial arguments so we can modify the QChart
instance directly in the representation thread instead of doing it in the main thread (Figure 5.15),
lets take a look on how these three different approaches are implemented in the system in order to
achieve a better understanding of this concept.

5.3.1. Global representation module

In the list above we had an overview of the approaches the representation modules have in this
system, this section will break down the different elements involved in the global representation
module, this module is in charge of providing the user with cumulative representation of the data
that is being processed by the processing modules, the main goal of this cumulative representation is
to give an overview on how the presentation developed and which were the most detected emotions
during the course of the presentation, for example, the bar chart can give the user an overall view of
the obtained data to notice the percentage of times the "happy" emotion appeared in the attendants
faces and compare it to the total amount of times the "sad" emotion appeared while the line plot can
give the user information about how these emotions evolved during the presentation, for example if
in the middle of the presentation a bad joke was said then in the frames regarding that bad joke the
angry cumulative percentage incremented while the happy level decreased this way allows to detect
portions of the presentation that could be modified in order to maximize the overall happiness level.

This module (Figure 5.16) is huge compared to other components of this system this because of
the way QCharts manages the data structures, as can be seen in the diagram there are no supporting
components or external tools used in the execution of this module, the GeneralPlotManager module
manages the data that it receives from the main thread by itself morphing the data structures into
the QChartSeries required for the type of plot the user wants, Figure 5.16 shows all the components
regarding the data representation module as there is not much difference between these modules,
the main difference relies in the way the data is processed to produce the charts.

56 5.3. Data representation

Figure 5.16: Data representation module components relationship

Lets break down all the variables and functions that were implemented in this module:

chart: the instance of the QChart object that is linked to the general plot layout, the way
the elements are linked to this variable makes possible to modify the chart view directly by
modifying the QChartSeries data structures that are linked to it.

series_Pie, series_Bar, series_Line: the QChartSeries structures were the data that is being
feed by the main thread morphs, assigning a QChartSeries structure to the QChart object
changes the way the data is plotted in the layout, each different type of plot requires its
correspondent type of QChartSeries being in this case QPieSeries, QBarSeries and in the case of
the line plot the series_line object is a dictionary that contains instances of QLineSeries that
are assigned a set of QPoints, this series are used for the face isolation module data.

series_PieProcessing, series_BarProcessing, series_LineProcessing: the counterpart of
the series_Pie, series_Bar and series_Line this series are used for the emotion detection module
data.

labels: holds the value of the labels that are being plotted, for the face isolation module it
represents the accepted and rejected strings and in the case of the emotion detection module
represents the different emotions in string format.

values: holds the values to be plotted, acts as a supporting variable to feed the hashes that
relate the labels and values.

labelHash: a dictionary that holds the related values coming from the labels and values
variables, this variable is used to feed the QChartSeries objects regarding the face isolation
module data.

labelHashProcessing: the counterpart of labelHash dictionary, this variable holds the data
pairs regarding the emotion detection module data.

change: a boolean control variable that indicates the module that the selected plot has changed
this change morphs the QChartSeries object into the desired chart series and does it only one
time every change.

slices: a list that holds the QPieSlice object that is required for pie plotting in the face isolation
module, its emotion detection module counterpart is the slicesProcessing variable.

firstTimePie, firstTimeBar, firstTimeLine: control variables that determine if is the first
time the user selects a type of plot, this is used to prepare the layout information elements
that will be shown like the legend and the axis.

processing: indicates the module that the mode of representing the data has changed to a
different processing module.

5.Project architecture 57

initial: a boolean used to indicate the module that its the first iteration of the plotting process
in order for the module to instantiate the QChartSeries objects in order to represent the data.

last: support variable that holds the value of the last frame id that was processed, this way
allows the plotters to not plot the data multiple times in the case that the thread executes faster
than the iterations are incremented during processing.

frame: the id of the actual frame that is being processed by the processing modules used along
the last variable to check the condition of not plotting multiple times the same frame data.

Now lets see the functions involved along with some code snippets in order to provide a better
understanding of the QCharts library usage for achieving great data representation.

plotSelect_processing(): the controller that selects the type of QChartSeries object the data is
gonna be morphed into, lets take a look at a code snippet of the case were the user selects the
bar plot:

Listing 5.18: The code executed when the user selects the bar plot

1 elif config.SELECTED_CHART == "Bar":
2 if self.change:
3 self.series_pieProcessing.hide()
4 for l in self.series_lineProcessing:
5 self.series_lineProcessing[l].hide()
6 self.change = False
7 if not self.initial:
8 self.chart.axes(Qt.Horizontal)[0]
9 .setVisible(False)
10 self.chart.axes(Qt.Vertical)[0]. setVisible(True)
11 if self.firstTimeBarProcessing:
12 self.barPlotProcessing ()
13 self.chart.addSeries(self.series_barProcessing)
14 self.chart.setAxisY(self.chart.axes(Qt.Vertical)[0]
15 , self.series_barProcessing)
16 self.firstTimeBarProcessing = False
17 self.series_barProcessing.show()
18 else:
19 self.updateValues_barProcessing ()

In the snippet we can appreciate multiple things:

• variable SELECTED_CHART : this variable is modified in the main thread when the
event of changing the value in the plot selector triggers and its used in this function to
determine the type of chart to be plotted, python doesn’t support the switch statement so
an if statement is used instead.

• Lines 2 to 17: are used when the change in the plot selector is produced, from line 3 to
5 the function hides the other QChartSeries objects in order to clear the layout for the
QBarSeries object, line 7 to 15 belong to the morphing process of the data, notice the use
of the initial variable to determine which axes to display in the layout and the use of the
firstTimeBarProcessing variable to instantiate these axes.

• lines 18 and 19: in the case the change has already been produced, the function only
updates the values of the QChartSeries object as all the required elements are already
being displayed.

When any function on a plotter module contains the word processing it refers to the fact that
it will process the emotion detection module produced data, the counterpart of this selector
function is the plotSelect_preprocess function and acts in the same way as this one, the
reason why there are different functions for each processing module is because of the way
QChartSeries are managed by the QCharts library.

58 5.3. Data representation

calculatePercent(), calculatePercent_alt(): functions used to calculate the percent of the
processed data, this functions are required due to the fact that the data coming from the main
thread comes in a raw format that needs to be set to its corresponding percentage regarding
the total data two functions are used for this purpose because sometimes there is a need of
calculating the data in a different way.
updateValues_line(), updateValues_pie(), updateValues_bar(): these functions update the
values of the QChartSeries objects in order to update the charts in real time while the data is
being processed, lets see the code implementations of the _processing() counterparts of these
functions:

Listing 5.19: Three functions to update the three different types of charts that are displayed

1 def updateValues_lineProcessing(self):
2 self.labelsHashProcessing = config.LABELS.copy()
3 self.calculatePercent ()
4 for s in self.series_lineProcessing:
5 point = QPoint(config.CURRENT_FRAME , ←↪

↩→ self.labelsHashProcessing[s])
6 self.series_lineProcessing[s] << point
7

8 def updateValues_pieProcessing(self):
9 self.calculatePercent ()
10 for k in self.series_pieProcessing.slices ():
11 k.setValue(self.labelsHashProcessing[k.label()])
12

13 def updateValues_barProcessing(self):
14 self.labelsHashProcessing = config.LABELS.copy()
15 self.calculatePercent ()
16 for k in self.series_barProcessing.barSets ():
17 k.replace(0, self.labelsHashProcessing[k.label()])

The important part of these code snippets is to watch how the data coming from the labels
variable is morphed into the different elements regarding the QChartSeries objects.
linePlot(), piePlot(), barPlot(): these functions are only called once and are used to create
the starting QChartSeries objects to be append to the QChart instance, these functions also
have its _processing counterpart and are similar to the update functions with the difference of
instantiating the QChartSeries objects.
setLabels(): a supporting function that creates the data pairs when the data coming from the
main thread comes in a list format instead of a dictionary, this situation can happen from time
to time in the emotion detection module and most of the time in the face isolation module.
run(): as said in previous run methods contains the execution loop executed when the start()
function is called over a thread in the main thread, lets take a look at the code:

Listing 5.20: Run function of the Global representation module

1 def run(self):
2 line = True
3 while len(self.labels) <= 0 and len(self.values) <= 0: ←↪

↩→ time.sleep (0.033)
4 while True:
5 if config.CURRENT_FRAME > 0:
6 if line:
7 self.linePlot ()
8 line = False
9 if self.processing:
10 self.plotSelect_processing ()
11 else:
12 self.plotSelect_preprocess ()
13 time.sleep (0.15)

5.Project architecture 59

This function controls the stage of the processing flow of the system, the sleep function is
used in order to prevent a high usage of the cpu thread this process is running in because the
execution time of the representation modules is so fast it saturates the threads were they run,
notice on how the thread is running at the start of the system and waiting for data to process,
the line plot is instantiated at the start of the representation process in order to maintain data
consistency when the user changes the type of chart (line plot is continuous while bar and pie
plot are instant).

5.3.2. Detailed representation module

As said in the representation approaches list, this module is focused on data representation at a
frame by frame level, the main goal is to give the user an overview of the data that has been obtained
during the processing of a given frame, the main idea behind this module is to not only provide the
user with a visual representation of the data through the video player but to give the user a graphic
representation of this data, this way the interpretation of the processed data at any point is easier,
the module diagram of this module is the same as in the Global representation module with slight
differences which will be shown in this section, the main difference is the way of retrieving the data.

The differences between the Global and Detailed modules reside on its functions, the control
mechanism is the same for the variables but there is a big difference between the data feed of both
modules, lets take a look at the variables that differ:

variables regarding the QChartSeries: the mechanism is the same one set of series for each
processing module.

control variables regarding the different types of charts: same mechanism, the main
difference is the variable SELECTED_CHART_DET which is modified in the main thread when
the selector of the detailed plotter changes, having a different selector for the detailed section
allows the user to obtain different data plots to compare, for example, the user could want
to display the global bar plot while looking at the detailed line plot in order to compare the
overall of the detected emotions while looking at the frame by frame evolution of this emotions
in a continuous way.

labels and values pair: labels list remains the same but the values come in a different way,
these values are reset when a new iteration of the processing module comes.

labelHash: the same applies to the labelHash and its counterpart labelHashProcessing dictio-
naries the concept is the same but the data consists on the instant data regarding a processed
frame.

Regarding the functions, all the differences reside in the way the data variables feed from the
incoming data from the main thread, lets see an example of the updateValues_lineProcessing(),
updateValues_barProcessing() and updateValues_pieProcessing() functions:

Listing 5.21: Way of updating plots in the detailed module

1 def updateValues_lineProcessing(self , labels):
2 self.labelsHashProcessing = labels
3 self.calculatePercent ()
4 for s in self.series_lineProcessing:
5 point = QPoint(config.CURRENT_FRAME , ←↪

↩→ int(self.labelsHashProcessing[s]))
6 self.series_lineProcessing[s] << point
7

8 def updateValues_barProcessing(self):
9 self.calculatePercent ()
10 for k in self.series_barProcessing.barSets ():
11 k.replace(0, self.labelsHashProcessing[k.label()])
12

13 def updateValues_pieProcessing(self):

60 5.3. Data representation

14 self.calculatePercent ()
15 for k in self.series_pieProcessing.slices ():
16 k.setValue(self.labelsHashProcessing[k.label()])

The only difference resides in the way the labelHashProcessing variable gets the data.

5.3.3. Face-picker representation module

This module its intended to represent the data regarding a selected face in the face-picker utility
section, it follows the same mechanisms as the detailed and global representation modules but with
a simplistic approach as this module doesn’t allow the user to pick any chart more than the bar plot
representation, due to its simplicity the emotion detection and the face isolation views of the face
picker utility use two instances of this module, one for the face picker for face isolation data review
layout and the other for the emotion detection review face picker layout.

Lets take a look at the last module of this system module diagram, and the elements that are
inside this module.

The face picker representation module is simpler than the other representation modules as it only
has to manage data regarding a particular selected face, we could say that this module is implemented
in order to support the representation modules to provide the user with a deeper level of detail
regarding each face processed data.

Lets take a look at the variables involved in the face picker representation module:
draw: boolean that indicates the module to plot the data of a selected face, the main idea is
to make the module plot the data only once along with the index change event of the face
selector.
chart: the chart instance linked to the face picker tab layout this follows the same principle of
managing the charts inside the module taking advantage of the QCharts library.
series: QBarSeries object linked to the chart instance.
labelHash: dictionary that holds the pairs regarding the data and the labels of the selected
face.
sets: a QBarSet object, this object holds key pair values that are appended to the series variable,
each set represents a label.
firstTime: same principle as in the other representation modules of instantiating the data
only one time.
facesInfo: holds a copy of the data processed by the processing modules, its important to
notice that this copy is made when the processing modules finish their execution and enter the
review stage, review operations for each processing module requires all the video frames to be
processed (or all the frames that are meant to be processed when the user selects a processing
rate).
dataReady: indicates the module to start its operation at the start of the review stage when a
face is selected.

To end this module elements lets explain the functions of this module:
plot(): set all the necessary elements for the QChart object to be plotted this means it instanti-
ates the axes, the QBarSets and adds the QBarSeries object to the QChart instance, lets take a
look at the code:

Listing 5.22: All the necessary variables being instantiated to start plotting data.

1 def plot(self):
2 self.calculatePercent ()
3 for k in self.labelsHash:
4 set = QBarSet(k)

5.Project architecture 61

5 set << self.labelsHash[k]
6 self.sets.append(set)
7 for s in self.sets: self.series.append(s)
8 self.chart.addSeries(self.series)
9 axisY = QValueAxis ()
10 axisY.setRange(0, 100)
11 self.chart.addAxis(axisY , Qt.AlignLeft)
12 self.chart.setAxisY(self.chart.axes(Qt.Vertical)[0], ←↪

↩→ self.series)

this function is executed just once when the data is ready to be reviewed.
update(): this function updates the QBarSets that hold the data, it works the same way as the
updateValues_bar of the global and detailed representation modules.
calculatePercent(): gets the percentage value of the data.
getData(): updates the labelHash variable value according to the data provided by the main
thread.
run(): the main goal of this function is to wait till the data is ready, then it enters the execution
loop that waits for the draw variable to change in order to plot the data regarding a selected
face when the index of the face selector changes.

CHAPTER 6

Results

With all the previous chapters viewed it is time to start talking about the results obtained during
the development, this chapter will depict the results obtained at each iteration described in the
methodology chapter and the final result with some screenshots of the application fully working, the
data representation modules layouts and the processing modules review stages along with some
statistics regarding the project and the implemented code, at the end of this chapter we will also
have a look at the project budget estimations.

6.1. PER ITERATION RESULTS

This section will break down the results obtained regarding the project development at each iteration
described in the methodology chapter along with design choices and schemes that belong to these
iterations.

6.1.1. Iteration/phase 0, generating a deep learning model for a classification problem

This iteration is focused on the learning process in terms of programmer knowledge and machine
learning, it was the most time demanding iteration and was intended to produce the application
own model for emotion detection [18], due to memory management problems caused by the hight
ammount of training data used which was about 30000 images of faces taken directly from the FER-
2013 data set that can be found in Kaggle website, after some studying about memory management
when training models [19] and about the TensorFlow Keras libraries and deep learning models the
design approach of a continuous training process was discarded and the following processing was
implemented:

The resulting process divided the memory load into separated chunks of arbitrary data [20]
regarding the image-emotion labels used for model training, it also started using the system’s GPU
(NVIDIA) in order to increase performance, the size of the chunks of arbitrary data were determined
by the batch size variable which was also used for determine the amount of epochs per steps along
with the validation steps, the resulting model obtained an accuracy metric of 63% and leaved an
open window for improvements (that can be achieved with more training [21]).

The model architecture followed the MobileNetV2 architecture with a slight modification in the
output layers that added the following:

1. 128 outputs Keras dense layer with the activation function relu (Rectified linear unit).

2. 64 outputs Keras dense layer with the activation function relu

3. 7 outputs Keras dense layer with the activation function softmax to produce an array of K (k =
7) arbitrary values were each values corresponds to a label, this is the final output of the model.

The additions of these outputs layers is intended to produce an output that corresponds to a set
of 7 labels each one representing an emotion, the goal is to reduce the original ammount of outputs
the MobileNetV2 architecture has which is 1000.

64 6.1. Per iteration results

Figure 6.1: Model training process designed to avoid memory issues when the model was trained for
this application

The idea behind the decision of usingMobileNetV2 architecture instead of for example FaceNet was
theMobileNetV2 approach which as intended for mobile devices provided a lighter model architecture
suitable for solving the problem of memory management along with the scheme described in Figure
6.1, the training process took over 2 weeks because of more random memory issues while training
that ended up corrupting the produced model, each failure come with an improvement in the model
training processing scheme until the process was able to produce a model with the whole FER-2013
dataset.

6.1.2. Iteration/phase 1, processing the video source in order to detect the faces to be
processed

This iteration was implemented during the development of the iteration 0 due to the lack of depen-
dency between these two iterations as the emotion detection model was intended for the iteration
2, as said in the methodology chapter the approach of this iteration was to create a module for face
isolation of the faces appearing in the video source, the results were the best in comparison with the
other iterations as this iteration module gave the less problems and began the core concept of the
main user interface for the project.

Figure 6.2: A video sample from the website pexels being processed in the final application

6.Results 65

Notice in Figure 6.2 that there’s a misfire done by the algorithm, a paper sheet in the right bottom
corner of the frame has been accepted as a face, this type of errors made by the face detection model
are made because of the classification problem nature, the application allows the user to delete this
model misfires but this functionality belongs to the iteration 3.

The global context at the time the project was being developed didn’t allow the gathering of
own video samples for testing the algorithms so the video resources were taken from free video
repositories like pexels, the time took by the algorithm to process a single frame at the face isolation
module was as follows:

Figure 6.3: Execution time of single frame isolation

The results of Figure 6.3 belong to a video sample of a presentation with 11 attendants the mean
execution time is around 57.5 milliseconds with is a great latency and makes the algorithm
capable of isolating faces in the video source at a speed of 17 frames per second

In regard of the total video source, in the same sample that has 262 frames the execution time
obtained directly from the application’s terminal is shown in Figure 6.4:

Figure 6.4: Execution time of the whole processing of the video

This time starts counting from the beginning of the Run() function and stops when the done
signal is emitted, the option to chose the processing rate of the video implemented in later stages
of the project, allow the user to skip a fixed number of frames before processing a new frame, this
option reduces the execution time of the whole video by a factor of skipped frames in an exchange
of obtained data accuracy, its important to remember that any video source is resized to 540x380
when processed so resizing videos has also an impact on the execution time, the samples used while
developing the application were 1920x1080 videos which is an standard resolution nowadays and
the resolution that was meant for the original way of taking samples using the C:TED (UCLM)
infrastructure but due to the pandemic context the project was being developed similar samples were
taken from the internet.

Listing 6.1: Sample json output for the face isolation module

1 {
2 "1": {
3 "1": {
4 "x": "281",
5 "y": "79",
6 "w": "26",
7 "h": "26",
8 "valid": "False"
9 },
10 "2": {
11 "x": "281",
12 "y": "79",
13 "w": "26",
14 "h": "26",
15 "valid": "True"
16 },

66 6.1. Per iteration results

To end this iteration results, Listing 6.1 contains a sample of the output obtained after face
isolation module processing, the first level corresponds to the face id, then that face data is stored
with the corresponding frame of appearance.

6.1.3. Iteration/phase 2, processing the video source to obtain data regarding emotions

In this iteration things started to get interesting, critical performance issues started to appear and the
best design approach as possible for the emotion detection module was chosen, this iteration ended
with a very under-powered emotion detection module but the functionality was there to continue
with the next iteration.

One thing that changed in the final application was the deletion of the video preview when the
emotion detection module is running, this was because it showed the video at a very low frame rate
which in user feedback terms tends to cause a negative experience in the user, in this module, the
feedback is provided through the progress-bar and the status text.

Although it was under-powered its implementation allowed the testing of the trained model and
the review of first results generated by this module (Figure 6.5), the final user interface video output
looks the same in the final version but the overall performance of this module was improved in next
iterations when an hiatus period for refactoring was established to improve performance.

Figure 6.5: Video player during the emotion detection review stage

In the final application the execution time for processing a frame is shown in Figure 6.6:

Figure 6.6: Sample of execution times for frames emotion detection

which still very high nowadays and leaves a big open window for improvements, the main reason
why the processing time for a single frame is so high relies in the model used for emotion detection
architecture, due to the amount of memory issues training the model required a lot of tweaking as
said in the iteration 0 results, main reason being the mobile architecture of MobileNetV2.

The whole process takes over 2 minutes to complete for a 262 frame video with 11 faces, that
lead to design choice of implementing the processing rate option that reduced this time by a factor
of almost the skipped frames.

6.Results 67

Another disadvantage of this module is the time taken by the processing libraries to load (Figure
6.7), this leaded to the decision of delaying the load of these libraries until the start of the emotion
detection module.

Figure 6.7: Time required by the CUDNN library to load up

As a result of the implementation of CUDNN library the system is dependant of NVIDIA GPUs
to perform properly, this doesn’t mean that an AMD graphics card running the system wouldn’t be
able to run properly, this means that the execution would be very slow, this is the reason why a live
demo isn’t available at the moment (when executing the system over the CPU, the execution times
grow in almost a factor of three times the CUDNN execution times).

Listing 6.2: Sample json output for the emotion detection module

1 {
2 "1": {
3 "1": {
4 "x": "281",
5 "y": "79",
6 "w": "26",
7 "h": "26",
8 "valid": "False",
9 "prediction ": "surprise"
10 },
11 "2": {
12 "x": "281",
13 "y": "79",
14 "w": "26",
15 "h": "26",
16 "valid": "True",
17 "prediction ": "surprise"
18 },

As said in the previous iteration results, Listing 6.2 contains a sample section of the output
generated by the emotion detection module, its very easy to see the difference, only the predicted
value for the emotion regarding that frame is added to the previous data.

6.1.4. Iteration/phase 3, Phase 3, creating an UI for reviewing obtained data

This iteration had the approach of creating the required user interface elements for allowing the
user to perform a set of actions over the processed data of each module, the face-picker utility was
implemented in this iteration along with the video processing options regarding the face isolation
module.

The implementation of this user interface elements was entirely done in the QT Creator IDE
following a layout scheme in order to give the application the capacity of resizing each section
element similarly as many modern applications do nowadays.

The final .ui file containing the XML for the user interface layout contains 2107 lines of code

some of this lines were manually modified and the rest were generated by the IDE, the development
of the user interface started in this iteration and then a continuous development of the user interface
was followed.

The face-picker utility is contained in a tab pane which has two tabs, one for face isolation (Figure
6.8) module and the other for emotion detection module (Figure 6.9).

68 6.1. Per iteration results

Figure 6.8: Final face-picker utility section in the user interface

Figure 6.9: Final face-picker utility section in the user interface for the emotion detection module

The overall section of user interface intended to provide review options and options regarding
the video processing looked like this before applying the style guide of the application (Figure 6.10):

Figure 6.10: The section of the user interface regarding data review when there was no style established

The hiatus period that was taken during this iteration also included the definition of the style
guide for the application and the refactoring of the emotion detection module in order to achieve
better performance, lets take a look at the results of the sub-iterations of this iteration.

Iteration/phase 3.5, refactoring in order to increase emotion detection performance

In this sub-iteration the approach was to achieve a better performance in the emotion detec-
tion module the user interface element remained untouched while this sub-iteration, some
approaches were tried in order to achieve this performance improvement:

1. Application of parallelism: this resulted in failure due to the lack of low level system
calls (the project was developed on windows) like fork(), the multiprocessing library was

6.Results 69

used in order to try to achieve a higher parallelism level but the coordination of the threads
to access the model instance resulted in higher execution times, an approach of creating
several instances of the model was implemented but resulted on a memory management
problem due to the amount of memory required by the CUDNN library provided by
CUDA, the option of adding more parallellism to the application was discarded when
more knowledge about how the CUDA library works was achieved (the CUDA library
assigns frame pixels to each GPU core so there was already a concurrent approach
achieved when using CUDNN).

2. Changing the format of the face isolation module output file: this doesn’t refer
to changing the json format of the file, this refers to the way the data was set in the
json, in order to try to achieve a emotion detection module that didn’t required the video
source to be open by passing to the json the complete cropped image of the face and its
corresponding id and frame, this approach produced oversized json files and wasn’t as
good as it sounds, the performance was almost the same but the times taken by the face
isolation module to produce the output increased exponentially.

3. Removing the video preview in the processing phase: this approach lighten the
emotion detection module memory usage and increased performance, so this approach
was applied in the final application.

4. Splitting the review stage and the processing stage: after the video was processed
the review phase of this module kept all the processing libraries open, including the
model, the approach of splitting both stages made the application more light keeping the
high performance demanding stage of processing into a momentary period were the user
is only able to receive feedback from the application.

After all this approaches the emotion detection module saw an medium performance improve-
ment but as this sub iteration was taking so long the decision of stopping it and continuing in
other iteration to increase the overall performance and improving the user interface was made.

Iteration/phase 3.5.5, 2nd refactoring to increase overall performance In this sub itera-
tion slight changes to the way the data was processed and the way the threads of the application
were controlled were made, the overall performance increased giving the application with a
more "smooth execution" feeling, also the style guide for the user interface was applied (Figure
6.11) and the responsive aspect of the application was implemented.

Figure 6.11: The application of the style guide took place in this sub iteration

6.1.5. Iteration/phase 4, integrate charts in the application to allow detailed data analysis

With this iteration came another big design choice, the library to plot the data in the user interface,
initially matplotlib was used, the integration of the matplotlib into the Qt views was easy but came
with a disadvantage, matplotlib uses a matplotlib.Figure instance to make the plot over the layout,

70 6.1. Per iteration results

this instance was unique and when trying to plot data while processing the existence of multiple
plots required the coordination of this Figure instance between the data representation threads.

The Figure instance coordination was the most complex implementation in this iteration but
there was another disadvantage, the performance of matplotlib threads were low when trying to plot
frame by frame data and the real time plotting seemed a little snappish, this made matplotlib to be
discarded as the library used for data analysis.

With a more complex implementation but an exponential performance increase came the QCharts
library which was chosen as the final application data representation library.

Figure 6.12: The global representation using QCharts library while the data is being processed

This choice allowed the application to have independent threads for data representation and
multiple views for the data that was being processed, it also came with a very smooth execution
feeling in terms of feedback as the charts were being plotted while the data was being processed
(Figure 6.12 and Figure 6.13).

Figure 6.13: The global representation using QCharts library when the data has been processed

The detailed chart view works in the same way but with the data of each frame that has been
processed, the chart views are able to plot the data so fast that the execution loops of these threads
require to be controlled in terms of execution times with the help of the time.sleep() function, in the
final application a 0.15 second delay is applied to this loop, this delay can be lowered to achieve more
than 60 frames per second (regarding the real time plotting) but as the purpose of this module is to
plot charts and this plotting depends on the execution time of the processing modules there is no
need for achieving 60 frames per second and having a 4 frame per second rate (0.15 seconds between
each plot) seemed smooth enough for the final application.

We have already seen the face picker utility chart, here is a screenshot (Figure 6.14) of the main
charts when the data has been already processed by the emotion detection utility:

6.Results 71

Figure 6.14: Main chart views of the application

6.2. PROJECT STATS

This section will summarize the statistics regarding the project development, the data that will be
shown is taken directly from the GitHub repository the project was developed, these statistics refer
to the commit amount, the programming language used, the activity and the branches that were
created during development.

As seen in the methodology chapter the development took from September 2021 to May 2022
with some additional development in June 2022, the activity graph regarding the commits that were
made during this period of time according to GitHub website is as Figure 6.15 shows:

Figure 6.15: Activity according to GitHub

were most of the commits were local repository commits and when a relevant feature was
obtained it was committed to the remote repository branch, according to GitHub a total of 60
commits were made to the remote.

Overall overview of these statistics can be seen in the GitHub repository and are displayed like
in Figure 6.16:

Figure 6.16: Overview of the main committer activity

The branches created in repository followed the methodology specification in order to develop a
module per branch, naming of the branches was based on the corresponding phase.

According to GitHub the totality of the code was implemented using the python programming
language (Figure 6.17), the .ui file regarding user interface uses XML but this file uses the .ui extension
and its not recognized as a XML file by GitHub.

The total amount of code lines written can be obtained by executing the find . -name ’*.py’ | xargs
wc -l command which requires a Linux system to be executed but in windows we have the Git Bash

72 6.3. budget estimations

utility that allows the execution of the command in the project’s folder, executing this command
gives a total of 2906 code lines regarding python programming language.

Figure 6.17: GitHub determines that the totality of the project was developed in Python

6.3. BUDGET ESTIMATIONS

In this section we will discuss the budget estimations for this project’s development in the case of
this project the development team was conformed by only one person that fulfilled the roles of user
interface designer and programmer the amount of time employed in the project development is
difficult to estimate but we can say that a mean of 2.5 hours were employed daily (except weekends),
there were days when development was stopped due to external situations and days were the entire
available time was employed, but for estimation purposes lets state that a mean of 2.5 hours were
expend in daily development during all the project development cycle.

With that said lets take a look on mean salaries for a python developer and a UI designer are
in Spain nowadays, we cant forget about including the development hardware equipment which is
composed by the system described in the tools section of the methodology chapter:

Python developer: The mean annual gross salary is 32.000€ for a python developer in Spain,
which translates to a net monthly salary of 1700€ and approximately 9€ per hour.
UI/UX designer: The mean annual gross salary is 23.000€, being this approximately 8€ per
hour.
Development infrastructure: the amount of money spent in the home pc the project was
developed in was around 1500€ taking into account hardware peripherals.
Electricity costs: nowadays electricity costs are important and very relevant to take into
account, the mean electricity invoice for one person in Spain is 70€ each two months.

Taking the 2.5 hour per day without weekends lets take the Methodology scheme of development
to estimate the amount of hours spend while developing the project to estimate the following
statements:

1. from September to January: period devoted to develop the internal logic of the program,
this means time spend as Python developer.

2. from February to March: this time period was spend as UI/UX designer.
3. from April to start of June: time period were both specializations were working together.
So all these considerations leads us to the following cost estimation for this project:

Resource Time Cost
Python developer 325.5 hours 2929.5€
UI/UX designer 157 hours 1256€
Hardware 1500€
Electricity 9 months 315€
TOTAL 5996.5€

CHAPTER 7

Conclusions

In this final chapter of the document some final thoughts, future work approaches and a more
personal section regarding final thoughts will be shown, in overall, the development of this project
was hard in terms of acquiring knowledge and the global context were the project was developed.

7.1. CONCLUSIONS

In general terms the main objective of the systemwas fulfilled with all the sub objectives implemented
accordingly to the specification although the window left open by the model training aspect that
could be better in terms of the model being more accurate and performance friendly.

Lets review the sub objectives established in Chapter 2 and specify the way these sub objectives
were solved:

1. Acquire knowledge of deep learning techniques to be able to generate a model for

image classification: At the end the model was generated and a lot of new knowledge was
acquired by using online guides, documentation of the libraries used and a lot of trial and error,
the obtained model had a 63% accuracy after validating with test data and produced acceptable
results in the system when it was implemented, the only problem was the architecture and its
aim for low memory systems in order to deal with the memory management problems that
occurred while training.

2. Define which technologies will be used in order to achieve the main objective and

establish a proper project planning: the planning part of this objective was the hardest
one due to the time restrictions regarding this project, as shown in the Methodology chapter,
the modularity of the system allowed some work to be done in parallel, this accelerated the
development and helped fulfilling time restrictions.

3. Create a user friendly system: The use of Gestalt and usability principles was easy due to
being familiar to the developer, also creativity was on the side of the project which allowed
to get a pretty decent and good looking user interface, it is true that there is always room
for improvements but the user interface can wait while the other internal components are
improved.

4. Establish a style guide to make an unique system: The color palette and style guide of the
user interface took some inspiration from other systems like Adobe Premier, Youtube, Windows
Media Player and some more, but the design process always aimed to produce an unique style
which can be seen in the final user interface.

5. Use principles of parallel and concurrent programming: As a highly performance de-
manding system this objective was considered as critical, but it can be said that regarding the
room for improvement left in the project were most part corresponds to concurrent execution
improvements this objective was partially fulfilled, signals and locks are powerful techniques
but a more complex threading system could be implemented in the future to improve, above
all the other components, the emotion detection module.

74 7.2. future work

6. Give the user a high level of feedback from the system: The implementation of the video
player, the different charts and the feedback section with the status text and the progress bar
made the application to not only provide a big amount of feedback to the user but to feel very
dynamic and alive.

To end this section lets talk about the design choices regarding the tools used in the project, the
set of tools that was chosen for the project development required a lot of knowledge to be useful,
the Python programming language is simple at a start but comes with great complexity when we
go deeper in it, at the end it was an amazing tool for developing a machine learning system, the
tools regarding machine learning TensorFlow and Keras were complex from the start but allowed
the generation of the emotion detection model, although the use of CUDNN was required and a lot
of thinking was involved in this training process, in general the final results given by the application
keeping in mind the knowledge base of the programmer justifies the decision of using this set of
tools.

Due to time restrictions there are a lot of open windows for improvements and original function-
ality ideas, these improvements will be discussed in the next section.

7.2. FUTUREWORK

As said in previous sections there are a lot of improvements that could be made on the system’s
functionality, lets summarize them:

Overall performance: the performance of the system is acceptable until the emotion de-
tection module execution comes, improvement efforts were made in order to improve the
user experience regarding feedback and system stalls along with memory usage the system
required in this module’s execution but its impossible to hide the amount of improvement
that this module requires in terms of internal performance, some modifications to the model
architecture could be made along with a more light approach in algorithmic terms regarding
the implementation of this module.

Refactoring: the architecture of the system have a lot of flaws regarding some aspects, in
general terms there are functions that could be moved to another class in order to act as a
set of tools for processing support, actually in the system there is the file Utilities.py which
contains a set of tools, these functions that are repeated in different classes but with slight
changes on its functionality could be moved to this Utilities file.

Data representation: a lot of options like filtering the data, more types of plots and a more
custom view of the data were discarded due to time restrictions.

Slight changes on responsive behaviour: some sections of the user interface have problems
when resizing, this is because the knowledge base about QT Creator IDE way of managing
layouts, anyway the responsive behaviour of the system its there but making slight changes in
it could improve the user experience of the system.

Original ideas from the starting concepts of the system that couldn’t be implemented due to time
restrictions are now shown as future functionalities that could be implemented:

processing of a real time video source: this refers to for example using a webcam or a
camera to send the system a constant feed of video data that is being recorded at real-time,
the sequential execution of the face isolation module and emotion detection module makes
this option impossible and a big change is required to achieve this functionality, a change
that requires the face isolation module and the emotion detection module to work in parallel
(remember the memory management problems?), this functionality was meant to be in the
original design of the system.

Provide more inputs for data processing: usage of hardware like hearth rate analyzers
or add a model for pose detection of the attendants was thought to be in the original design,

7.Conclusions 75

these ideas were discarded due to the global pandemic (which affected directly to hearth rate
analyzers idea) and the time restrictions (2 week were required to train an emotion detection
model).

Cloud platform/Web application: the nature of the system makes it very hardware depen-
dant, this dependency could be solved through the use of a web system with the required
infrastructure to act as a platform that depends only on the video source and data files provided
by the user.

Attention comparator utility: a functionality that allows the user to compare previous data
obtained by the system to new data that is being obtained.

Options: there is a good set of options already in the system but some more options could be
added such as modifying the output labels of the emotion detection module in order to ignore
particular emotions and much more.

7.3. SPECIALIZATION COMPETENCES FULFILLMENT

This sectionwill be used to justify the fulfilled competences regarding the specialization of Information
Technology:

Capacity of understanding the organization’s environment and its needs in the context of infor-
mation technologies and communications.
This competence refers directly to the identification of the problem when designing the system,
in this case the environment was originally based on the information regarding the UCLM
infrastructure, every teacher nowadays have a computer and the usage of cameras to record
the attendants during a presentation is available through webcams or the resources C:TED
has, understanding this environmental context guided the design process of the system.

Capacity of employing user based methodologies and the development, evaluation, application
and systems based on information technologies that ensure accessibility, ergonomic and usable
systems management.
One of the priorities of this systems was to apply the Usability and Gestalt principles to design
the user interface having always the user in mind.

Capacity of understanding, applying and managing the system’s guaranty and security.
This competence was fulfilled when the process of designing the user interface and controls of
the internal system logic had the final user actions in mind, in order to prevent user errors the
developer must think about the system from the perspective of a final user, that’s exactly the
approach that was taken when designing the system.

7.4. FINAL THOUGHTS

Lets have a more personal section to talk about my final thoughts about this project, first of all let
me use this section as a relief method for myself about the development period of this project, in
2019 Carlos Gonzalez Morcillo (former UCLM professor) came to me with this project’s idea as i
was working in C:TED (UCLM), a place were we recorded teaching videos and produced multimedia
resources for the UCLM.

I saw this idea as a great opportunity for me and my professional development along with a great
sense of pride due to working with a teacher i personally admired, this fulfilled me with motivation
about the project but then the global pandemic came.

With the pandemic the restrictions came and made impossible to put in practice all the sample
gathering for this project’s testing phase so a lot of ideas like the hearth rate monitoring or real time
attention detection using the C:TED infrastructure were discarded this fact along with additional
personal problems that came in this period made me lose all the initial motivation and let me on a
state that bordered serious psychological problems.

76 7.4. final thoughts

All of that made me even considering if my studies were on the right direction and almost quitting
but life goes on and thanks to the people that surrounded me i was able to find motivation again and
take this project seriously once again until now were i see myself writing this final section of my
bachelor dissertation.

The development was hard, i decided to specialize myself in information technology were the
competences are far away from the computing specialization which most of this project aspects are
and made me move out of my comfort zone so i had to study some of this specialization competences
in order to understand how deep learning works which required a lot of time.

Also my Python programming language knowledge base was very basic and that’s something
that can be noticed in the code the classes made at the beginning have more coding mistakes than
the classes that were implemented the last and in my opinion with a little more time i could have
polished the system’s internal code and architecture with a big refactoring which I’m sure i will
overtake in the future.

Personally i feel very proud of the system i have made, all the learning process, the great
satisfaction moments when some big error was stopping the system execution and solving the error
like solving a big puzzle while reading tons of documentation in order to understand why the error
was occurring and looking now at the user interface remembering the headache it was to distribute
all the elements correctly to see that after all the hours expend it makes the system look as a whole
are things that made me understand why i love this profession.

Bibliography

[1] Vishal Rajput. Face detection and recognition capable of beating human beings using facenet.
URL: https://www.analyticsvidhya.com/blog/2021/06/

face-detection-and-recognition-capable-of-beating-humans-using-facenet/, 2021.
[2] recfaces. Emotion recognition: Introduction to emotion reading technology. URL:

https://recfaces.com/articles/emotion-recognition, 2021.
[3] Michael Tupek. Speech recognition using artificial intelligence. URL:

https://scionanalytics.com/speech-recognition-using-artificial-intelligence/, 2021.
[4] National Institute of Mental Health. Autism spectrum disorder (asd). URL:

https://www.nimh.nih.gov/health/statistics/autism-spectrum-disorder-asd#:~:

text=Prevalence%20of%20ASD,-Prevalence%20data%20for&text=Across%20the%20CDC%

20surveillance%20sites,all%20racial%20and%20ethnic%20groups., 2022.
[5] Erin Digitale. Google glass helps kids with autism read facial expressions. URL:

https://med.stanford.edu/news/all-news/2018/08/

google-glass-helps-kids-with-autism-read-facial-expressions.html#:~:

text=The%20researchers%20named%20the%20new,depicting%20faces%20with%20different%

20emotions., 2018.
[6] Yang Lu Caiming Zhang. Study on artificial intelligence: The state of the art and future

prospects. URL: https://www.sciencedirect.com/science/article/abs/pii/S2452414X21000248,
2021.

[7] Bhaskar Mondal. Artificial intelligence: State of the art. URL: https:
//www.researchgate.net/publication/337400888_Artificial_Intelligence_State_of_the_Art, 2020.

[8] Zhongzhi Shi. Intelligent robots. URL:
https://www.sciencedirect.com/topics/computer-science/intelligent-robots, 2021.

[9] Unknown. Intelligent robots. URL: https://esi.uclm.es/index.php/2022/05/26/

robots-afectivos-para-ayudar-a-personas-mayores-o-dependientes/, 2022.
[10] edsrobotics. Visión por computador: qué es, objetivos y aplicaciones. URL:

https://www.edsrobotics.com/blog/vision-computador-que-es/, 2022.
[11] Vihar Kurama. Ml-based image processing. URL:

https://nanonets.com/blog/machine-learning-image-processing/, 2021.
[12] Michael Middleton. Deep learning vs. machine learning — what’s the difference? URL:

https://flatironschool.com/blog/deep-learning-vs-machine-learning/#:~:

text=Deep%20learning%20is%20a%20type,modeled%20on%20the%20human%20brain., 2021.
[13] Sumit Saha. A comprehensive guide to convolutional neural networks — the eli5 way. URL:

https://towardsdatascience.com/

a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53, 2018.
[14] cleventy. Qué es git flow y cómo funciona. URL:

https://cleventy.com/que-es-git-flow-y-como-funciona/, 2022.

https://www.analyticsvidhya.com/blog/2021/06/face-detection-and-recognition-capable-of-beating-humans-using-facenet/
https://www.analyticsvidhya.com/blog/2021/06/face-detection-and-recognition-capable-of-beating-humans-using-facenet/
https://recfaces.com/articles/emotion-recognition
https://scionanalytics.com/speech-recognition-using-artificial-intelligence/
https://www.nimh.nih.gov/health/statistics/autism-spectrum-disorder-asd#:~:text=Prevalence%20of%20ASD,-Prevalence%20data%20for&text=Across%20the%20CDC%20surveillance%20sites,all%20racial%20and%20ethnic%20groups.
https://www.nimh.nih.gov/health/statistics/autism-spectrum-disorder-asd#:~:text=Prevalence%20of%20ASD,-Prevalence%20data%20for&text=Across%20the%20CDC%20surveillance%20sites,all%20racial%20and%20ethnic%20groups.
https://www.nimh.nih.gov/health/statistics/autism-spectrum-disorder-asd#:~:text=Prevalence%20of%20ASD,-Prevalence%20data%20for&text=Across%20the%20CDC%20surveillance%20sites,all%20racial%20and%20ethnic%20groups.
https://med.stanford.edu/news/all-news/2018/08/google-glass-helps-kids-with-autism-read-facial-expressions.html#:~:text=The%20researchers%20named%20the%20new,depicting%20faces%20with%20different%20emotions.
https://med.stanford.edu/news/all-news/2018/08/google-glass-helps-kids-with-autism-read-facial-expressions.html#:~:text=The%20researchers%20named%20the%20new,depicting%20faces%20with%20different%20emotions.
https://med.stanford.edu/news/all-news/2018/08/google-glass-helps-kids-with-autism-read-facial-expressions.html#:~:text=The%20researchers%20named%20the%20new,depicting%20faces%20with%20different%20emotions.
https://med.stanford.edu/news/all-news/2018/08/google-glass-helps-kids-with-autism-read-facial-expressions.html#:~:text=The%20researchers%20named%20the%20new,depicting%20faces%20with%20different%20emotions.
https://www.sciencedirect.com/science/article/abs/pii/S2452414X21000248
https://www.researchgate.net/publication/337400888_Artificial_Intelligence_State_of_the_Art
https://www.researchgate.net/publication/337400888_Artificial_Intelligence_State_of_the_Art
https://www.sciencedirect.com/topics/computer-science/intelligent-robots
https://esi.uclm.es/index.php/2022/05/26/robots-afectivos-para-ayudar-a-personas-mayores-o-dependientes/
https://esi.uclm.es/index.php/2022/05/26/robots-afectivos-para-ayudar-a-personas-mayores-o-dependientes/
https://www.edsrobotics.com/blog/vision-computador-que-es/
https://nanonets.com/blog/machine-learning-image-processing/
https://flatironschool.com/blog/deep-learning-vs-machine-learning/#:~:text=Deep%20learning%20is%20a%20type,modeled%20on%20the%20human%20brain.
https://flatironschool.com/blog/deep-learning-vs-machine-learning/#:~:text=Deep%20learning%20is%20a%20type,modeled%20on%20the%20human%20brain.
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://cleventy.com/que-es-git-flow-y-como-funciona/

78 BIBLIOGRAPHY

[15] Santander Universidades. Python: qué es y por qué deberías aprender a utilizarlo. URL:
https://www.becas-santander.com/es/blog/python-que-es.html, 2021.

[16] Python. Pyqt5: Threading, signals and slots. URL:
https://wiki.python.org/moin/PyQt5/Threading%2C_Signals_and_Slots, 2019.

[17] Ramsés Moreno. Principios de gestalt en el diseño de interfaces de usuario. URL:
https://www.uxdiario.com/blog/principios-de-gestalt-en-el-diseno-de-interfaces-de-usuario,
2021.

[18] Ringa Tech. Tu primer clasificador de imágenes con python y tensorflow. URL:
https://www.youtube.com/watch?v=j6eGHROLKP8&ab_channel=RingaTech, 2021.

[19] Guilherme Duarte Marmerola. Training models when data doesn’t fit in memory. URL:
https://gdmarmerola.github.io/big-data-ml-training/, 2020.

[20] DIPAYAN MUKHOPADHYAY. Train keras model with large dataset (batch training). URL:
https://medium.com/analytics-vidhya/

train-keras-model-with-large-dataset-batch-training-6b3099fdf366, 2019.
[21] Unknown. How to set steps_per_epoch,validation_steps and validation_split in keras’s fit

method? URL: https://androidkt.com/

how-to-set-steps-per-epoch-validation-steps-and-validation-split-in-kerass-fit-method/,
2021.

https://www.becas-santander.com/es/blog/python-que-es.html
https://wiki.python.org/moin/PyQt5/Threading%2C_Signals_and_Slots
https://www.uxdiario.com/blog/principios-de-gestalt-en-el-diseno-de-interfaces-de-usuario
https://www.youtube.com/watch?v=j6eGHROLKP8&ab_channel=RingaTech
https://gdmarmerola.github.io/big-data-ml-training/
https://medium.com/analytics-vidhya/train-keras-model-with-large-dataset-batch-training-6b3099fdf366
https://medium.com/analytics-vidhya/train-keras-model-with-large-dataset-batch-training-6b3099fdf366
https://androidkt.com/how-to-set-steps-per-epoch-validation-steps-and-validation-split-in-kerass-fit-method/
https://androidkt.com/how-to-set-steps-per-epoch-validation-steps-and-validation-split-in-kerass-fit-method/

APPENDICES

APPENDIX A

A more detailed overview of the tools
employed on this project

A.1. PYTHON

Python is a high level, interpreted and general purpose programming language, being interpreted
means that it is not necessary to compile it, it is executed by the interpreter of the computer instead
(it is not necessary to "translate" it to machine code).

Figure A.1: Python logo

This programming language was conceived in the late 1980s by Guido Van Rossum as a successor to
the ABC programming language.
It is known as an easy to read and write programming language due to its high similitude with
human language and its an open source multi-platform programming language that has been
gaining popularity over the years since its creation.
The most important feature and the main reason why i chose Python as the programming language
for AIWake is the fact that Python eases working with artificial intelligence, big data volumes and
machine learning.
The following is the core philosophy of Python defined with the use of aphorisms:

Beautiful is better than ugly
Explicit is better than implicit
Simple is better than complex
Complex is better than complicated
Readability counts

Nowadays python is in its Python 3.9 version and is in the top ten of popular programming
languages well known organizations like Wikipedia, Google, CERN, Amazon and Spotify use Python.
A lot of frameworks, libraries, web applications and also video-games use Python as their main
source of power.
Indeed some of this python powered elements have been used in this project and we will discuss
them later.

82 A.2. Qt

Figure A.2: Main frameworks, libraries and projects that use Python (Python powered)

A.2. QT

An object oriented multi-platform framework mostly used in the development of software that needs
a user interface, it is also used for console (server-side) applications and command line programs.

Qt its an open source software developed by the Qt project nowadays a part of Nokia and Trolltech
(Norwegian company) are part of the Qt project, Qt is used in KDE Plasma which is a GNU/Linux
desktop environment.

Originally a library developed by Trolltech that wasn’t totally free, it was actively used between 1996
and 1998 in the development of KDE with great success, this fact made Qt to be seen as a threat
against the GNU project (Qt wasn’t totally open source) which made the GNU project to start
developing GNOME with GTK+ and the development of a open source library called Harmony that
was totally compatible with Qt.

After the years it was in 2000 when Trolltech released the 2.0 version which included a license
change to the Q Public License (open source).

Nowadays Qt has a triple license, GPL v2/v3 which are open source and free software and the QPL
license which is private and focused on the commercial applications.

Figure A.3: Qt logo, the framework that powers AIwake UI

Qt has a lot of bindings to be used along with the most powerful programming languages as it was
originally developed as C++ libraries, in this project as we are using Python, the bindings PyQt5 will
be used, for the development of UI also Qt Creator IDE will be used.

A.2.0.0.1. PyQt5 binding along with Qt Creator, a powerful combination PyQt5 is a
comprehensive set of Python bindings for Qt v5, PyQt has more than 35 extensions that enable
Python to be used as the development language for Qt, it also allows us to develop using Qt through

A.A more detailed overview of the tools employed on this project 83

Python on iOS and Android applications, this set of bindings also can be embbeded in C++ based
applications in order to configure or enhance these applications.

84 A.2. Qt

PyQt uses a GPL v3 license that allows the development of propietary applications, to start using it
in our applications we just have to run pip install PyQt5 and import the libraries.

Figure A.4: PyQt allows the Qt library (C++) to be embedded in Python applications

To start using PyQt5 in our application we can import the libraries as follows:

Listing A.1: Example of imports for PyQt5 in order to be used for the AIWake project (PickerPlotter.py)

1 from PyQt5.QtGui import QPen
2 import variables as config
3 from PyQt5.QtCore import Qt , QThread , QPoint
4 from PyQt5.QtChart import QChart , QChartView , QPieSeries , ←↪

↩→ QPieSlice , QLineSeries , QBarSeries , QBarSet , QValueAxis

To give an example on how to generate an application lets take a look at the main window code for
AIWake UI:

Listing A.2: Example initialization of the AIWake UI (AIWakeUI.py)

1 class AIWake_UI(QMainWindow):
2 def __init__(self):
3 super(AIWake_UI , self).__init__ ()
4 uic.loadUi("AIWake_app.ui",self)
5 self.setWindowTitle("AIWake")
6

7 self.testing = True
8 self.thread = {}
9 self.currentThread = [True , False , False , False]
10

11 self.initUI ()
12

13 def initUI(self):
14

15 self.playBt.clicked.connect(self.playBtClick)
16 self.showBoxesCb.stateChanged.
17 connect(self.previewChange_showHB)
18 self.showDetailedCb.stateChanged.
19 connect(self.previewChange_showDE)
20 self.tillFrameCb.stateChanged.connect(self.tillFrame)
21 self.faceDataOnlyCb.stateChanged.connect(self.faceDataOnly)
22 self.pauseBt.clicked.connect(self.pauseBtClick_step1)
23 ...
24 ...
25 ...

As we can see in the example the line 1 shows the class declaration which inherits form the
QMainWindow class, this class includes all the necessary methods to use the class as a main window
for our application, in the line 4 the program loads a .ui file, we will see what this .ui extension
means.

In the line 11 a function initUI is declared, all declarations under this functions will be executed at
the UI initialization and will establish the mapping of the UI components behaviour through

A.A more detailed overview of the tools employed on this project 85

different functions for example in the line 15 we map the PlayBt component and its clicked event to
the function playBtClick which is declared as follows in the AIWake class code:

Listing A.3: playBtClick function(AIWakeUI.py)

1 def playBtClick(self):
2 if self.currentThread [0]:
3 if self.thread [1]. isRunning ():
4 self.thread [1]. pause = False
5 else:
6 self.thread [1]. start()
7 ...
8 ...
9 ...

As simple as it looks, the playBt component will start a thread in our application when clicked.
This example shows how to use PyQt in our application, but i used a little trick in order to achieve a
faster development for my application, i’m talking about Qt Creator, an IDE created to develop Qt
applications through a drag and drop mechanic (similar to the widely used Visual Studio IDE) and
QML statements

Figure A.5: Qt Creator interface with AIWake being developed, a great IDE for UI development using Qt

Qt Creator as said above is an IDE for development of Qt applications, it uses QML which is a
language based on JavaScript created for the design of user interface focused applications QML
stands for Qt Meta Language, Qt creator is programmed in C++ which makes a need for our
application to include the PyQt5 libraries into our Qt Creator instance, it was created by Trolltech
also creators of Qt as mentioned above and it offers support forWindows, MAC OS and GNU/Linux.
Qt Creator offers an advanced code editor but as the AIWake project will be developed using other
libraries the use of another IDE PyCharm was required so an IDE for the UI Qt Creator that provides
powerful tools for UI development and an IDE for the source code PyCharm which provides
powerful debugging tools were used in the development of this project.

86 A.2. Qt

Figure A.6: Qt Creator advanced code editor with AIWake being developed

A.2.0.0.2. Qt Charts vs Matplotlib i cant end the Qt section without briefly talking about one
of the best modules it could have, while developing AIWake i started using Matplotlib in order to
represent the data obtained during processing of facial emotions.

Figure A.7: Matplotlib,one of the most popular python libraries for data representation

The use of Matplotlib came with a big problem for me while developing AIWake, the library wasn’t
able to support multiple plots at the same time and also wasn’t capable of redrawing them efficiently,
it is a very simple and easy to use library but it came with a great disadvantage, the poor
performance for achieving one big approach of AIWake: the real time data representation while
processing

Figure A.8: First tests running matplotlib to represent the processed data by AIWake

This lack of performance caused the need of finding a new library for data representation and while
looking for such library i found that Qt came with a library for data representation, the only
disadvantage was the fact that in terms of coding it was far more complex than Matplotlib which

A.A more detailed overview of the tools employed on this project 87

causes this library to be widely hated by most Qt developers, but it was worth a try and it came with
great results.

(a) Bar plot using QtCharts (b) Line plot using QtCharts

Figure A.9: Different data plots using QtCharts in AIWake

Figure A.10: Detailed line plot of the processed data frame by frame in real time by AIWake

So at the end QtChart was chosen to be the data plotting engine of AIWake due to its low impact in
performance and capacity to run along with the rest of processes of the main application (even in
different threads Matplotlib impact on performance was significant due to the limited resources a
home pc can have).

A.3. PYCHARM

PyCharm is a multi-platform IDE developed by the czech company JetBrains for the Python
programming language that offers a community editions with as its website says all the python tools
just in one place.

Figure A.11: PyCharm, a powerful tool for python development

PyCharm offers advanced code analysis, a graphic debugger and integration with version control
systems like Git
It was first released in 2011 and JetBrains has been releasing new versions of the IDE since then, at
the moment of developing this project the last version of PyCharm was 2021.3 and a new version is
about to come as 3 versions are released each year usually in a 3-month period.
Its well known that nowadays PyCharm in industries is used by most of the professional developers
and it has been considered as the best IDE for Python so the list of actual applications that have been
developed using this IDE is so long that it wouldn’t fit this document.

88 A.4. OpenCV

Figure A.12: PyCharm UI during the execution of AIWake

PyCharm is the most popular tool for Python development with (according to the 2018 python
developers survey by the Python software foundation together with JetBrains) a 35% combined share for
PyCharm Professional and Community editions.

Figure A.13: 2018 python developers survey results

The popularity of this IDE has gifted it with an immense amount of guidelines, tutorials, plugins and
facilities in general that has made the choice of this IDE for the AIWake project development an easy
one.

A.4. OPENCV

OpenCV is an open source computer vision and machine learning software library built to be one
common infrastructure for computer vision applications.

Figure A.14: OpenCV, the library used for the computer vision component of AIWake

A.A more detailed overview of the tools employed on this project 89

Many companies make an extensive use of OpenCV such as Google, Yahoo, Microsoft, Intel, IBM, Sony
and many more along with many startups that use OpenCV for developing surveillance software,
robots navigation and interactive art applications in Spain, these are just a few examples of the
OpenCV nowadays applications.
The use of OpenCV in this project is needed due to the fact that a lot of images will be processed
through the data model and in order to prepare these images an OpenCV integration is needed.

Figure A.15: An image generated by OpenCV in AIWake first runs

Python-OpenCV provides a set of bindings in order to use the OpenCV library along with Python in
A.15 we can see one of the first test runs in AIWake that along with the use of a model provided by
OpenCV (haarcascade) for face detection allowed the first impletations of the AIWake project.
The model provided by OpenCV is part of a set of data models that OpenCV contains due to its
computer vision oriented characteristics, this model was used for the final version of AIWake as it
was already a powerful model for face detection.
Python-OpenCV makes use of numpy, a highly optimized library for numerical operations, all the
OpenCV array structures are converted to and from numpy which makes it easier to integrate
Python libraries that make use of numpy.
Also mention that compared to other languages like C/C++, Python is slower (with OpenCV) so the
Python-OpenCV bindings are wrappers for Python that use the C/C++ code meaning that we have a
code that is as fast as it is in C/C++ and we have an easier language to code which is Python.

90 A.5. Tensorflow

A.5. TENSORFLOW

Tensorflow is an open source end to end platform for machine learning that counts with an integral
and flexible ecosystem of tools, libraries and resources coming from the contributions of its
community that allows developers and researchers to innovate through the creation of applications
using machine learning.

Figure A.16: Tensorflow, an open source platform for machine learning

It was developed by Google to fulfill their need of creating and training neural networks to detect
and decipher patterns and correlations like the human reasoning does, nowadays Tensorflow is used
in research and in some products.
Originally developed by the Google Brain team in order to replace the closed source platform (also
developed by Google Brain) DistBelief as a company private platform till 2015 when it was published
under an Apache open source license.
Tensorflow is available inWindows, Linux, macOS and mobile platforms like Android and iOS and can
run over multiple CPUs and GPUs, for NVIDIA GPUs it also can run along using CUDA which we
will talk about in future sections if this document.
The name Tensorflow comes from the multidimensional arrays used by the neural networks
operations which are called "tensors" it is important to mention that in 2016 after the 2015 license
change of Tensorflow about 1500 GitHub repositories where mentioning Tensorflow and only 5
repositories where Google’s.
Tensorflow website offers a section called Tensorflow hub where the community can post already
trained models for different problem domains, in the development of AIWake none of these were
used but this option already exists as a powerful set of tools for machine learning research and
development.

Figure A.17: Tensorflow hub, a repository with an immense amount of pretrained models.

A.A more detailed overview of the tools employed on this project 91

In 2019 the alfa version of Tensorflow 2.0 was announced which was focused on simplicity and the
eager execution mode, it also aims to consolidates the use of high level APIs based on Keras and the
flexible deployment of data model at any platform.

The AIWake project uses the Tensorflow 2.7 version along with the Keras API and the CUDA library
for pararell computing, this combinations allowed the generation of the model for our classification
problem and the results will be shown in future sections.

A.6. KERAS

Keras is an API (Application Programming Interface) designed as it website claims for human beings,
not machines, that follows best practices in order to reduce cognitive load minimizing the number of
user actions for common use cases, it also comes with an extensive documentation and user guides.

Figure A.18: Keras, an API designed for human beings, not machines

Among the 5-top winning teams on Kaggle (we will discuss Kaggle) in the next section) Keras was
the most used deep learning framework due to the fact that its design makes easy to run new
experiments empowering the developers to try more ideas against the competitors, since 2017, Keras
counts with more than 200.000 users and was the tenth most quoted tool in the KD Nuggets 2018
software survey with an average use of 22%.

Figure A.19: KDNuggets, a leading platform for AI developers with more than 500.000 monthly users

It is built on top of Tensorflow 2 which makes it an industry-strength framework scalable to large
clusters of GPUs with a vast ecosystem that covers every step of the machine learning workflow
from data management to deploy of new solutions.

Originally developed as part of the research efforts of the project ONEIROS by the Google engineer
Francois Chollet and supported by the Tensorflow team since 2017, also, Microsoft offered a CNTK
backend to Keras which is available since CNTK 2.0.

Keras has many impletations of building blocks for neural networks like the layers, goal functions,
activation functions and mathematical optimizers, it also offers support for convolutional networks
and recurrent ones (AIWake uses a convolutional network for solving the classification problem it
has to face) and has the option of generating deep learning models for Android and iOS devices.

Figure A.20: Keras + Tensorflow, the best combo generating data models

Used in CERN, NASA, NIH and more scientific organizations, its ease of use makes Keras the deep
learning solution for most universities courses as it is the most recommended way to learn deep
learning.

92 A.7. NVIDIA CUDA

A.7. NVIDIA CUDA

CUDA is a pararell computing platform and programming model developed by NVIDIA for
computing on NVIDIA GPUs, CUDA allows to speed up drastically very demanding computing
applications using the power of GPUs, CUDA makes the compute intensive portions of programs to
be executed in parallel using the thousands of GPU cores available.

Figure A.21: NVIDIA CUDA, a library for systems using NVIDIA GPUs optimized for parallel program-
ming

Some companies like Adobe, Ansys, Autodesk or Microsoft deploy their applications to GPUs
embedded systems, workstations, data-centers and in the cloud, CUDA encompasses many domains
in terms of highly computing power demanding applications such as computational chemistry,
machine learning, data science, bio-informatics and fluid dynamics.

As the system where AIWake will be developed its running a NVIDIA 2060 RTX i decided to integrate
the CUDA platform into the development of the project which has a great disadvantage: the systems
that doesn’t run on a NVIDIA GPU will experience performance losses as they will have to run all
the processing of AIWake limited by their CPU processing power, an interesting future approach for
the applications would be to run it in the cloud with a powerful system but this approach
considerably exceeds the time limitations of the development.

CUDA first SDK was released on 2007 for Windows and Linux and didn’t arrive to macOS till its 2.0
version, using CUDA can cause bottlenecks because of its aim of taking advantage of the great
parallelism level and high bandwidth of GPUs memories instead of accessing multiple times main
memory of the system, the structure of CUDA model is defined by a grid that is conformed by blocks
of threads that have 1024 distinct threads at max, it uses kernels that specify which instructions are
going to be executed by each individual thread and can launch all threads in a single block, a block
for each thread or launch multiple threads in each block.

A multiprocessor contains eight scalar processors, two units specialized in transcendental functions,
one multi-thread unit and a shared memory, the multiprocessor creates the threads with a planning
that allows the synchronizations of barriers and a very light thread creation allowing CUDA to be
use in very low granularity problems even assigning each thread to a single element in our case of a
image (a pixel).

Figure A.22: CUDA is able to assing every pixel of a image to a single GPU thread.

A.A more detailed overview of the tools employed on this project 93

A.7.0.0.1. CUDA Deep Neural Network (cuDNN) cuDNN is a GPU-accelerated library of
primitives for deep neural networks that provides highly tuned implementations for standard
routines such as forward and backward convolution, pooling, normalization and activation layers.

Figure A.23: cuDNN, useful when accelerating deep learning frameworks

Integrating cuDNN with a project allows developers to focus more on training neural networks and
developing software rather than spending that time on low-level GPU performance tuning as cuDNN
accelerates most used deep learning frameworks such as Keras and Tensorflow.
AIWake makes use of cuDNN 8.1 in order to accelerate the video processing and take advantage of
the NVIDIA RTX 2060 GPU running in the machine the project is being developed, the last version of
cuDNN is 8.3 and it brings improvements for A100 GPUs which are GPUs that are built with the
A100 tensor core architecture (latest NVIDIA GPUs such as rtx 3000 series) in our case RTX 2060 is
built with the U100 tensor core architecture so we will use cuDNN 8.1.

A.8. KAGGLE

Kaggle is an online community composed by data scientist and machine learning experts that allows
users to find and publish data sets and generate models along these data sets, Kaggle also offers
working along with other data scientists and engineers and participate in competitions of solving
data science challenges against other teams since 2010.

Figure A.24: Kaggle, a community of data scientist and machine learning experts

Nowadays the data sets offered by Kaggle and the models generated in those competitions are
publicly available for anyone to use them as a cloud workbench for data science and Artificial
Intelligence education, it was acquired by Google as a subsidiary in 2017.
The number of users or as Kaggle refers to them, "Kagglers", is more than a million as said by Kaggle
website from the rookiest ones to the most experts they come from 194 different countries, the
competitions run by Kaggle usually attract more than a thousand teams that use the multiple data
sets and code fragments, Kaggle kernels, available to compete.
Competitions run by Kaggle are as follows:

1. A host prepares the data and the problem description.
2. The competitors experiment with the data using different techniques and try to obtain the

best model possible model, this work is shared publicly in Kaggle in order to allow the come of
new ideas, the models are evaluated almost immediately and these qualifications are shown
live in a table publicly on Kaggle.

3. When the due date is over, the host gives the price to the winners in exchange of a global
license, perpetual and irrevocable to use the winning project.

94 A.8. Kaggle

Figure A.25: Some competitions available in Kaggle website, 12/06/2022.

The impact of Kaggle competitions encompass from improving the pose recognition for Microsoft
Kinect to improving the search of the Higgs boson in CERN and some of this competitions have come
with great success in for example improving the search for a VIH cure or the rising of new
techniques for Artificial Intelligence experiments such as XGBoost.
Now lets focus on AIWake, for this project a data set was required so a little search on Kaggle was
made to find out about FaceNet, a deep learning model by Google that is proven to be the best one in
terms of face recognition so the aim of the search in Kaggle was to find data sets prepared for the
Google FaceNet architecture.

Figure A.26: Listing of models published in Kaggle using the FaceNet architecture

In Figure A.26 we can appreciate some projects created by Kaggle users, these projects can be
filtered by hotness that means we can pick a project that is being watched very closely by other
users which may mean that the project is interesting and useful or we can filter by votes which gives
us the all-time best projects, also when searching for projects we can specify Kaggle the type of
input data we want for our model and the file size of the data this model has.
The fact that we are using a home computer for developing AIWake made FaceNet power
requirements a disadvantages so the final decision about architecture was to use FaceNet data sets
found in Kaggle with a less power hungry architecture as MobileNetV2 with allowed the generation
of a model for our classification problem in less time by using Keras.

APPENDIX B

AIWake reference guide

AIWAKE REFERENCE GUIDE

For users and system understanding

AIWake
Platform for the analysis of the level of attention in lectures

using computer vision and deep learning

Enrique Valverde Soriano

96

B.AIWake reference guide 97

1. General options section: Here you can modify the options regarding the overall
configuration of the system, the available options are:

Face detection model: if you want to use a different model face detection in the face
isolation stage, you can browse from your computer the model you want to use,
remember that the architecture of the model must be similar in terms of input images
processing!.

Output JSON: you can modify the output json file path in order to store the data
processed by the face isolation stage to any location of your computer.

Prediction tags: if you want to use a custom emotion detection model that uses
different labels for emotions, you can specify these labels here.

Emotion detection model: Opens the possibility of using your own classification
models remember that the input parameters must match the input parameters used by
AIWake.

Output JSON: Allows you to chose a new location for the json files produced by the
emotion detection stage.

2. Face picker section: Here you can manually manage the data produced by the processing
stages of the system, there is a tab for each stage, in the image we can see the face isolation
face picker tab, in this tab you can delete face frame occurrences, delete all the face
occurrences or mark a face as accepted (if you consider a face occurrence as a valid face but
the system rejected it), for the case of the emotion detection stage, you can perform the same
actions but with the added option of modifying the mood detected by the system, all depends
on your criteria.

3. Feedback section: Here you can obtain feedback from the system, status text regarding the
internal actions that are being executed, the progress bar that gives you the amount of data
that has been processed and a selector were you can tell the system to skip some frames in
order to obtain a performance improvement with the cost of sacrificing some accuracy, it is
highly recommended to use this option only once at the start of the execution in order to
obtain a consistent output.

4. Video player options: This options mostly belong to the face isolation stage, here you can
modify the size of the collision squares (depending on the amount of faces there could be
errors if big size squares are used for isolation), the acceptance rate in order to establish a
criteria for the system to determine when to consider a detected face as valid, the show
detected faces option that draws the areas of the video regarding faces, the show detection
threshold option were you make the system to stop showing the collision squares, the delete
all rejected automatically option that automatically deletes all the rejected faces at the end of
the face isolation stage and the buttons:

Save data: when the review stage of face isolation is over, this button must be used in
order to produce the json output and tell the system to continue with the next stage.

Delete rejected: if you forgot to select the delete all rejected option or if you want to
review all the detected faces that were isolated, don’t worry, you can always use this
button to tell the system to delete all the rejected faces.

5. Video player section: works as a common video player, the controls are the usual play,
pause, forward and backward buttons the leftmost and rightmost buttons are meant to chose
the next frame that was processed in the case the option of skipping frames was chosen, in the
upper section the browser for choosing the video file to process is located.

6. Data representation section: This section provides you with real time information
regarding the processed data of each stage, the left chart represents global data which
provides you with a cumulative representation of the data being processed, in the case of face

98

isolation it plots the value of the amount of faces that were rejected over time, for emotion
detection it plots the labels and its values, the right chart is similar but with the detailed
representation (not cumulative, each processed frame is plotted), you can select the type of
chart to display between bar chart, pie chart and line chart.

To end the reference guide the action flow that you should follow when using AIWake should look
like this:

	Portada
	Créditos
	Tribunal

	Resumen
	Abstract
	Agradecimientos
	Índice general
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Motive
	1.2 Background
	1.2.1 Facial recognition
	1.2.2 Emotion recognition

	1.3 The AIWake project
	1.4 Document structure

	2 Objectives
	2.1 Main objective
	2.2 Sub objectives

	3 State of the art
	3.1 Artificial Intelligence
	3.2 Computer vision
	3.2.1 Computer vision applications

	3.3 Deep learning
	3.3.1 Main types of deep learning algorithms

	4 Working method
	4.1 Methodology
	4.1.1 Iterative and incremental software development
	4.1.2 Planning
	4.1.3 Development management

	4.2 Tools involved on the development
	4.2.1 Software
	4.2.2 Hardware
	4.2.3 Other tools

	5 Project architecture
	5.1 Control and User Interface
	5.1.1 User Interface
	5.1.2 Control

	5.2 Processing
	5.2.1 Face isolation module
	5.2.2 Emotion detection module
	5.2.3 Emotion detection review module

	5.3 Data representation
	5.3.1 Global representation module
	5.3.2 Detailed representation module
	5.3.3 Face-picker representation module

	6 Results
	6.1 Per iteration results
	6.1.1 Iteration/phase 0, generating a deep learning model for a classification problem
	6.1.2 Iteration/phase 1, processing the video source in order to detect the faces to be processed
	6.1.3 Iteration/phase 2, processing the video source to obtain data regarding emotions
	6.1.4 Iteration/phase 3, Phase 3, creating an UI for reviewing obtained data
	6.1.5 Iteration/phase 4, integrate charts in the application to allow detailed data analysis

	6.2 Project stats
	6.3 budget estimations

	7 Conclusions
	7.1 conclusions
	7.2 future work
	7.3 specialization competences fulfillment
	7.4 final thoughts

	Bibliography
	A A more detailed overview of the tools employed on this project
	A.1 Python
	A.2 Qt
	A.3 PyCharm
	A.4 OpenCV
	A.5 Tensorflow
	A.6 Keras
	A.7 NVIDIA CUDA
	A.8 Kaggle

	B AIWake reference guide
	Portada

